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1. INTRODUCTION [1]

 Assembly task is the process of putting manufactured pieces together in some predefined 

order. 

 Assembly motion is a motion of the manipulator that moves a part into an assembled, i.e.

into a required spatial arrangement or into contact with the other part.

 Assembly usually involves high precision and low tolerance between parts   uncertainties 

in sensing and control are not trivial to handle 
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1. INTRODUCTION

 Compliant motion is a motion, that is 

constrained by the contact between the 

held part and another part in the 

environment.

 Reduces uncertainty    simplifies task   

used a lot in assembly

 Usually, more than one such motion is 

required in an assembly task

 Peg-in-hole insertion task is among the 

most used such motions, and the topic of 

today’s paper
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Fig.1: Contact transitions while executing peg insertions

Fig.1 from Hägele M., Nilsson K., Paires J.N. (2008) Industrial Robotics. In: Siciliano B., Khatib O. (eds) Springer Handbook of Robotics. 
Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30301-5_43
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1. TASK FORMULATION

 Contact state – can be defined 

topologically as a set of primitive contacts, 

each of which is defined by a pair of 

contacting surface elements in terms of 

faces, edges, and vertices.

 Peg insertion – a compliant motion that 

consist of combing two mating parts into 

predefined contact state.
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Fig.2[2]: Setup of the robotic peg-in-hole assembly 

system

[2] Xu, Jing & Hou, Zhimin & Liu, Zhi & Qiao, Hong. (2019). Compare Contact Model-based Control and Contact Model-free Learning: A 
Survey of Robotic Peg-in-hole Assembly Strategies.
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2.  APPLICATIONS
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https://www.westend61.de/en/imageView/DIGF07198/arm-of-assembly-robot-functioning-inside-modern-factory-stuttgart-germany
https://www.researchgate.net/figure/A-typical-setup-of-a-robotic-assembly-cell_fig1_350789609
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3.  APPROACHES

 Two main strategies to deal with compliant motions[1]:

 Passive Compliance: incorporation of the compliant motion for the 

error correction during the assembly motion, without the need of an 

active and explicit recognition and reasoning of contact states between 

parts. 

 Example: RCC (mechanical device)

 Active Compliance: error correction is based on online identification or 

recognition of contact states in addition to feedback of contact forces.

 Allows for broader range of assembly tasks with large uncertainties 

and tasks beyond assembly where compliance is required.
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[1] Hägele M., Nilsson K., Paires J.N. (2008) Industrial Robotics. In: Siciliano B., Khatib O. (eds) Springer Handbook of Robotics. Springer, Berlin, Heidelberg.
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Fig.3: Remote compliance center (RCC)
source: 

https://upload.wikimedia.org/wikipedia/commons/thumb/d/d

1/Remote_Center_of_Compliance.svg/1200px-

Remote_Center_of_Compliance.svg.png

https://doi.org/10.1007/978-3-540-30301-5_43
https://upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Remote_Center_of_Compliance.svg/1200px-Remote_Center_of_Compliance.svg.png


3.  APPROACHES

 Classical strategies (model based) need to be preprogrammed by experts using 

domain knowledge.[1]

 Expensive and time consuming

 Sensitive to the configuration of the working space

Robot working space for the assembly task needs to be structured 

 Not adaptive

 This creates difficulties and increases cost

 Learning-based methods are popular now, because of their potential to 

overcome these issues. It is also possible to incorporate prior knowledge or 

expert demonstrations in order to speedup learning[2].
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[2] Xu, Jing & Hou, Zhimin & Liu, Zhi & Qiao, Hong. (2019). Compare Contact Model-based Control and Contact Model-free Learning: A Survey of Robotic Peg-
in-hole Assembly Strategies.
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Fig.4: classification of assembly strategies [2]



3.  APPROACHES

Learning based methods can be divided further: 

1. Learning form demonstration (LFD)

Seems to be not so popular [2] in context of the peg-

in-hole tasks.

2. Learning from the environment (LFE)

One of the most widely [2] used approaches when it 

comes to manipulation tasks and offering advantage of 

generalization to unseen task.

Main problem with learning-based approaches is low data 

efficiency.
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[2] Xu, Jing & Hou, Zhimin & Liu, Zhi & Qiao, Hong. (2019). Compare Contact Model-based Control and Contact Model-free Learning: A Survey of Robotic Peg-
in-hole Assembly Strategies.
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4. PAPER PRESENTATION
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4.1 PAPER SUMMARY

 Title: Making Sense of Vision and Touch: Self-Supervised Learning of Multimodal 

Representations for Contact-Rich Tasks[3]

 Authors: Michelle A. Lee, Yuke Zhu, Krishnan Srinivasan, Parth Shah, Silvio 

Savarese, Li Fei-Fei, Animesh Garg, Jeannette Bohg

 Employer: Department of Computer Science, Stanford University,

A. Garg is also at Nvidia, USA

 Submitted on: 24 Oct 2018

 ICRA 2019 best paper award video and interview
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4.1 PAPER SUMMARY

 Focus of the paper 

 Peg-in-whole task, representation of the multimodal data

 What is special about it

 Apparently, it works in real life

 Use of 3 modalities: vision, sensory input and proprioception

 Use of self-supervision to acquire the training data

 Goals

 Create concise representation for the multimodal data that can describe the current state of the system, 

and can be used for solving manipulation tasks i.e., used as an input for controller

 To learn a policy on a robot for a manipulation task

 Evaluate the impact of modalities and ability to transfer representations for different tasks
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4.2 PROBLEM STATEMENT

 Manipulation task modeled as a finite-

horizon, discounted Markov Decision 

Process (MDP), 

 Goal – learn the policy 𝜋 . 

 Policy represented by the neural 

network 𝜃𝜋

 S will be the learned representation 

from the high dimensional input

 A is defined over continuously-valued, 

3D displacements Δx in Cartesian 

space
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4.4 MODEL FOR REPRESENTATION LEARNING
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[3] M. A. Lee et al., "Making Sense of Vision and Touch: Self-Supervised Learning of Multimodal Representations for Contact-Rich Tasks," 

2019 International Conference on Robotics and Automation (ICRA), 2019, pp. 8943-8950, doi: 10.1109/ICRA.2019.8793485

Fig. 6: model for the representation learning [3]



4.4 MODEL FOR REPRESENTATION LEARNING:

MODALITY ENCODERS
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 Images: 128x128 RGB images => 6-layer CNN, similar 

to the FlowNet + fully connected layer => 128-d feature 

vector

 Haptic feedback: last 32 readings of 6-axis F/T sensor as 

a 32x6 time series => 5-layer causal convolutions with 

stride 2 => 64-d  feature vector

 Proprioception: current position and velocity of TCP => 

2-layer MLP => 32-d feature vector

 Multimodal representation: concatenation of the 3 

vectors above => 2-layer MLP => 128-d multimodal 

representation
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Fig. 6: model for the representation learning [3]



4.4 MODEL FOR REPRESENTATION LEARNING:

SELF-SUPERVISED PREDICTIONS
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 To learn representation, objective is needed

 3 neural networks trained beforehand on data and are used for it

 Optical flow predictor

 Contact predictor

 Alignment predictor (to check if the data from different modalities aligned over 
the time dimension)

 The labels are designed in such a way that they enable automated 
creation of dataset for training

 Optical flow generated from kinematics based on proprioception

 Heuristics (threshold, I guess) for contact

 Misaligning the data-streams for the alignment predictor

 Contact and flow prediction are used, so that the multimodal 
representation will encode action-conditional relation

 Alignment predictor is used to help capturing the dependency 
between the modalities into the encoding
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Fig. 6: model for the representation learning [3]



4.4 MODEL FOR REPRESENTATION LEARNING:

SELF-SUPERVISED PREDICTIONS
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 Action encoder:

 Next action => 2-layer MLP => 

encoded next action

 Next action is TCP motion

 Forms input for the flow and contact 

predictor

 Flow predictor

 Encoded next action + multimodal 

representation => 6-layer CNN 

decoder + upsampling with skip 

connections => 128x128 action 

conditional flow map

 Endpoint error (EPE) loss averaged 

over all pixels

 Contract predictor

 Encoded next action + 

multimodal representation => 2-

layer MLP => “contact at the 

next step” 0/1

 Cross entropy loss

 Alignment predictor 

 Randomly shifted in 

time/aligned multimodal data 

=> 2-layer MLP => “time 

aligned or not” 0/1

 Cross entropy loss

MAKING SENSE OF VISION AND TOUCH, MICHELLE A. LEE ET AL.

 Endpoint error (EPE)

For a motion field H by W pixels,

 Cross entropy loss



4.4 MODEL FOR REPRESENTATION LEARNING:

SUMMARY 
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 Model is trained by stochastic gradient descent minimizing a sum of the three losses end-to-end

 Dataset made from rolled-out random and heuristic trajectories  

 After the model is trained, we can use the encoder to get 128-d feature vector that compactly represents 

multimodal data 

 This model is needed because designing encoder for the multimodal data by hand is infeasible

 Learned representation will be used as an input for policy learned by RL

MAKING SENSE OF VISION AND TOUCH, MICHELLE A. LEE ET AL.



4.5 POLICY LEARNING AND CONTROLLER DESIGN
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 Again, designing controller by hand is 

infeasible, because it will be very task specific

 The idea is to enable self-supervised learning

 Therefore, RL will be used to learn the 

controller
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4.5 POLICY LEARNING AND CONTROLLER DESIGN
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 Policy Learning

 Model-free reinforcement learning problem is used

 Eliminates the need for an accurate dynamics model 

what may be difficult in this context

 The trust-region policy optimization (TRPO) is used 

to optimize the policy

 It imposes a bound of KL-divergence for each 

update, so the updated policy is not too far from the 

previous

 Policy network 

 2-layer MLP 

 Input: 128-d multimodal representation 

 Output: 3D displacement dx of the robot end-effector

 For the training efficiency, representation model is 

frozen 
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4.5 POLICY LEARNING AND CONTROLLER DESIGN

21

 Trajectory generator

 Upsamples low-bandwidth output of the policy to the high-bandwidth 

needed for the controller from 20 Hz to 200 Hz

 Calculates trajectory {𝑥𝑘, 𝑣𝑘, 𝑎𝑘}𝑘=𝑡
𝑡+1 , form current state and the give 

displacement dx

 Impedance PD controller

 Calculates task space acceleration form the trajectory



 𝑘𝑣,𝑘𝑝 are manually tuned gained

 Dynamics model

 Use dynamics and kinematics model of the robot 

 , where Λ inertial matrix in the end-effector

 Map from F to 𝜏𝑢 with the Jacobian 

 Controller design 

 Input: dx form the policy 20 Hz

 Output: direct torque commands 𝜏𝑢 200 Hz

 Policy uses cartesian space commands, so no complicated 
mapping between joint and cartesian spaces needs to be learned 

 Direct torque control allows for the compliance and increased 
safety
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Fig. 7: model for the control and policy learning [3]



4.6 EXPERIMENT DESIGN

Objectives of the experiments’ setup:

1. What is the value of using all instead of a subset of modalities? 

2. Is policy learning on the real robot practical with a learned representation? 

3. Does the learned representation generalize over task variations and recover from 

perturbations?
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4.6 EXPERIMENT DESIGN:

TASK SETUP

 The model is tested on the peg insertion task

 The input is haptic and visual information

 5 types of pegs: round, square, triangular, semicircular, and hexagonal

 Clearance is 2mm
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Fig. 8: Peg used for the peg insertion task[3]
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4.6 EXPERIMENT DESIGN:

REWARD DESIGN

 s - current peg position (planar or volumetric) 

 λ – constant factor

 - peg target position 

 c – constant scaling factors
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 The reward is built in such a way, to help the agent 

learn the insertion by consecutive subtasks, from 

reaching to insertion.

 The design of each subtasks’ reward is simple: the 

closer peg position to the subtasks’ goal is, the 

closer the reward is to the maximal of current 

subtask.



4.6 EXPERIMENT DESIGN:

EVALUATION

 Sum of rewards achieved in episodes in % of the highest achievable reward

 Statistics on the progress of the task completion:

1. completed insertion: the peg reaches bottom of the hole;

2. inserted into hole: the peg goes into the hole but has not reached the bottom;

3. touched the box: the peg only makes contact with the box;

4. failed: the peg fails to reach the box.
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4.6 EXPERIMENT DESIGN:

ROBOT ENVIRONMENT SETUP

 Simulation and real hardware experiments

 Kuka LBR IIWA robot, 7-DoF, torque-controlled for both

 Modalities:

 proprioception: end-effector pose, linear and angular velocity (from FK)

 RGB camera: fixed camera pointed at the robot, downsampled to 128x128, 

Kinect v2 on the real hardware 

 Force-torque sensor: 6-axis forces and moments on x, y , z axes,

OproForce sensor between the last joint and the peg on the hardware

 CHAI3D for rendering in the simulation https://www.chai3d.org

 SAI 2.0 for a real-time physics simulation to model the contact between the peg and the 

box https://github.com/manips-sai-org/sai2-simulation-release
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4.6 EXPERIMENT DESIGN:

IMPLEMENTATION FOR REPRESENTATION LEARNING MODEL

 Collect a multimodal dataset of 100k states (90 to 120 minutes), generate the self-supervised 

annotations

 Use a random and heuristic policy for gathering the data (heuristic policy made to encourage  

the peg to make contact with the box)

 Policy is at 20 Hz

 Representation models are trained for 20 epochs on a Titan V GPU
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4.6 EXPERIMENT DESIGN:

PEG INSERTION TASK

 Experiment consist of two parts:

1. Simulation: to study the influence of the individual modalities on the policy learning

2. Real robot experiment: apply full model for representation learning to train the policies for the insertion 
task
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4.7 RESULTS:

SIMULATION EXPERIMENTS

1. Learn the representation from different 

combinations of modalities.

2. Train TRPO policies to inserting a 

square peg.

Randomize the box position and the 

arm’s initial position for the episode 

initialization to improve generalizability 

and robustness. Policies trained with 

1.2k episodes, 500 steps each. 

3. 10 trials evaluated with the stochastic 

policy every 10 training steps. Mean 

and std of the episode rewards are 

reported.
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Fig.9: (b) Policy evaluation statistics [3]Fig.9: (a) Training curves of reinforcement 

learning [3]
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4.7 RESULTS:

SIMULATION EXPERIMENTS RESULTS

1. Unsurprisingly, the best representation 

includes all available modalities

2. It seems that vision plays important role 

for reaching and alignment, while the  

haptics is crucial to complete the 

insertion

3. Experiments prove the importance of all 

modalities for the consistent 

performance of the model
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Fig.9: (b) Policy evaluation statistics [3]Fig.9: (a) Training curves of reinforcement 

learning [3]
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4.7 RESULTS:

REAL ROBOT EXPERIMENTS

 Learning policies for the peg with round, triangular, and 

semicircular pegs

 Full model for the representation learning

 Real hardware means new sources of uncertainties: sensor 

sync, sensing-control delays, complexity of the real-world 

physical interactions…

 Controller network is trained on the action conditional flows 

with the low endpoint error. To increase efficiently of the 

training, authors freeze weights of the trained model for the 

representation. This leaves to learn just 3% of the  parameters 

from whole model.

31

Fig.10: Illustrations for the real robot experiments [3]
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4.7 RESULTS:

REAL ROBOT EXPERIMENTS

 Training:

 TRPO policies are trained for 300 episodes

 Each episode is 1000 steps, or ~5 hours of wall-clock time

 Evaluate each policy for 100 episodes

 Results:

 Achieved success rate is similar to the one in the  simulation 
(how did they compare the results for the different peg 
shapes?☺)

 Common learned behavior: 

1. Reach the box

2. Search for the hole by sliding over the surface

3. Align the peg with the hole

4. Perform insertion.
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Fig.11: results of the real robot experiments [3]



4.7 RESULTS:

REAL ROBOT EXPERIMENTS

 Generalization of the learned policies and 

representations is studied

 This is done by testing learned policies and 

representation with the unseen hexagonal and 

square pegs

 Policy achieves 60% success rate for both pegs 

without training

 Further training of policy improves the success 

rate on 19% for the hexagonal peg and on 30% for 

the square peg

 This experiment showed good generalization of 

the learned representation
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4.7 RESULTS:

REAL ROBOT EXPERIMENTS

 Bonus: the robustness of the policy to sensory 

noise in camera (by short occlusions) and external 

perturbations to the arm (pushing the robot arm 

during trajectory roll-out);

 The policy was able to recover from both the 

occlusions and the perturbations.
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Video: Demo of all presented experiments [3]



4.8 CONCLUSIONS 

 Key takeaways:

 This work managed to bridge the reality gap

 Use-case for the multi-modal data

 Nice example how to design encoder for different modalities, that seems to 

generalize well for unseen tasks

 Use-case for a self-supervised learning on the real hardware
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