# Omnidirectional Bipedal Walking in Cartesian Space through Reinforcement Learning and Optimized Quintic Splines

Marc Bestmann

### Motivation

- Bipedal walking is important but difficult
- Many different approaches were tried in the past
- In recent years, deep RL became more popular
- Typically combined with reference motions from motion capture data
- I use a novel approach of generating these

From Peng et al. "DeepMimic: Example-Guided Deep Reinforcement Learning of Physics-Based Character Skills", 2018

### **Optimized Spline Reference Motion**

- Define movement of feet in Cartesian space as quintic spline
- Dependent on walk velocity and a set of hyperparameters
- Hyperparameters are optimized with Multi-objective Tree-structured Parzen Estimator (MOTPE)
- IMU-based PD control for stabilization



### Choice of Reference Motion

| Motion Capture                                | Manual Keyframe Animation          | Spline-based Engine                     |
|-----------------------------------------------|------------------------------------|-----------------------------------------|
| Only possible for human or animal like robots | Possible for any kind of robot     | Possible for any kind of robot          |
| Transfer to different kinematics needed       | Designed for one specific platform | Adapts to different platforms           |
| Reference not executable                      | Reference may be executable        | Reference executable, provides baseline |
| Not optimal                                   | Difficult to optimize              | Can be optimized for the platform       |
| One walk velocity                             | One walk velocity                  | Any walk velocity                       |
| Represents state                              | Represents state                   | Represents Action                       |
| Data recording needed                         | Manual creation needed             | Programming needed                      |

### **Design Choices**

- Typical RL research uses standardized environments (OpenAi Gym)
- Then compares the different algorithms with each other
- Environment design choices were not investigated that much yet
- But have a high influence on the result
- Action and observation space
  - Cartesian / Joint space
  - Rotation representation
- Reward function
  - State or action based

### Approach

- Synchronising with phase
- Reference only used for reward
- IK usage

$$r = \frac{1}{2} \cdot r_g + \frac{1}{2} \cdot r_i$$



### Approach

- Training by using PPO
  - 10 seconds time limit
  - Random state initialization
- Policy net
  - 2 layer each 64 fully connected neurons
  - tanh activation function
  - Fixed variance gaussian distribution
- Value function net
  - 2 layer each 64 fully connected neurons
  - tanh activation function
- PPO hyperparameter optimization using TPE

#### Platform

- Wolfgang-OP robot
- Learning done in either PyBullet or Webots
- Test with ROS stack in Webots or on real robot



### **Reference Motion Quality**

- Learn multiple times using different hyperparameter for reference motion
- Achieved reward is proportional to the quality of the reference motion
- Confirms hypothesis that optimized reference motion is desirable



# **Policy Space**

- Choice of rotation type matters
- Cartesian space learns faster and achieves higher rewards
- RL approach surpases performance of simple stabilization methods
- Bias reduces number of falls





### Reward

- Action based reward achieves higher reward
- Difference between cyclic and non cyclic phase is small



### **Exemplary Plots**

- Dashed lines are reference motion
- Policy not only reproduces the reference motion



### Sim2Real

- Domain randomization in PyBullet
  - Links: mass, inertia
  - Joints: torque, velocity
  - Simulation: restitution, lateral friction, spinning friction, rolling friction
- Transfer to Webots
  - More accurate robot model including backlash
  - Soft (grass-like) floor
  - Different physics engine (ODE instead of Bullet)
- Transfer to actual hardware

### **Current Issues**

- Not completely stable on real hardware
- Trained policies sometimes work and sometimes not
  - Based on choices like using a terrain
  - But also differences between two trainings
- Domain randomization maybe not diverse enough
- Delay maybe needs to be modelled

## **Remaining Issues**



### Future Work

- Improve performance on actual hardware
- Run further experiments
  - Adaptive phase
  - Beta distribution
  - Different network structure
  - Other reward functions
  - Try on different robot models
- (Implement in Mujoco)
- Do same approach with stand-up motion
  - Together with Sebastian Stelter
- Path planning
  - Master thesis of Jasper Güldenstein

#### Questions?