

Introduction to Robotics Principles of Walking

Marc Bestmann bestmann@informatik.uni-hamburg.de

University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems

May 21, 2021

Outline

Principles of Walking Introduction

Spatial Description and Transformations Forward Kinematics Robot Description Inverse Kinematics for Manipulators Instantaneous Kinematics Trajectory Generation 1 Trajectory Generation 2 Principles of Walking Introduction Linear Inverted Pendulum Stabilization Full Body Motion

Dynamics

ZMP

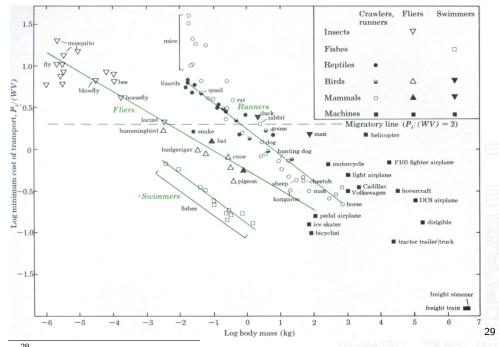
Principles of Walking

Robot Control Path Planning Task/Manipulation Planning Telerobotics Architectures of Sensor-based Intelligent Systems Summary Conclusion and Outlook

Motivation

Principles of Walking - Introduction

- Enabling locomotion in difficult terrain
- Legs can be used for other things
- Necessary to integrate robots in a human environment


²⁶ http://1.bp.blogspot.com/-MhFnvPPR5V4/UmifTu4r_OI/AAAAAAAAFtI/FvJqeWu9Ahc/s1600/13-pictures-of-crazy-goats-on-cliff.jpg 27 https://www.allposters.com

- Stability (and safety)
- Complex control
- Hardware costs
- Energy consumption

 $^{^{28} {\}tt https://www.wikihow.com/Recognize-the-Signs-of-Intoxication}$

²⁹ Tucker, Vance A. "The energetic cost of moving about: walking and running are extremely inefficient forms of locomotion. Much greater efficiency is achieved by birds, fish—and bicyclists." American Scientist 63.4 (1975): 413-419.

- Static Dynamic
- Passiv Active
- ▶ 2,4,6,8,... legged
- Open loop closed loop
- This lecture: active bipedal walking, no running

 $\substack{ 30 \\ https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/hires/2017/1-sixleggedrob.jpg \\ 31 \\ https://asl.ethz.ch/research/legged-robots.html }$

31

Video

Types of Implementing Walking

Principles of Walking - Introduction

- Control Theory
- Neural Networks
- Central Pattern Generators
- Evolutional Computing
- Expert Solution

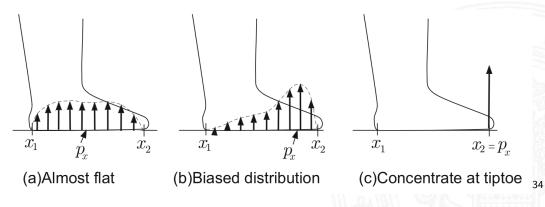
32

- Support leg/foot
- ► Flying leg/foot
- ► Torso / trunk
- Step / double step
- Sagittal / lateral

Principles of Walking - ZMP

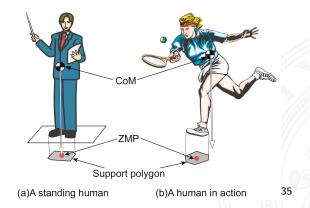
Introduction to Robotics

Convex hull of all ground contact points



³³Introduction to Humanoid Robotics, Shuuji Kajita, 2015

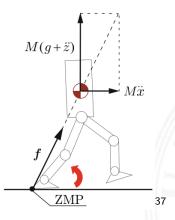
Center of Pressure (CoP)


- Center of ground reaction forces
- Those can also be horizontal
- Moment becomes zero
- Equals the zero moment point (ZMP)

Zero Moment Point (ZMP)


- When standing, projection of CoM coincides with ZMP
- When dynamic, CoM outside of support polygon
- ZMP is always inside support polygon

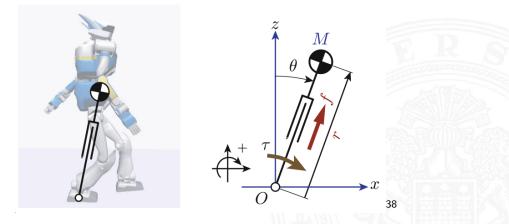
³⁵Introduction to Humanoid Robotics, Shuuji Kajita, 2015


- Forces of the robot define position of ZMP
- Can it get outside of the support polygon?

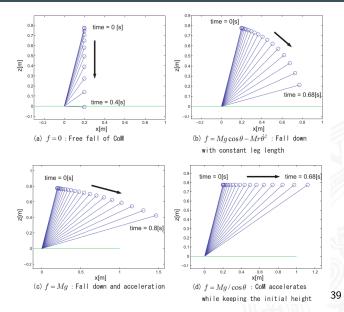
³⁶Introduction to Humanoid Robotics, Shuuji Kajita, 2015

- No! The ZMP is always in the support polygon
- If it is on an edge, the robot rotates

³⁷Introduction to Humanoid Robotics, Shuuji Kajita, 2015



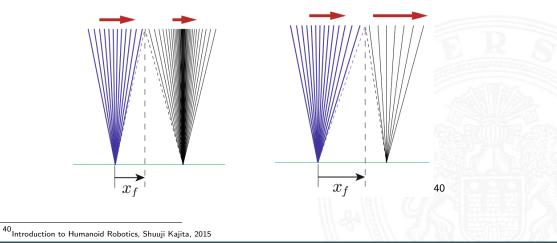
- ► Sole slips on ground
- Other parts of the robot are in contact with environment
- Ground is not perfectly level


Linear Inverted Pendulum

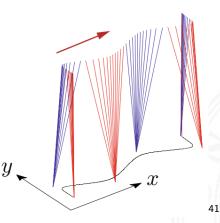
Principles of Walking - Linear Inverted Pendulum

- Simplest model for walking robot or human
- Point mass at end of massless telescopic leg
- ▶ f: kick force, tau: torque

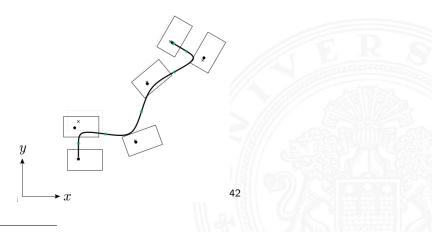
Inverted Pendulum Principles of Walking - Linear Inverted Pendulum



Support Leg Exchange


Principles of Walking - Linear Inverted Pendulum

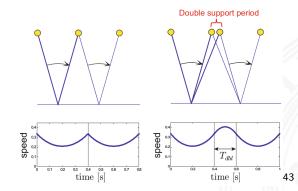
- Considering fixed step length
- Earlier touchdown of the next step results slow down
- Later touchdown of the next step results speed ups


- Transfer to 3D
- Introduction of lateral movement

⁴¹Introduction to Humanoid Robotics, Shuuji Kajita, 2015

Omni-directional (holonomic) Walking

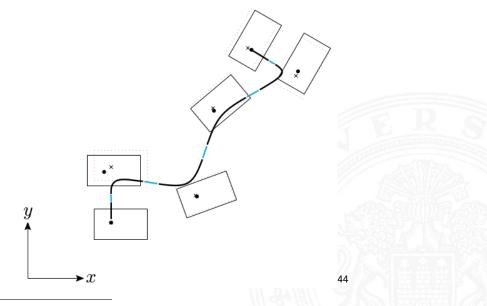
- ► Forward (x)
- ► Sideward (y)
- ► Turn (yaw)


⁴²Introduction to Humanoid Robotics, Shuuji Kajita, 2015

Double Support Phase

Principles of Walking - Linear Inverted Pendulum

- Accelerations are extreme on support change
- Not feasible in reality
- Introduction of a double support phase



⁴³Introduction to Humanoid Robotics, Shuuji Kajita, 2015

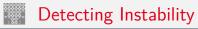
Principles of Walking - Linear Inverted Pendulum


Introduction to Robotics

⁴⁴Introduction to Humanoid Robotics, Shuuji Kajita, 2015

Principles of Walking - Linear Inverted Pendulum

⁴⁵ https://thumbs.dreamstime.com/z/running-robot-27653003.jpg



Why are we not finished yet?

Video

Principles of Walking - Stabilization

Introduction to Robotics

Which senses do you think humans use for walking?

Sensors

- IMU(s)
- Force sensors on foot sole
- ▶ 6 axis force/torque sensor in ankle
- Joint Torques
- Camera

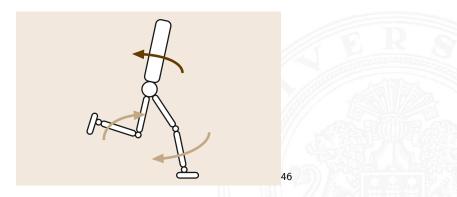
Model

- Joint positions
- Link masses and inertia
- Rigidity of links (especially foot soles)

Principles of Walking - Stabilization

- Simple stopping
- Counter movements with the arms/torso
- Change of step position (capture steps)

Video

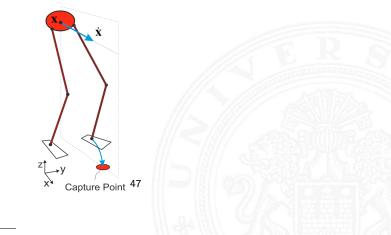


Counter Movements with Upper Body

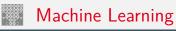
Principles of Walking - Stabilization

Introduction to Robotics

- Rotation around edge of support polygon
- Introduce counter force with arms/torso or flying leg
- Flying leg is mostly not usable


⁴⁶Springer Handbook of Robotics, Bruno Siciliano, 2016

Video


- Capture point is where the robot comes to a complete stop
- Multiple capture steps may be necessary

⁴⁷ https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6094435

Video

Principles of Walking - Stabilization

- ▶ We will not cover machine learning
- ▶ If you are interested join my lecture in "Intelligent Robotics" in the winter term
- General approaches are:
 - ► Learning parameter of a walking pattern generator (e.g. double support length)
 - Learning neural networks from scratch
 - Learning from demonstration
 - Artificial central pattern generators

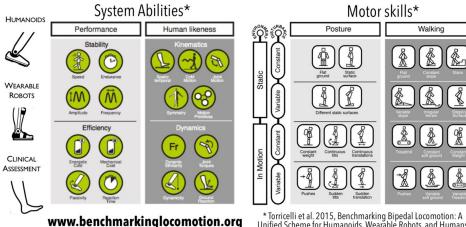
Current State of the Art

Principles of Walking - Stabilization

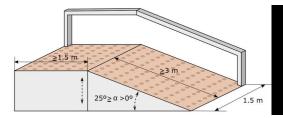
Introduction to Robotics

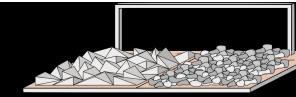
Videos

- Some very expensive robot manage to solve the problem (at least most of the time) using control theory
- Cheaper robots still struggle to achieve really stable walking
- Machine learning approaches still mostly only work in simulation (reality gap)
- ► Working on better comparison between approaches, e.g. EuroBench



BALANCE





* Torricelli et al. 2015, Benchmarking Bipedal Locomotion: A Unified Scheme for Humanoids, Wearable Robots, and Humans

48

⁴⁸ http://eurobench2020.eu/abstract/motivation-background/

- Small overview of full body motions
- Examples are: walking with hand on handrail or standing up
- Higher complexity since all limbs are involved
- Breaks assumptions that are often made for normal walking
- Motions can be periodic or non periodic

Principles of Walking - Full Body Motion

- Using handrail, pushing cart, opening door, holding hands, using walking stick, collaborative carrying
- Introduces additional forces on the robot
- Support polygon maybe totally different
- More complex models have to be used
- Currently mostly used approach: quadratic programming
 - Solve problem of optimizing a quadratic function with multiple linear constrains
 - Use rigid body dynamics together with a model
 - Problems
 - Model is not perfect
 - If caring an object, you need a model of it
 - Robot is maybe not perfectly rigid

- Simpler due to known start and end
- Examples
 - Standing up
 - Kicking
 - Grasping
 - Waving

- Keypoint teach in
 - Put robot into key positions manually
 - Save joint positions at these points
 - Interpolate
 - Useful for simple motions (e.g. waving) or static robots
- Learning from demonstration
 - Either demonstrate on the robot itself or by using motion capture
 - Normally more than one demonstration
 - Not just simply replaying
- Cartesian splines
 - Define trajectories of the limbs with Cartesian splines manually
 - Comparably easy to do for humans (much better than joint space)
 - Use inverse kinematics to compute joint goals
 - Splines configurable with few parameters
 - Optimize parameters, e.g. using tree-structured parzen estimator

Implementing Non Periodic Motions

Principles of Walking - Full Body Motion

DeepLearning

- Just let it learn in simulation till it works
- Put it on the robot and hope for the best
- Reality gap
- Control Theory
 - ▶ Have an open loop trajectory, e.g. from teach in or LIPM
 - Use a stability criterion, e.g. ZMP
 - Adjust joint goals with controller, e.g. PID
- More on the learning aspect in the intelligent robotics lecture

Principles of Walking - Full Body Motion

Introduction to Robotics

Questions?

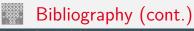
Bibliography

- G.-Z. Yang, R. J. Full, N. Jacobstein, P. Fischer, J. Bellingham, H. Choset, H. Christensen, P. Dario, B. J. Nelson, and R. Taylor, "Ten robotics technologies of the year," 2019.
- [2] J. K. Yim, E. K. Wang, and R. S. Fearing, "Drift-free roll and pitch estimation for high-acceleration hopping," in 2019 International Conference on Robotics and Automation (ICRA), pp. 8986–8992, IEEE, 2019.
- [3] J. F. Engelberger, *Robotics in service*. MIT Press, 1989.
- [4] K. Fu, R. González, and C. Lee, *Robotics: Control, Sensing, Vision, and Intelligence*. McGraw-Hill series in CAD/CAM robotics and computer vision, McGraw-Hill, 1987.
- R. Paul, Robot Manipulators: Mathematics, Programming, and Control: the Computer Control of Robot Manipulators. Artificial Intelligence Series, MIT Press, 1981.
- [6] J. Craig, Introduction to Robotics: Pearson New International Edition: Mechanics and Control.
 Always learning, Pearson Education, Limited, 2013.

- T. Flash and N. Hogan, "The coordination of arm movements: an experimentally confirmed mathematical model," *Journal of neuroscience*, vol. 5, no. 7, pp. 1688–1703, 1985.
- [8] T. Kröger and F. M. Wahl, "Online trajectory generation: Basic concepts for instantaneous reactions to unforeseen events," *IEEE Transactions on Robotics*, vol. 26, no. 1, pp. 94–111, 2009.
- [9] W. Böhm, G. Farin, and J. Kahmann, "A Survey of Curve and Surface Methods in CAGD," Comput. Aided Geom. Des., vol. 1, pp. 1–60, July 1984.
- [10] J. Zhang and A. Knoll, "Constructing Fuzzy Controllers with B-spline Models Principles and Applications," *International Journal of Intelligent Systems*, vol. 13, no. 2-3, pp. 257–285, 1998.
- [11] M. Eck and H. Hoppe, "Automatic Reconstruction of B-spline Surfaces of Arbitrary Topological Type," in *Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques*, SIGGRAPH '96, (New York, NY, USA), pp. 325–334, ACM, 1996.

- [12] A. Cowley, W. Marshall, B. Cohen, and C. J. Taylor, "Depth space collision detection for motion planning," 2013.
- [13] Hornung, Armin and Wurm, Kai M. and Bennewitz, Maren and Stachniss, Cyrill and Burgard, Wolfram, "OctoMap: an efficient probabilistic 3D mapping framework based on octrees," Autonomous Robots, vol. 34, pp. 189–206, 2013.
- [14] D. Berenson, S. S. Srinivasa, D. Ferguson, and J. J. Kuffner, "Manipulation planning on constraint manifolds," in 2009 IEEE International Conference on Robotics and Automation, pp. 625–632, 2009.
- [15] S. Karaman and E. Frazzoli, "Sampling-based algorithms for optimal motion planning," *The International Journal of Robotics Research*, vol. 30, no. 7, pp. 846–894, 2011.
- [16] O. Khatib, "The Potential Field Approach and Operational Space Formulation in Robot Control," in Adaptive and Learning Systems, pp. 367–377, Springer, 1986.
- [17] L. E. Kavraki, P. Svestka, J. Latombe, and M. H. Overmars, "Probabilistic roadmaps for path planning in high-dimensional configuration spaces," *IEEE Transactions on Robotics* and Automation, vol. 12, no. 4, pp. 566–580, 1996.

- [18] J. Kuffner and S. LaValle, "RRT-Connect: An Efficient Approach to Single-Query Path Planning.," vol. 2, pp. 995–1001, 01 2000.
- [19] J. Starek, J. Gómez, E. Schmerling, L. Janson, L. Moreno, and M. Pavone, "An asymptotically-optimal sampling-based algorithm for bi-directional motion planning," *Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems*, vol. 2015, 07 2015.
- [20] D. Hsu, J. . Latombe, and R. Motwani, "Path planning in expansive configuration spaces," in *Proceedings of International Conference on Robotics and Automation*, vol. 3, pp. 2719–2726 vol.3, 1997.
- [21] A. H. Qureshi, A. Simeonov, M. J. Bency, and M. C. Yip, "Motion planning networks," in 2019 International Conference on Robotics and Automation (ICRA), pp. 2118–2124, IEEE, 2019.
- [22] J. Schulman, J. Ho, A. Lee, I. Awwal, H. Bradlow, and P. Abbeel, "Finding locally optimal, collision-free trajectories with sequential convex optimization," in *in Proc. Robotics: Science and Systems*, 2013.


- [23] A. T. Miller and P. K. Allen, "Graspit! a versatile simulator for robotic grasping," IEEE Robotics Automation Magazine, vol. 11, no. 4, pp. 110–122, 2004.
- [24] A. ten Pas, M. Gualtieri, K. Saenko, and R. Platt, "Grasp pose detection in point clouds," *The International Journal of Robotics Research*, vol. 36, no. 13-14, pp. 1455–1473, 2017.
- [25] L. P. Kaelbling and T. Lozano-Pérez, "Hierarchical task and motion planning in the now," in 2011 IEEE International Conference on Robotics and Automation, pp. 1470–1477, 2011.
- [26] N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. E. Kavraki, "Incremental task and motion planning: A constraint-based approach.," in *Robotics: Science and Systems*, pp. 1–6, 2016.
- [27] J. Ferrer-Mestres, G. Francès, and H. Geffner, "Combined task and motion planning as classical ai planning," *arXiv preprint arXiv:1706.06927*, 2017.
- [28] M. Görner, R. Haschke, H. Ritter, and J. Zhang, "Movelt! Task Constructor for Task-Level Motion Planning," in *IEEE International Conference on Robotics and Automation (ICRA)*, 2019.

- [29] K. Hauser and J.-C. Latombe, "Multi-modal motion planning in non-expansive spaces," *The International Journal of Robotics Research*, vol. 29, no. 7, pp. 897–915, 2010.
- [30] B. Siciliano and O. Khatib, *Springer handbook of robotics*. Springer, 2016.
- [31] P. Sermanet, C. Lynch, Y. Chebotar, J. Hsu, E. Jang, S. Schaal, S. Levine, and G. Brain, "Time-contrastive networks: Self-supervised learning from video," in 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1134–1141, IEEE, 2018.
- [32] C. Finn, P. Abbeel, and S. Levine, "Model-agnostic meta-learning for fast adaptation of deep networks," *arXiv preprint arXiv:1703.03400*, 2017.
- [33] R. Brooks, "A robust layered control system for a mobile robot," *Robotics and Automation, IEEE Journal of*, vol. 2, pp. 14–23, Mar 1986.
- [34] M. J. Mataric, "Interaction and intelligent behavior.," tech. rep., DTIC Document, 1994.

- [35] M. P. Georgeff and A. L. Lansky, "Reactive reasoning and planning.," in AAAI, vol. 87, pp. 677–682, 1987.
- [36] J. S. Albus, "The nist real-time control system (rcs): an approach to intelligent systems research," *Journal of Experimental & Theoretical Artificial Intelligence*, vol. 9, no. 2-3, pp. 157–174, 1997.
- [37] T. Fukuda and T. Shibata, "Hierarchical intelligent control for robotic motion by using fuzzy, artificial intelligence, and neural network," in *Neural Networks, 1992. IJCNN., International Joint Conference on*, vol. 1, pp. 269–274 vol.1, Jun 1992.
- [38] L. Einig, Hierarchical Plan Generation and Selection for Shortest Plans based on Experienced Execution Duration.
 Master thesis, Universität Hamburg, 2015.
- [39] J. Craig, Introduction to Robotics: Mechanics & Control. Solutions Manual. Addison-Wesley Pub. Co., 1986.

- [40] H. Siegert and S. Bocionek, *Robotik: Programmierung intelligenter Roboter: Programmierung intelligenter Roboter.* Springer-Lehrbuch, Springer Berlin Heidelberg, 2013.
- [41] R. Schilling, Fundamentals of robotics: analysis and control. Prentice Hall, 1990.
- [42] T. Yoshikawa, Foundations of Robotics: Analysis and Control. Cambridge, MA, USA: MIT Press, 1990.
- [43] M. Spong, *Robot Dynamics And Control*. Wiley India Pvt. Limited, 2008.