## Introduction to Robotics

## Assignment \#4

Due: 01.06.2021, 23:59

Task 4.1 ( 9 points) Jacobian and singularities: Figure 1 shows a 2-joint planar manipulator with the following constraints: $10^{\circ} \leq \theta_{1} \leq 350^{\circ}, 0^{\circ}<\theta_{2}<360^{\circ}$ and $l_{1}>l_{2}$.


Figure 1: 2-joint planar manipulator.
4.1.1 (2 points): Illustrate the workspace of the manipulator.
4.1.2 (3 points): Determine the Jacobian matrix for the manipulator.
4.1.3 (2 points): Determine the singular configurations of the manipulator (mathematically or geometrical).
4.1.4 (2 points): Outline and explain the determined singular configurations (mathematically or geometrical).

Task 4.2 (2 points) Jacobian: Extend the Jacobian matrix for the 3-joint planar manipulator shown in figure 2 .


Figure 2: 3-joint planar manipulator.

Task 4.3 (4 points) Singularities of a PUMA560: Consider a PUMA560 manipulator as shown in figure 3. Explain at least three of the possible singular configurations!


Figure 3: PUMA560 manipulator.

Hint: Workspace boundary singularities occur whenever the manipulator is fully extended or is folding back onto itself.
Workspace-internal singularities occur if two or more joint axes enter a collinear configuration.

Task 4.4 ( 5 points) Homogeneous transformation: The transformation of the rotation with $\theta$ around an arbitrary vector $\boldsymbol{k}=k_{x} \vec{i}+k_{y} \vec{j}+k_{z} \vec{k} \quad(\vec{i}, \vec{j}, \vec{k}$ are three unit vectors coinciding with $x, y, z)$ is defined as:

$$
\operatorname{Rot}_{\boldsymbol{k}, \theta}=\left[\begin{array}{cccc}
k_{x} k_{x} V \theta+C \theta & k_{y} k_{x} V \theta-k_{z} S \theta & k_{z} k_{x} V \theta+k_{y} S \theta & 0  \tag{1}\\
k_{x} k_{y} V \theta+k_{z} S \theta & k_{y} k_{y} V \theta+C \theta & k_{z} k_{y} V \theta-k_{x} S \theta & 0 \\
k_{x} k_{z} V \theta-k_{y} S \theta & k_{y} k_{z} V \theta+k_{x} S \theta & k_{z} k_{z} V \theta+C \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

where $C \theta=\cos \theta, S \theta=\sin \theta$
and $V \theta=$ versine $\theta=2 \sin ^{2}\left(\frac{\theta}{2}\right)=1-\cos \theta$,

Derive the homogenous transformation $\operatorname{Rot}_{\mathbf{k}, \theta}$ in equation (1).
See R. P. Paul, Robot Manipulators: Mathematics, Programming and Control, MIT Press, 1986, section 1.12 "General Rotation Transformation.

