

Introduction to Robotics Summary

Shuang Li, Jianwei Zhang [sli, zhang]@informatik.uni-hamburg.de

University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems

July 2, 2021

Outline

Summary

Introduction Spatial Description and Transformations Forward Kinematics Robot Description Inverse Kinematics for Manipulators Instantaneous Kinematics Trajectory Generation 1 Trajectory Generation 2 Principles of Walking Path Planning Task/Manipulation Planning **Dynamics** Robot Control Telerobotics

Outline (cont.)

Summary

Architectures of Sensor-based Intelligent Systems

Summary

Introduction

- Definition;
- + Basic components;
- + DOF;
- Classification of Robots

Spatial Description and Transformations

- + Specification of position and orientation;
- + Rotation matrices, their inverse and their operations;
- + Homogeneous transformations;
- + Transformation equations [5, 39, 6, 4];
- + More on presentation of orientation

Forward Kinematics and Robot Description

- + DH-conventions and their applications (classic or modified);
- + Universal Robot Description Format (URDF)

Inverse Kinematics

- + Workspace;
- + Difference and problems of forward and inverse kinematics;
- Algebraic and geometric solution of inverse kinematics;

Jacobian

- Differential motion and velocity;
- velocity propagation;
- + Jacobian-matrices;
- + Singularities [5, 39, 6, 4]

Trajectory Generation

- Tasks and constraints;
- + Trajectories in Cartesian space and joint space;
- + Trajectory generation methods;
- Polynomial solutions between two and four points;
- Factors of an optimal motion;
- + Concepts and properties of B-Spline interpolation;

Overall Summary (cont.)

Summary

- B-Spline basis functions [39, 6, 4, B-Spline Literature]

Path planning

- + Configuration space;
- Object representation;
- + Discretized Space Planning;
- + Potential field method;
- + Probabilistic approaches;
- + Rapidly-exploring Random Trees;
- Task and Manipulation Planning

Dynamics

- + Problems;
- + Newton-Euler equations and Lagrangian Equations;
- Solution for arms with 1 or 2 joints;
- + General dynamic equations of a manipulator [39, 6, 4]

Control

- Control systems of a PUMA robot;
- Linear and model-based control;
- + PID controller;
- + Control concepts in Cartesian space [39, 6, 4]

Sensors

- Classification;
- + Intrinsic sensors, principle and application in control;
- extrinsic sensors [39, 6, 4]

Robotic applications

- Walking robot;
- Grasping;
- Telerobotics

Control architectures

- Subsumption;
- CMAC;
- Hierarchical

Additional references: [40, 41, 42, 43]

- Industrial Robots:
 - position control with PID controllers
 - featuring gravity compensation
- Research:
 - model-based control
 - hybrid force-position control
 - under-actuated control
 - backwards controllable (direct drive, artificial muscle) structure
 - external-sensor based control
 - \rightarrow Intelligent Robots/Applied Sensor Technology

Things we talked about

- Open chain of rotational joints
- Hybrid joints for rotational and translational motion (SCARA)
- Mobile robots, running machines

Things we did not talk about

- Closed chain, including Steward Mechanism [39, p. 279]
- Drive without motors (micro- and biomimetic-robots)

Summary

- Tool plate mounted to base plate with six translational joints (usually hydraulic) called leg
- Legs are connected to the plates with universal joints
- Mathematically 6-DOF configuration space without singularities
- Parallel mechanism provides high payload
 - Sequential manipulator applies forces and torques unequally

- Transformations
- Forward and inverse kinematics
- Trajectory generation (e.g. linear Cartesian trajectory)
- Approximated representation of robot joints and objects
- Search algorithms
- Further path planning algorithms
- Sensor fusion
- Vision
 - detection (static, dynamic)
 - reconstruction of position and orientation
- Action planning
- Sensor guided motion

Outline

Conclusion and Outlook

Introduction Spatial Description and Transformations Forward Kinematics **Robot Description** Inverse Kinematics for Manipulators Instantaneous Kinematics Trajectory Generation 1 Trajectory Generation 2 Principles of Walking Path Planning Task/Manipulation Planning **Dynamics** Robot Control Telerobotics

Conclusion and Outlook

Architectures of Sensor-based Intelligent Systems

Summary

Underlying robot-technique as described, additionally:

External Recognition

Reliable measurements of the environment; Scene interpretation

Knowledge base

About environment;

Its own state;

Everyday knowledge comparable to a human

Autonomous planning

Action;

Coarse motion;

Grasping;

Sensor data acquisition

Conclusion and Outlook

Human friendly interface

Understanding of naturally spoken commands;

Generation of robot actions;

Solving of disambiguity in context-aware situations

Adaptive Control

Evolution instead of programming; Ability to learn

Autonomous Planning Systems

Action Planning

Task-Specification; State representation; Task-decomposition; Action-sequence generation

Motion Planning

Representation of the robot and the environment; Calculation and representation of configuration space; Search algorithms

Planning of Sensing

Which sensors; Which time intervals; Where to measure; Internal and external parameters of the sensor

Goal

Intelligent Control including the ability to adapt to different situations and to react to uncertainties

Control Architecture

Integration of perception, planning and actions

Tasks of sensor data processing

Position detection; Proximity detection; Slip detection; Success confirmation; Error detection;

Inspection

Applied sensors

Tactile sensors; Vision systems; Force-torque measurement systems; Distance sensors

Strategies

calibrated based on absolute reference values; uncalibrated based on relative information

Types of perception

passive based on a certain sensor-actor configuration; active depending on the plan for sensing

will be:

- dexterous
- smaller
- faster
- lightweight
- powerful
- intelligent
- easier to operate
- cheaper

Challenges in the Field of Robotics

Conclusion and Outlook

Methods

Symbolical understanding of the environment; Integrated sensor-motor-coupling; Self-learning

Systems

Synergetic multi-sensor;

Agile mobility;

Dexterous manipulation capabilities

Technical

Sensor complexity similar to a human; New drive types; Nano-robots; Multifinger hand; Anthropomorphic robots; Flying robots

Continuing Education at University of Hamburg

Intelligent Robots Project

Build a complex robotic system from the available hardware at TAMS. Current Hardware includes PR2, TASER, 2 KUKA lightweight arms, 2 Mitsubishi PA10-6C, UR5 Arm, 4 Turtlebots, Shadow Hand C6, Shadow Hand C5, Robotiq adaptive gripper, SCHUNK gripper, 2 Barret Hands...

Intelligent Robots/Applied Sensor Technology Lecture

Intrinsic and Extrinsic sensor technology and their application for intelligent robotic systems.

Machine Learning Lecture

Machine learning techniques allow robots to learn from observation and experience

Neural Networks Lecture

Neural Networks allow robots to learn and offer new approaches to planning and control

Image Processing I&II Lecture

Image processing is required for robots to observe the environment and recognize/classify/detect objects and humans

Knowledge Processing Lecture

The gained knowledge from observance and sensing has to be processed efficiently

Language Processing Lecture

How to extract knowledge and information from human speech

Real-Time Systems Lecture at TUHH

Robots have to process information and act in Real-Time environments

Fundamentals of Control Technology Lecture at TUHH

Control Technology is required for the technical control of robotic systems. Advanced Lecture with large prerequisites.

Bibliography

- G.-Z. Yang, R. J. Full, N. Jacobstein, P. Fischer, J. Bellingham, H. Choset, H. Christensen, P. Dario, B. J. Nelson, and R. Taylor, "Ten robotics technologies of the year," 2019.
- [2] J. K. Yim, E. K. Wang, and R. S. Fearing, "Drift-free roll and pitch estimation for high-acceleration hopping," in 2019 International Conference on Robotics and Automation (ICRA), pp. 8986–8992, IEEE, 2019.
- [3] J. F. Engelberger, *Robotics in service*. MIT Press, 1989.
- [4] K. Fu, R. González, and C. Lee, *Robotics: Control, Sensing, Vision, and Intelligence*. McGraw-Hill series in CAD/CAM robotics and computer vision, McGraw-Hill, 1987.
- R. Paul, Robot Manipulators: Mathematics, Programming, and Control: the Computer Control of Robot Manipulators. Artificial Intelligence Series, MIT Press, 1981.
- [6] J. Craig, Introduction to Robotics: Pearson New International Edition: Mechanics and Control.
 Always learning, Pearson Education, Limited, 2013.

- T. Flash and N. Hogan, "The coordination of arm movements: an experimentally confirmed mathematical model," *Journal of neuroscience*, vol. 5, no. 7, pp. 1688–1703, 1985.
- [8] T. Kröger and F. M. Wahl, "Online trajectory generation: Basic concepts for instantaneous reactions to unforeseen events," *IEEE Transactions on Robotics*, vol. 26, no. 1, pp. 94–111, 2009.
- [9] W. Böhm, G. Farin, and J. Kahmann, "A Survey of Curve and Surface Methods in CAGD," Comput. Aided Geom. Des., vol. 1, pp. 1–60, July 1984.
- [10] J. Zhang and A. Knoll, "Constructing Fuzzy Controllers with B-spline Models Principles and Applications," *International Journal of Intelligent Systems*, vol. 13, no. 2-3, pp. 257–285, 1998.
- [11] M. Eck and H. Hoppe, "Automatic Reconstruction of B-spline Surfaces of Arbitrary Topological Type," in *Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques*, SIGGRAPH '96, (New York, NY, USA), pp. 325–334, ACM, 1996.

- [12] A. Cowley, W. Marshall, B. Cohen, and C. J. Taylor, "Depth space collision detection for motion planning," 2013.
- [13] Hornung, Armin and Wurm, Kai M. and Bennewitz, Maren and Stachniss, Cyrill and Burgard, Wolfram, "OctoMap: an efficient probabilistic 3D mapping framework based on octrees," *Autonomous Robots*, vol. 34, pp. 189–206, 2013.
- [14] D. Berenson, S. S. Srinivasa, D. Ferguson, and J. J. Kuffner, "Manipulation planning on constraint manifolds," in 2009 IEEE International Conference on Robotics and Automation, pp. 625–632, 2009.
- [15] S. Karaman and E. Frazzoli, "Sampling-based algorithms for optimal motion planning," *The International Journal of Robotics Research*, vol. 30, no. 7, pp. 846–894, 2011.
- [16] O. Khatib, "The Potential Field Approach and Operational Space Formulation in Robot Control," in Adaptive and Learning Systems, pp. 367–377, Springer, 1986.
- [17] L. E. Kavraki, P. Svestka, J. Latombe, and M. H. Overmars, "Probabilistic roadmaps for path planning in high-dimensional configuration spaces," *IEEE Transactions on Robotics* and Automation, vol. 12, no. 4, pp. 566–580, 1996.

- [18] J. Kuffner and S. LaValle, "RRT-Connect: An Efficient Approach to Single-Query Path Planning.," vol. 2, pp. 995–1001, 01 2000.
- [19] J. Starek, J. Gómez, E. Schmerling, L. Janson, L. Moreno, and M. Pavone, "An asymptotically-optimal sampling-based algorithm for bi-directional motion planning," *Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems*, vol. 2015, 07 2015.
- [20] D. Hsu, J. . Latombe, and R. Motwani, "Path planning in expansive configuration spaces," in *Proceedings of International Conference on Robotics and Automation*, vol. 3, pp. 2719–2726 vol.3, 1997.
- [21] A. H. Qureshi, A. Simeonov, M. J. Bency, and M. C. Yip, "Motion planning networks," in 2019 International Conference on Robotics and Automation (ICRA), pp. 2118–2124, IEEE, 2019.
- [22] J. Schulman, J. Ho, A. Lee, I. Awwal, H. Bradlow, and P. Abbeel, "Finding locally optimal, collision-free trajectories with sequential convex optimization," in *in Proc. Robotics: Science and Systems*, 2013.

- [23] A. T. Miller and P. K. Allen, "Graspit! a versatile simulator for robotic grasping," IEEE Robotics Automation Magazine, vol. 11, no. 4, pp. 110–122, 2004.
- [24] A. ten Pas, M. Gualtieri, K. Saenko, and R. Platt, "Grasp pose detection in point clouds," *The International Journal of Robotics Research*, vol. 36, no. 13-14, pp. 1455–1473, 2017.
- [25] L. P. Kaelbling and T. Lozano-Pérez, "Hierarchical task and motion planning in the now," in 2011 IEEE International Conference on Robotics and Automation, pp. 1470–1477, 2011.
- [26] N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. E. Kavraki, "Incremental task and motion planning: A constraint-based approach.," in *Robotics: Science and Systems*, pp. 1–6, 2016.
- [27] J. Ferrer-Mestres, G. Francès, and H. Geffner, "Combined task and motion planning as classical ai planning," *arXiv preprint arXiv:1706.06927*, 2017.
- [28] M. Görner, R. Haschke, H. Ritter, and J. Zhang, "Movelt! Task Constructor for Task-Level Motion Planning," in *IEEE International Conference on Robotics and Automation (ICRA)*, 2019.

- [29] K. Hauser and J.-C. Latombe, "Multi-modal motion planning in non-expansive spaces," *The International Journal of Robotics Research*, vol. 29, no. 7, pp. 897–915, 2010.
- [30] B. Siciliano and O. Khatib, Springer handbook of robotics. Springer, 2016.
- [31] P. Sermanet, C. Lynch, Y. Chebotar, J. Hsu, E. Jang, S. Schaal, S. Levine, and G. Brain, "Time-contrastive networks: Self-supervised learning from video," in 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1134–1141, IEEE, 2018.
- [32] C. Finn, P. Abbeel, and S. Levine, "Model-agnostic meta-learning for fast adaptation of deep networks," *arXiv preprint arXiv:1703.03400*, 2017.
- [33] R. Brooks, "A robust layered control system for a mobile robot," *Robotics and Automation, IEEE Journal of*, vol. 2, pp. 14–23, Mar 1986.
- [34] M. J. Mataric, "Interaction and intelligent behavior.," tech. rep., DTIC Document, 1994.

- [35] M. P. Georgeff and A. L. Lansky, "Reactive reasoning and planning.," in AAAI, vol. 87, pp. 677–682, 1987.
- [36] J. S. Albus, "The nist real-time control system (rcs): an approach to intelligent systems research," *Journal of Experimental & Theoretical Artificial Intelligence*, vol. 9, no. 2-3, pp. 157–174, 1997.
- [37] T. Fukuda and T. Shibata, "Hierarchical intelligent control for robotic motion by using fuzzy, artificial intelligence, and neural network," in *Neural Networks, 1992. IJCNN., International Joint Conference on*, vol. 1, pp. 269–274 vol.1, Jun 1992.
- [38] L. Einig, Hierarchical Plan Generation and Selection for Shortest Plans based on Experienced Execution Duration.
 Master thesis, Universität Hamburg, 2015.
- [39] J. Craig, Introduction to Robotics: Mechanics & Control. Solutions Manual. Addison-Wesley Pub. Co., 1986.

- [40] H. Siegert and S. Bocionek, *Robotik: Programmierung intelligenter Roboter: Programmierung intelligenter Roboter.* Springer-Lehrbuch, Springer Berlin Heidelberg, 2013.
- [41] R. Schilling, Fundamentals of robotics: analysis and control. Prentice Hall, 1990.
- [42] T. Yoshikawa, Foundations of Robotics: Analysis and Control. Cambridge, MA, USA: MIT Press, 1990.
- [43] M. Spong, *Robot Dynamics And Control*. Wiley India Pvt. Limited, 2008.