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From A to B
Path Planning - Feasible Trajectories Introduction to Robotics

Problem: Generate a continuous
trajectory from state A to state B

Approach from previous lectures:
Generate quintic B-Splines from A to B:

I Trapezoidal time parameterization

I Minimum jerk parameterization

I Time-optimal motion parameterization

UR5 setup with exemplary start and goal states
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From A to B - Trajectory Generation
Path Planning - Feasible Trajectories Introduction to Robotics

Generated splines of trapezoidal trajectory
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From A to B - Trajectory Generation (2)
Path Planning - Feasible Trajectories Introduction to Robotics

All waypoints of generated trapezoidal trajectory
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From A to B?
Path Planning - Feasible Trajectories Introduction to Robotics

Start and Goal state with box obstacle
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From A to B
Path Planning - Feasible Trajectories Introduction to Robotics

If the path is blocked, the generated
trajectory is invalid/infeasible and should
not be executed!

Typical obstacles include:
I Walls / Tables
I Robot links
I Objects (to be manipulated)
I Humans

Getting this right is harder than it looks. Start and Goal state with box obstacle
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Infeasible Trajectories
Path Planning - Feasible Trajectories Introduction to Robotics

Shadow Hand rammed into styrofoam table
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From A to B
Path Planning - Feasible Trajectories Introduction to Robotics

All waypoints of collision-free trajectory
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From A to B
Path Planning - Feasible Trajectories Introduction to Robotics

Splines of collision-free trajectory

M. Görner 400 / 641



From A to B
Path Planning - Feasible Trajectories Introduction to Robotics

Workspace with two box obstacles
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From A to B
Path Planning - Feasible Trajectories Introduction to Robotics

All waypoints of collision-free trajectory
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From A to B
Path Planning - Feasible Trajectories Introduction to Robotics

Splines of collision-free trajectory
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Some Criteria for Feasible Trajectories
Path Planning - Feasible Trajectories Introduction to Robotics

Feasible trajectories have to satisfy hard geometric constraints.

The most important criterion is a collision-free trajectory.
I Collisions between parts of the robot (self collisions)
I Collisions with the environment

Countless other criteria can also be important:
I Carrying a container with liquid, no liquid must spill
I Spraying color on a workpiece, the nozzle must always point at the piece
I Getting close or moving directly towards humans

Most of these constraints define Constraint Manifolds in the full planning space.
This lecture focuses on collision-aware planning.
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Detecting Collisions
Path Planning - Geometry Representations Introduction to Robotics

In order to detect expected collisions, we need a geometric Environment Model.
I Need to represent all relevant collision shapes
I Trade-off between exact representations and computational load
I Collision tests should run as fast as possible

end-effector collision with box end-effector collision with upper arm link
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Triangle Meshes
Path Planning - Geometry Representations Introduction to Robotics

I Standard 3D representation for
arbitrary shapes

I General collision checks are costly
(Triangle intersection tests)

I Modelled details should depend on
required accuracy

I Usually very coarse

I Convex Meshes are much more
efficient to test. Non-colliding objects
can always be separated by a plane.

PR2 left arm mesh representation

M. Görner 406 / 641



Convex Hull Collision Shapes
Path Planning - Geometry Representations Introduction to Robotics

Visual model and convex collision representation of Panda robot arm
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Sphere Representations
Path Planning - Geometry Representations Introduction to Robotics

Parameters: center point c, radius r .

I Sphere/Sphere collisions afford the cheapest check:
〈c1, r1〉 and 〈c2, r2〉 collided iff |c1 − c2| < r1 + r2

I Sufficient spheres can approximate any shape reasonably accurate:

Approximation of PR2 robot with 139 spheres with radius 10cm

Cowley 2013 [12]
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Geometric Primitives
Path Planning - Geometry Representations Introduction to Robotics

Primitive analytical shapes can be used for more accurate descriptions:
I Cube: pose p, scales for 3 axes
I Cylinder: pose p, radius r , height h
I Cone: pose p, radius r , height h
I Plane: pose p

Many analytical shapes allow for faster collision checks.
To do (??)
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Capsules
Path Planning - Geometry Representations Introduction to Robotics

Capsules comprise two half-spheres and a
connecting cylinder.

Less common analytical shape, supported
in many robotics contexts.

Parameters: pose p, radius r , height h,
optionally scale parameters

A primitive capsule

To do (??)
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Hybrid Models
Path Planning - Geometry Representations Introduction to Robotics

Visual and collision model of a Shadow Dexterous Hand with tactile fingertips
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Voxelgrids / Octomaps
Path Planning - Geometry Representations Introduction to Robotics

All analytical shapes require geometric knowledge about the scene.
Octomaps represent sensor data (depth measurements) directly
I Keeps geometric structure
I Sparse representation
I Efficient updates

Parameters: pose p, minimal voxel resolution r , datapoints

Octomap representation of a tree at different resolutions

A. Hornung et.al. 2013 [13]
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Voxelgrids / Octomaps (2)
Path Planning - Geometry Representations Introduction to Robotics

Voxel representation of a human interacting with a UR10 robot

© GPU Voxels
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Collision Detection Summary
Path Planning - Geometry Representations Introduction to Robotics

I Hybrid models allow to trade-off computation time and accuracy
I Requires collision checks between each pair of types of collision body

Huge amount of background literature and research in 3D Computer Graphics.
Collision checking in full scenes can be optimized much further optimization:
I Broadphase-collision checking
I Convex decompositions
I Hardware-accelerated checking
I . . .
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Workspace And Configuration Space – Illustration
Path Planning - C-Space Introduction to Robotics
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Configuration Space
Path Planning - C-Space Introduction to Robotics

Definition
The parameters that define the configuration of the system are called Generalized
Coordinates, and the vector space defined by these coordinates is called the
Configuration Space X .

In robotics, generalized coordinates include
I Joint positions for each controlled joint
I Cartesian poses for mobile robots

Xobs ⊂ X describes the set of all configurations in collision.

Xfree = X \ Xobs describes the collision-free planning space.
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Workspace and Configuration Space
Path Planning - C-Space Introduction to Robotics

Whereas all intuitive reasoning and system description takes place in the Workspace,
planning usually proceeds in the C-space.

Confusing terminology:
I The workspace is often referred to as reachable Cartesian space.
I Configuration space is often shortened to C-space.
I For mobile robots, Cartesian poses can be (part of) the C-space.
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Workspace to Configuration Space – Example
Path Planning - C-Space Introduction to Robotics

Workspace scheme with multiple states Workspace with target end-effector regions
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Workspace to Configuration Space – Example
Path Planning - C-Space Introduction to Robotics

Workspace with target end-effector regions Configuration space with same target regions
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On Dimensionality
Path Planning - C-Space Introduction to Robotics

I Workspaces (position-only) are described by 2 or 3 dimensions
I Effective C-spaces have 6 or more dimensions

C-space visualization for simulated 3dof arm

Trajectory in n-dimensional C-space

D. Berenson et.al. 2009 [14]
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C-Space Summary
Path Planning - C-Space Introduction to Robotics

I The parameters of a system, i.e. Generalized Coordinates, span a vector space
I This space is called the C-space X of the system

I Xfree describes the collision-free subspace of X
I x ∈ Xfree can be tested by collision-checking
I Usually the space is not parameterized (can not be easily described)

I Cartesian space and C-space can coincide in navigation tasks
where only the pose of the robot is a parameter
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Path Planning
Feasible Trajectories
Geometry Representations
C-Space
Planner Approaches

Discretized Space Planning
Potential Field Method

Probabilistic Planners
Optimal Planning

M. Görner 421 / 641



Path Planning
Path Planning - Planner Approaches Introduction to Robotics

Definition
A Path Planning Problem is described by a triple 〈Xfree , xstart ,Xgoal〉, where
I xstart ∈ Xfree is the start state
I Xgoal ⊂ X describes a goal region

Definition
A mapping τ : [0, 1]→ Rn onto a C-space Rn is called a
I Path if it describes a finite, continous trajectory.
I Collision-free Path if Range(τ) ⊆ Xfree
I Feasible Path if it is collision-free, τ(0) = xstart , and τ(1) ∈ Xgoal

adapted from S. Karaman et.al. 2011 [15]
M. Görner 421 / 641



Feasible Path Planning
Path Planning - Planner Approaches Introduction to Robotics

Feasible Path Planning requires planners to find a feasible path for any given path
planning problem. The ideal planner is
I correct - all reported paths are feasible
I complete - if a feasible path exist, it will be found
I performs with bounded runtime - if no path exists, it will fail

In practice,
I correctness is often traded for feasible runtime performance.
I actual correctness is defined by the real world, not by the planning model.

If an object is not modelled, it will not be considered.
I most methods can not report failures and are only asymptotically complete.

M. Görner 422 / 641
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Discretized Space Planning
Path Planning - Planner Approaches - Discretized Space Planning Introduction to Robotics

Simple Idea: Discretize planning space &
run A∗ on the resulting grid

I Classical path search algorithm

I Returns optimal plan in grid

I Works well for planar path planning
A∗ planner finding an optimal path in the grid
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Not Tractable in 6+ dimensions
Path Planning - Planner Approaches - Discretized Space Planning Introduction to Robotics

I Solutions limited to grid resolution
I Sufficiently high resolution required for correctness/completeness

I Discretization explicitly represents the whole space volume
I Curse-of-Dimensionality:

I assuming 1 deg resolution and 360 deg joint range
I 2 joints yield 129600 unique states
I 3 joints yield 46656000 unique states
I 6 joints yield ∼ 2.18e15 unique states

I Explicit representation of the whole space is clearly not feasible.
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Potential Field Method (PFM)
Path Planning - Planner Approaches - Potential Field Method Introduction to Robotics

Alternative Idea: Represent space entirely through continuous function f : Rn → R.

I No explicit space representation
I Can be evaluated as needed

Khatib 1986:
The manipulator moves in a field of forces. The position to be reached is an
attracting pole for the end effector and obstacles are repulsive surfaces for the
manipulator parts. [16]
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Basic Principle
Path Planning - Planner Approaches - Potential Field Method Introduction to Robotics

I Initially developed for real-time collision avoidance
I Potential field associates a scalar value f (p) to every point p in space
I Robot moves along the negative gradient −∇f (p), a “force” applied to the robot
I f ’s global minimum should be at the goal configuration
I An ideal field used for navigation should

I be smooth
I have only one global minimum
I the values should approach ∞ near obstacles
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Basic Principle (cont.)
Path Planning - Planner Approaches - Potential Field Method Introduction to Robotics
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Basic Principle (cont.)
Path Planning - Planner Approaches - Potential Field Method Introduction to Robotics

I The attracting force (of the goal)

~Fgoal(p) = −κρ(p− pgoal)

I where
κρ is a constant gain factor
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Basic Principle (cont.)
Path Planning - Planner Approaches - Potential Field Method Introduction to Robotics

I The potential field (of obstacles)

U(x) =


1
2η( 1

ρ(p) −
1
ρ0

)2 if ρ(p) ≤ ρ0
0 else

I where
η is a constant gain factor
ρ(p) is the shortest distance to the obstacle O
ρ0 is a threshold defining the region of influence of an obstacle
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Basic Principle (cont.)
Path Planning - Planner Approaches - Potential Field Method Introduction to Robotics

I The repulsive force of an obstacle

~Fobstacle(p) =

η( 1
ρ(p) −

1
ρ0

) 1
ρ(p)2

dρ(p)
dp if ρ(p) ≤ ρ0

0 if ρ(p) > ρ0

I where dρ(p)
dp is the partial derivative vector of the distance from the point to the

obstacle.
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Basic Principle
Path Planning - Planner Approaches - Potential Field Method Introduction to Robotics
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Local Minima of PFM
Path Planning - Planner Approaches - Potential Field Method Introduction to Robotics
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Advantages and Disadvantages of PFM
Path Planning - Planner Approaches - Potential Field Method Introduction to Robotics

Advantages:
I Implicit State Representation
I Real-time capable

Disadvantages:
I Incomplete algorithm

I Existing solution might not be found
I Calculation might not terminate if no solution exists

I ρ(p) is only intuitive in 2D and 3D
I Obstacles in 6D C-space have complex shapes

M. Görner 433 / 641
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