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IK Review
- Introduction to Robotics

I Workspace
I reachable workspace
I dexterous workspace

I closed solutions:
I algebraic solution
I geometrical solution

The closed solution exists if specific constraints (sufficient constraints) for the arm
geometry are satisfied:

If 3 sequent axes intersect in a given point

or if 3 sequent axes are parallel to each other

I numerical solutions
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Example featuring PUMA 560
- Introduction to Robotics
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Exercise
- Introduction to Robotics

Assume we have derived the forward kinematics as:

0T3 =


C1C23 −C1S23 S1 C1(C2l2 + l1)
S1C23 −S1S23 −C1 S1(C2l2 + l1)
S23 C23 0 S2l2
0 0 0 1


And we know:

0T3 =


r11 r12 r13 px
r21 r22 r23 py
r31 r32 r33 pz
0 0 0 1


Question: How to solve the inverse kinematics?
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Exercise
- Introduction to Robotics

0T3 =


C1C23 −C1S23 S1 C1(C2l2 + l1)
S1C23 −S1S23 −C1 S1(C2l2 + l1)
S23 C23 0 S2l2
0 0 0 1

 =


r11 r12 r13 px
r21 r22 r23 py
r31 r32 r33 pz
0 0 0 1



S1 = r13 (18)
C1 = −r23 (19)

Using the two-argument arctangent to solve for θ1,

θ1 =
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Exercise
- Introduction to Robotics

C1(C2l2 + l1) = px (20)
S1(C2l2 + l1) = py (21)

S2l2 = pz (22)

solve θ2 from (20 - 22),
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Exercise
- Introduction to Robotics

S23 = r31 (23)
C23 = r32 (24)

solve θ3 from (20 - 22),
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Outline
Instantaneous Kinematics Introduction to Robotics

Introduction
Spatial Description and Transformations
Forward Kinematics
Robot Description
Inverse Kinematics for Manipulators
Instantaneous Kinematics

Velocity of rigid body
Velocity Propagation between Links
Jacobian of a Manipulator
Singular Configurations

Trajectory Generation 1
Trajectory Generation 2
Dynamics
Robot Control
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Outline (cont.)
Instantaneous Kinematics Introduction to Robotics

Path Planning
Task/Manipulation Planning
Telerobotics
Architectures of Sensor-based Intelligent Systems
Summary
Conclusion and Outlook
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Differential motion
Instantaneous Kinematics Introduction to Robotics

I Forward kinematics: θ −→ x
I Inverse kinematics: x −→ θ

I instantaneous kinematics: θ + δθ −→ x + δx
I Relationship δθ ↔ δx

θ̇ ↔ ẋ
Joint velocities ↔ end-effector velocities

I Linear velocity
I Angular velocity
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Linear velocity
Instantaneous Kinematics - Velocity of rigid body Introduction to Robotics

AVP = d
dt (AP) = lim

∆t→0

∆P(t)
∆t = lim

∆t→0

P(t + ∆t)− P(t)
∆t (25)

I P is a time-varying position vector w.r.t. {A}.
I AVP is the linear velocity of the point P in space

x y

z

A

Pend

Pstart

P(t0) = P0

P(t0 + ∆t)
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Linear velocity (cont.)
Instantaneous Kinematics - Velocity of rigid body Introduction to Robotics

Representing AVP in another frame {B}, then we get

B(AVP) =B ( ddt (AP)) = d
dt (BRA(AP)) = BRA

d
dt (AP) = BRA · AVP

Note, as ARB remains invariant during the motion.

Notation
I if P is the origin of a frame {C}, which is moving, we typically use vc =U VC to

denote the linear velocity of the origin of {c} w.r.t. the reference frame {U}
I Avc means the linear velocity of the origin of {C} w.r.t. {U} expressed in {A}
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Angular velocity
Instantaneous Kinematics - Velocity of rigid body Introduction to Robotics

Angular velocity describes rotational motion of a frame.

Notation
I AΩB denotes the angular velocity of {B} w.r.t. {A}
I ωc =U ΩC denotes the angular velocity of {c} w.r.t. {U}

{A}{B}

- the direction of AΩB indicates the instantaneous
axis of rotation

- the magnitude of AΩB indicates the speed of
rotation
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Linear velocity of rigid body
Instantaneous Kinematics - Velocity of rigid body Introduction to Robotics

{A} {B}
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Linear velocity of rigid body
Instantaneous Kinematics - Velocity of rigid body Introduction to Robotics

Assume that there is only a linear motion of {B} w.r.t. {A}

AP = APB + ARB · BP

Differentiating the above equation

AVP = AVB + d
dt (ARB · BP)

= AVB + ARB
d
dt (BP)

= AVB + ARB · BVP

Note, as ARB remains invariant during the mo-
tion.

{A}
{B}
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Angular velocity of rigid body
Instantaneous Kinematics - Velocity of rigid body Introduction to Robotics

Assume that:
1. No linear velocity of {B} w.r.t. {A}
2. There is a rotational velocity of {B} w.r.t.

{A}, ARB is time-varying.
3. Point P is fixed in {B} {A}{B}
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Angular velocity of rigid body (cont.)
Instantaneous Kinematics - Velocity of rigid body Introduction to Robotics

{A}
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Angular velocity of rigid body (cont.)
Instantaneous Kinematics - Velocity of rigid body Introduction to Robotics

{A}
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Angular velocity of rigid body
Instantaneous Kinematics - Velocity of rigid body Introduction to Robotics

AVP is proportional to:
· ‖AΩB‖
· ‖AP sin θ‖

and
· AVP⊥AΩB

· AVP⊥AP

AVP = AΩB × AP

{A}
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Cross Product Operator
Instantaneous Kinematics - Velocity of rigid body Introduction to Robotics

a =

ax
ay
az

 , b =

bx
by
bz

 −→ c = a × b =⇒ c = âb

a× =⇒ â : a skew-symmetric matrix
vectors =⇒ matrices

c = âb =

 0 −az ay
az 0 −ax
−ay ax 0


bx
by
bz
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Cross Product Operator
Instantaneous Kinematics - Velocity of rigid body Introduction to Robotics

AVP = AΩB × AP = ˆAΩB
AP

AΩB =

Ωx
Ωy
Ωz

 , AP =

APx
APy
APz



AVP = ˆAΩB
A
P =

 0 −Ωz Ωy
Ωz 0 −Ωx
−Ωy Ωx 0


APx

APy
APz
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Simultaneous linear and angular motion
Instantaneous Kinematics - Velocity of rigid body Introduction to Robotics

Assume that:
1. No linear velocity of {B} w.r.t. {A}
2. There is a rotational velocity of {B} w.r.t. {A}, BRA is time-varying.
3. Point P is fixed in {B}

AVP = AΩB × AP
⇓ BVP

AVP = ARB
BVP + AΩB × AP

= ARB
BVP + AΩB × ARB

BP
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Simultaneous linear and angular motion
Instantaneous Kinematics - Velocity of rigid body Introduction to Robotics

Assume that:
1. No linear velocity of {B} w.r.t. {A}
2. There is a rotational velocity of {B} w.r.t. {A}, BRA is time-varying.
3. Point Q is fixed in {B}

AVP = ARB
BVP + AΩB × ARB

BP
⇓ AVB

AVP = AVB + ARB
BVP + AΩB × ARB

BP
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Velocity of rigid body
Instantaneous Kinematics - Velocity of rigid body Introduction to Robotics

I Linear motion

AVP = AVB + ARB
BVP

I Rotational motion

AVP = ARB
BVP + AΩB × ARB

BP

I General

AVP = AVB + ARB
BVP + AΩB × ARB

BP
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Velocity propagation
Instantaneous Kinematics - Velocity Propagation between Links Introduction to Robotics

Motion of the links of a manipulator.
I v : linear velocity
I ω : angular velocity
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Angular velocity propagation
Instantaneous Kinematics - Velocity Propagation between Links Introduction to Robotics

For a revolute joint i , the angular velocity
i−1ωi−1 of the link i is:

θ̇i
iZi−1

I θ̇i is a scalar, the velocity of the joint i

I iZi−1 =

00
1


I scalar multiplication

{i-1}

{i}

Joint

Joint
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Angular velocity propagation
Instantaneous Kinematics - Velocity Propagation between Links Introduction to Robotics

Angular velocity i−1ωi of the link i + 1 is influ-
enced by:
I the angular velocity i−1ωi−1 of the link i
I if joint i + 1 is a revolute joint, the joint

velocity along the z-axis Zi of the link

i−1ωi = i−1ωi−1 +i−1Ri θ̇i+1
iZi

iωi = iRi−1
i−1ωi−1 + θ̇i+1

iZi

{i-1}

{i}

Joint

Joint
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Linear velocity propagation
Instantaneous Kinematics - Velocity Propagation between Links Introduction to Robotics

For a prismatic joint i , the linear velocity i−1vi−1
of the link i is:

ḋi
iZi−1

I ḋi is a scalar, the velocity of the link i

I iZi−1 =

00
1


I scalar multiplication

{i-1}

{i}

Joint

Joint
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Linear velocity propagation
Instantaneous Kinematics - Velocity Propagation between Links Introduction to Robotics

Linear velocity i−1vi of the link i+1 is influenced
by:
I the linear velocity i−1vi−1 of the joint i
I if joint i is a revolute joint, the linear

velocity of the origin of frame {i + 1}
I if joint i + 1 is a prismatic joint, the joint

velocity along the z-axis Zi of the joint

i−1vi = i−1vi−1 +i−1ωi−1 × i−1Pi +ḋi+1
iZi

ivi = iRi−1(i−1vi−1 + i−1ωi−1× i−1Pi ) + ḋi+1
iZi

{i-1}

{i}

Joint

Joint

S. Li, J. Zhang 207 / 592



Velocity propagation summary
Instantaneous Kinematics - Velocity Propagation between Links Introduction to Robotics

I Prismatic joint
ivi = iRi−1(i−1vi−1 + i−1ωi−1× i−1Pi ) + ḋi+1

iZi

iωi = iRi−1
i−1ωi−1

I Revolute joint

ivi = iRi−1(i−1vi−1 + i−1ωi−1 × i−1Pi )

iωi = iRi−1
i−1ωi−1 + θ̇i+1

iZi

[
0vn
0ωn

]
=
[
0Rn 0
0 0Rn

] [
nvn
nωn

]
{i-1}

{i}

Joint

Joint
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Example
Instantaneous Kinematics - Velocity Propagation between Links Introduction to Robotics

Given the 2dof planar robot, find the velocity of the origin of {2} w.r.t. {2} and {0}.

0ω0 =

 0
0
θ̇1



, 0v0 =

00
0



1ω1 =

1R0
0ω0 + θ̇2

00
1


=

 c1 −s1 0
−s1 c2 0
0 0 1


 0
0
θ̇1

+

 0
0
θ̇2

 =

 0
0

θ̇1 + θ̇2



1v1 =

1R0(0v0 + 0ω0 × 0p1)

=

 c2 −s2 0
−s2 c2 0
0 0 1

 (

 0
0
θ̇1

×
l10
0

) =

l1s2θ̇1l1c2θ̇1
0



y

x
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Example
Instantaneous Kinematics - Velocity Propagation between Links Introduction to Robotics

2ω2 =

2R1
1ω1 + θ̇3

00
1

 = 1ω1 =

 0
0

θ̇1 + θ̇2



2v2 =

2R1(1v1 + 1ω1 × 1p2)

= 1v1 +

 0
0

θ̇1 + θ̇2

×
l20
0

 =

 l1s2θ̇1
l1c2θ̇1 + l2(θ̇1 + θ̇2)

0



0ω2 =

0R2
2ω2 =

 0
0

θ̇1 + θ̇2



0v2 =

0R2
2v2 =

−l1s1θ̇1 − l2s12(θ̇1 + θ̇2)
l1c1θ̇1 + l2c12(θ̇1 + θ̇2)

0



y

x
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Velocity propagation
Instantaneous Kinematics - Velocity Propagation between Links Introduction to Robotics

How to simplify the calculation of end-effector velocity?

Joint velocities ⇔ End-effector velocities

⇓

Jacobian
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Jacobian of a manipulator
Instantaneous Kinematics - Jacobian of a Manipulator Introduction to Robotics

Definition
In the field of robotics, we generally use Jacobians to relate joint velocities to Cartesian
velocities of the end-effecter.

x = f (q),


x1
x2
...
xm

 =


f1(q)
f2(q)
...

fn(q)

 (26)

I x is the Cartesian location of the end-effector
I m is number of degree of freedom in the Cartesian space
I Define q = [q1, q2, ..qn]T , q1, q2, ..qn are joint variables of an n-link manipulator
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Jacobian of a manipulator (cont.)
Instantaneous Kinematics - Jacobian of a Manipulator Introduction to Robotics

By the chain rule of differentiation:

δx1 = ∂f1
∂q1

δq1 + ...+ ∂f1
∂qn

δqn

...

δxm = ∂fm
∂q1

δq1 + ...+ ∂fm
∂qn

δqn

δx =


∂f1
∂q1 ... ∂f1

∂qn... ...
...

∂fm
∂q1 ... ∂fm

∂qn

 · δq (27)

δx(m×1) = J(m×n)δq(n×1) where Jij(q) = ∂

∂qj
fi(q) (28)
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Jacobian of a manipulator (cont.)
Instantaneous Kinematics - Jacobian of a Manipulator Introduction to Robotics

∂x(m×1) = J(m×n)∂q(n×1)

ẋ(m×1) = J(m×n)q̇(n×1)

I A Jacobian-matrix is a multidimensional representation of partial derivatives.
I If we divide both sides with the differential time element, we can think of the

Jacobian as mapping velocities in q to those in x.
I Jacobians are time-varying linear transformations.
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Jacobian of a manipulator (cont.)
Instantaneous Kinematics - Jacobian of a Manipulator Introduction to Robotics

I 0ωn to be the angular velocity of the end effector
I 0vn is the linear velocity of the end effector
I The Jacobian matrix consists of two components, that solve the following

equations:
0vn = 0Jv q̇ and 0ωn = 0Jw q̇

The manipulator Jacobian

J =
[
Jv
Jw

]
,

[
0vn
0ωn

]
=
[
Jv
Jw

]
q̇ (29)
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Angular velocity Jacobian
Instantaneous Kinematics - Jacobian of a Manipulator Introduction to Robotics

Angular velocity i−1ωi is:

i−1ωi = i−1ωi−1 + i−1Ri θ̇i+1
iZi

We get:

0ωn = p1q̇10Z0 + p2q̇20R1
1Z1 + ...+ pnq̇n

0Rn−1
n−1Zn−1

= p1q̇10Z0 + p2q̇20Z1 + ...+ pnq̇n
0Zn−1

where:

pi =
{
0 if joint i is prismatic
1 if joint i is revolute

(30)
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Angular velocity Jacobian (cont.)
Instantaneous Kinematics - Jacobian of a Manipulator Introduction to Robotics

The Angular Velocity Jacobian

Jw = [p10Z0 p20Z1 ... pn
0Zn−1] (31)

(Hint: Jw is a 3xn matrix.)

S. Li, J. Zhang 217 / 592



Linear velocity Jacobian
Instantaneous Kinematics - Jacobian of a Manipulator Introduction to Robotics

The linear velocity of the end effector is: 0vn =0 ẋn =

ẋẏ
ż


By the chain rule of differentiation:

0ẋn = ∂0xn
∂q1

q̇1 + ∂0xn
∂q2

q̇2 + ...+ ∂0xn
∂qn

q̇n

therefore the linear part of the Jacobian is:

Jv =
[
∂0xn
∂q1

∂0xn
∂q2 ... ∂0xn

∂qn

]
(32)

S. Li, J. Zhang 218 / 592



Computing the final Jacobian
Instantaneous Kinematics - Jacobian of a Manipulator Introduction to Robotics

Two approaches:
1. derive v , ω for each link until the end-effector
2. use the explicit form
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Computing the final Jacobian
Instantaneous Kinematics - Jacobian of a Manipulator Introduction to Robotics

I get 0Jv

0T6 =
[
0RN

0PN
0 1

]
0x −→ 0vn −→ 0Jv

I get 0Jω

Jw = [p10Z0 p20Z1 ... pn
0Zn−1]

I 0xi is equal to the first three elements of the 4th column of matrix 0Ti
I 0Zi is equal to the first three elements of the 3rd column of matrix 0Ti

0Ti has to be computed for every joint.
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Example1
Instantaneous Kinematics - Jacobian of a Manipulator Introduction to Robotics

0ω2 = 0R2
2ω2 =

 0
0

θ̇1 + θ̇2


0v2 = 0R2

2v2 =

−l1s1θ̇1 − l2s12(θ̇1 + θ̇2)
l1c1θ̇1 + l2c12(θ̇1 + θ̇2)

0


Give the 0J Jacobian matrix.

y

x

S. Li, J. Zhang 221 / 592



Example2
Instantaneous Kinematics - Jacobian of a Manipulator Introduction to Robotics

For a 3-DOF robot, given the following transformation matrices, find the Jacobian 0J .

0T1 =

c1 −s1 0 0
s1 c1 0 0
0 0 1 h
0 0 0 1

 , 1T2 =

c2 −s2 0 0
0 0 −1 0
s2 c2 0 0
0 0 0 1

 , 2T3 =

c3 −s3 0 e
s3 c3 0 0
0 0 1 0
0 0 0 1

 , 3T4 =

1 0 0 f
0 1 0 0
0 0 1 0
0 0 0 1

 ,

where h, e, f are the length of the 1st , 2ndand3rd link, respectively.

0T4 =


c1c23 −c1s23 s1 ec1c2 + fc1c23
s1c23 −s1c23 −c1 es1c2 + fs1c23
s23 c23 0 h + es2 + fs23
0 0 0 1
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Example2
Instantaneous Kinematics - Jacobian of a Manipulator Introduction to Robotics

Calculate 0T1,
0T2,

0T3,
0T4:

0T1 =


c1 −s1 0 0
s1 c1 0 0
0 0 1 h
0 0 0 1

 , 0T2 = 0T1
1T2 =


c1c2 −s2c1 s1 0
s1c2 −s1s2 −c1 0
s2 c2 0 h
0 0 0 1



0T3 = 0T2
2T3 =


−s2s3c1 + c1c2c3 −s2c1c3 − s3c1c2 s1 ec1c2
−s1s2s3 + s1c2c3 −s1s2c3 − s1s3c2 −c1 es1c2

s2c3 + s3c2 −s2s3 + c2c3 0 es2 + h
0 0 0 1



0T4 =


c1c23 −c1s23 s1 ec1c2 + fc1c23
s1c23 −s1c23 −c1 es1c2 + fs1c23
s23 c23 0 h + es2 + fs23
0 0 0 1
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Example2 (cont.)
Instantaneous Kinematics - Jacobian of a Manipulator Introduction to Robotics

0J =
[
Jv
Jw

]
=



−es1c2 − fs1c23 −ec1s2 − fc1s23 −fc1s23
ec1c2 + fc1c23 −es1s2 − fs1s23 −fs1s23

0 ec2 + fc23 fc23
0 s1 s1
0 −c1 −c1
1 0 0
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Changing a Jacobian’s frame of reference
Instantaneous Kinematics - Jacobian of a Manipulator Introduction to Robotics

Given a Jacobian written in frame {B},[
Bvn
Bωn

]
=
[

BJv
BJw

]
q̇

A 6 x 1 Cartesian velocity vector given in {B} is described relative to {A} by the
transformation [

Avn
Aωn

]
=
[

ARB 0
0 ARB

] [
Bvn
Bωn

]
Hence, we can get [

Avn
Aωn

]
=
[

ARB 0
0 ARB

] [
BJv
BJw

]
q̇ (33)
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Inverse Jacobian
Instantaneous Kinematics - Singular Configurations Introduction to Robotics

joint
velocity

q̇

joint
valuesq

TCP
velocity

ẋ

Question
Is the Jacobian invertible?
If it is, then: q̇ = J−1(q)ẋ
=⇒ to move the the end effector of the robot in Cartesian Space with a certain
velocity.
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Singular Configurations
Instantaneous Kinematics - Singular Configurations Introduction to Robotics

For most manipulators there exist values of q where the Jacobian gets singular.

Singularity

det J = 0 =⇒ J is not invertible

Such configurations are called singularities of the manipulator.
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Singularities
Instantaneous Kinematics - Singular Configurations Introduction to Robotics

From the Task Space perspective:
I reduce the degree of freedom in velocity domain in task space
From the Joint Space perspective:
I Infinite solutions to the inverse kinematics problem may exist
I Near the singularity, small velocities in operational space may cause large velocities

in the joint space.
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Singularities (cont.)
Instantaneous Kinematics - Singular Configurations Introduction to Robotics

Two main types of Singularities:
I Workspace boundary singularities occur when the manipulator is fully stretched

out or folded back on itself in such a way that the end-effector is at or very near
the boundary of the workspace.

I Workspace internal singularities occur away from the workspace boundary; they
generally are caused by a lining up of two or more joint axes
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Singular Configurations – Workarounds
Instantaneous Kinematics - Singular Configurations Introduction to Robotics

N = 6 For fully actuated robots, the Jacobian (6× 6) is invertible

δx(m×1) = J(m×n)δq(n×1) where Jij(q) = ∂

∂qj
fi(q)

I m is number of degree of freedom of the manipulator in the Cartesian space
I n is the number of joint variables of the manipulator
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Singular Configurations – Workarounds
Instantaneous Kinematics - Singular Configurations Introduction to Robotics

N = 6 For fully actuated robots, the Jacobian (6× 6) is invertible
N < 6 Under actuated robots (6× N)

=⇒ remove some spatial degrees of freedom, get a square Jacobian matrix.
Example: [

T6dx
T6dy

]
= J2×2

[
dq1
dq2

]
for a 2-joint planar manipulator
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Singular Configurations – Workarounds
Instantaneous Kinematics - Singular Configurations Introduction to Robotics

N = 6 For fully actuated robots, the Jacobians (6× 6) are invertible
N < 6 Under actuated robots (6× N)

=⇒ remove some spatial degrees of freedom
N > 6 Over actuated robots (6× N)

I have spare joints
I use the pseudoinverse of J

q̇ = J(q)+v (34)
J+ = (JT J)−1JT (35)
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UR5 example
Instantaneous Kinematics - Singular Configurations Introduction to Robotics

23

23https://www.youtube.com/watch?v=6Wmw4lUHlX8
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