

MIN Faculty Department of Informatics

Industrial Robotic Assembly

Oberseminar TAMS

Yunlei Shi

University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems

20.04.2021

Table of Contents

- 1. Introduction
- 2. Related Work
- 3. Studies
 - Impedance controller, admittance controller
 - RL based assembly using impedance controller
 - DRL based assembly using admittance controller
- 4. Future Work

Table of Contents

1. Introduction

- 2. Related Work
- 3. Studies
 - Impedance controller, admittance controller
 - RL based assembly using impedance controller
 - DRL based assembly using admittance controller
- 4. Future Work

The typical industry production line scenario

Introduction

(YAMAHA Advanced Robotics Automation Platform)

Example of typical tedious, monotonous tasks

Motivation

- Robotics has largely contributed to increasing industrial productivity and
- to helping factory workers on tedious, monotonous, dangerous tasks

	Human Operator	Collaborative Systems	Traditional Robot
Assembly	High dexterity and flexibility	Combines human dexterity with robot capabilities [24]	Dexterity/flexibility could be unreachable [24]
Placement	High dexterity	Commercial cobots have lower repeatability	High repeatability and payload
Handling	Product weight restricted [19]	Typical cobots have low payload	High payload and speed [23]
Picking	Product weight restricted [19]	Typical cobots have low payload	High payload and repeatability [23]

The main industry tasks

Motivation

Problem Statement:

- 1. Robotic assembly production lines and tasks are difficult to set up
 - Installation and tuning of robots and devices cost lots of time
 - Ease-of-programming has been identified as an open challenge in robot assembly
- 2. Assembly task success rates requirement are high (>99%)
- 3. TAKT time requirements are high
 - Normally, less time than human worker

Table of Contents

1. Introduction

2. Related Work

- 3. Studies
 - Impedance controller, admittance controller
 - RL based assembly using impedance controller
 - DRL based assembly using admittance controller
- 4. Future Work

•Schoettler, Gerrit, et al. "Deep reinforcement learning for industrial insertion tasks with visual inputs and natural rewards." 2020 International Conference on Intelligent Robots and Systems (IROS). IEEE, 2020.

•Johannink, Tobias, et al. "Residual reinforcement learning for robot control." 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019.

•Luo, Jianlan, et al. "Reinforcement learning on variable impedance controller for high-precision robotic assembly." 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019.

•Luo, Jianlan, et al. "Deep reinforcement learning for robotic assembly of mixed deformable and rigid objects." 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018.

Deep Reinforcement Learning for Industrial Insertion Tasks

Luo, Jianlan, et al. "Reinforcement learning on variable impedance controller for high-precision robotic assembly." 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019.

Method overview

Algorithm 1 Residual reinforcement learning

Require: policy π_{θ} , hand-engineered controller $\pi_{\rm H}$.

- 1: for n = 0, ..., N 1 episodes do
- Sample initial state $s_0 \sim E$. 2:
- 3: for t = 0, ..., H - 1 steps do
- Get policy action $u_t \sim \pi_{\theta}(u_t|s_t)$. 4:
- Get action to execute $u'_t = u_t + \pi_H(s_t)$. 5:
- Get next state $s_{t+1} \sim p(\cdot \mid s_t, u'_t)$. 6: 7:
 - Store (s_t, u_t, s_{t+1}) into replay buffer \mathcal{R} .
- Sample set of transitions $(s, u, s') \sim \mathcal{R}$. 8:
- Optimize θ using RL with transitions. 9:
- 10: end for
- 11: end for

Luo, Jianlan, et al. "Reinforcement learning on variable impedance controller for high-precision robotic assembly." 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019.

Related Work

University of California, Berkeley

Experiment result

Luo, Jianlan, et al. "Reinforcement learning on variable impedance controller for high-precision robotic assembly." 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019.

Experiment result

D-Sub Connector		Goal	
		Perfect	Noisy
Pure RL	Dense	16%	0%
	Images, SAC	0%	0%
	Images, TD3	12%	12%
RL + LfD	Images	52%	52%
	Dense	100%	60%
Residual RL	Images, SAC	100%	64%
	Images, TD3	52%	52%
Human	P-Controller	100%	44%

Model-E Connector		Goal	
		Perfect	Noisy
	Dense	0%	0%
Pure RL	Images, SAC	0%	0%
	Images, TD3	0%	0%
RL + LfD	Images	20%	20%
	Dense	100%	76%
Residual RL	Images, SAC	100%	76%
	Images, TD3	0%	0%
Human	P-Controller	52%	24%

USB Connector		Goal	
		Perfect	Noisy
	Dense	28%	20%
	Sparse, SAC	16%	8%
Pure RL	Sparse, TD3	44%	28%
	Images, SAC	36%	32%
	Images, TD3	28%	28%
	Sparse	100%	32%
KL + LID	Images	88%	60%
Residual RL	Dense	100%	84%
	Sparse, SAC	88%	84%
	Sparse, TD3	100%	36%
	Images, SAC	100%	80%
	Images, TD3	0%	0%
Human	P-Controller	100%	60%

Luo, Jianlan, et al. "Reinforcement learning on variable impedance controller for high-precision robotic assembly." 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019.

Related Work

Stanford University, Stanford Artificial Intelligence Lab (SAIL)

•Lee, Michelle A., et al. "Making sense of vision and touch: Learning multimodal representations for contact-rich tasks." IEEE Transactions on Robotics 36.3 (2020): 582-596.

•Lee, Michelle A., et al. "Guided uncertainty-aware policy optimization: Combining learning and model-based strategies for sample-efficient policy learning." *2020 IEEE International Conference on Robotics and Automation (ICRA)*. IEEE, 2020.

•Lee, Michelle A., et al. "Multimodal Sensor Fusion with Differentiable Filters." arXiv preprint arXiv:2010.13021 (2020).

•Martín-Martín, Roberto, et al. "Variable impedance control in end-effector space: An action space for reinforcement learning in contact-rich tasks." arXiv preprint arXiv:1906.08880 (2019).

Making Sense of Vision and Touch: Learning Multimodal Representations for Contact-Rich Tasks

Method overview

Force sensor readings in the z-axis (height) and visual observations are shown with corresponding stages of a peg insertion task

Method overview

Controller structure

Method overview

Neural network architecture for multimodal representation learning with self-supervision

Method overview Encoder's architecture settings:

•For visual feedback, use a six-layer convolutional neural network (CNN) to encode 128 \times 128 \times 3 RGB images.

•For depth feedback, use an eighteen-layer CNN with 3 \times 3 convolutional filters of increasing depths to encode 128 \times 128 \times 1 depth images. A single fully connected layer to the end of both the depth and RGB encoders to transform the final activation maps into a 2 \times d-dimensional variational parameter vector. •For haptic feedback, we take the series and perform five-layer causal convolutions with last 32 readings from the six-axis F/T sensor as a 32 \times 6 time variational parameter vector.

•For proprioception, we encode the stride 2 to transform the force readings into a 2 \times d-dimensional current position, roll, linear velocity, and roll angular velocity of the end-effector with a four-layer multilayer perceptron (MLP) to produce a 2 \times d-dimensional variational parameter vector.

Method overview

RL policy: trust-region policy optimization (TRPO)

$$r(\mathbf{s}) = \begin{cases} c_r (1 - (\tanh \lambda \|\mathbf{s}\|_2)(1 - s_{\psi}) & \text{(r)} \\ 1 + c_a (1 - \frac{\|\mathbf{s}\|_2}{\|\boldsymbol{\varepsilon}_1\|_2})(1 - \frac{s_{\psi}}{\varepsilon_{\psi}}) & \text{if } \mathbf{s} \le \boldsymbol{\varepsilon}_1 \& s_{\psi} \le \boldsymbol{\varepsilon}_{\psi} \text{ (a)} \\ 2 + c_i (h_d - |s_z|) & \text{if } s_z < 0 & \text{(i)} \\ 5 & \text{if } h_d - |s_z| \le \boldsymbol{\varepsilon}_2 & \text{(c)} \end{cases}$$

Reward design for: reaching (r), aligning (a), inserting (i), and completed (c).

Cartesian end-effector position displacements: $\Delta \mathbf{x}$

Cartesian roll angle displacements: Δ

 $\Delta \alpha$

Experiment result

Related Work

Stanford University, Stanford Artificial Intelligence Lab (SAIL)

Experiment result

Peg Insertion and Transfer Learning Results on Different Geometry

Table of Contents

- 1. Introduction
- 2. Related Work
- 3. Studies
 - Impedance controller, admittance controller
 - RL based assembly using impedance controller
 - DRL based assembly using admittance controller
- 4. Future Work

Impedance controller, admittance controller

Fig. 9.2 Impedance control with inner motion control loop (admittance control)

Force controller:

$$egin{aligned} M\ddot{x_e} + B\dot{x_e} &= F_e \ ec{x_e} &= M^{-1}(F_e - Bec{x_e}) \ ec{x_e}^{t+1} &= ec{x_e}^t + ec{x_e}^{t+1}T \ x_e^{t+1} &= x_e^t + ec{x_e}^{t+1}T \end{aligned}$$

1. Proactive Action Visual Residual Reinforcement Learning for Contact-Rich Tasks Using a Torque-Controlled Robot (ICRA2021)

Contribution 1: Representation of policies and controller scheme

32

Visual-based fixed policy

$$egin{aligned} s_v &= ({}^{c*}t_c, heta u) \ \pi_H(s_v) &= -k_p \cdot s_v. \end{aligned}$$

Contact-based parametric policy

We use a simple Q-learning algorithm:

$$\begin{aligned} Q^{\pi}(s_{t}, u_{t}) &= \mathbb{E}_{r_{t}, s_{t+1} \sim E}[r_{t} + \gamma \mathbb{E}_{u_{t+1} \sim \pi}[Q^{\pi}(s_{t+1}, u_{t+1})]] \\ a &= \lambda[P_{\sigma x}^{d}, P_{\sigma y}^{d}, P_{\sigma z}^{d}, R_{\sigma y}^{d}, R_{\sigma z}^{d}] \\ s &= [F_{x}, F_{y}, F_{z}, M_{x}, M_{y}, M_{z}] \end{aligned} \qquad r = \begin{cases} 1, & (\text{success}) \\ -2, & (\text{failed}). \\ 1 - 150 \|s_{xy}\|_{2} - s/s_{max}, & (\text{otherwise}). \end{cases} \end{aligned}$$

Contribution 2: Proactive Action

The gorilla uses a stick to investigate water depth state

The agent uses a robot to investigate contact state

Note: RL action is an impedance controller, while investigative action use a force controller

Contribution 2: Proactive Action Experiment

Without

an investigative action, the moment y is unclear with lots of interference

Training Experiment Example

Experiment Results

TABLE I

ABLATION STUDY OF POLICY EVALUATION STATISTICS

TABLE II Comparison of success rates for different baselines

Baselines	Result(success/total)	Total Time Cost	Baselines	Fix motherboard	Move motherboard
No vision	92/200	1.09 h	Baseline 1	97/100	0/20
No RL policy	112/200	0.65 h	Baseline 2	100/100	0/20
Random RL policy	77/200	2.59 h	Baseline 3	98/100	81/100
No investigative action	66/200	0.85 h	Baseline 4	100/100	88/100
Our method	179/200	1.18 h	Our method	100/100	100/100

2. Combining Learning from Demonstration with Learning by Exploration to Facilitate Contact-Rich Tasks (IROS2021 submission)

38

Representation of policies and controller scheme

Contribution 1: Learning from demonstration based on visual servoing

Contribution 2: A region-limited residual reinforcement learning(RRRL) policy based on force-torque information

41

Contribution 2: A region-limited residual reinforcement learning(RRRL) policy based on force-torque information

Algorithm 1 RRRL

Require: Model based policy π_H , learning frequency C target action-value update frequency C_2 .

- 1: Initialize replay memory $\mathcal H$ to capacity N
- 2: Initialize action-value function Q with random weigh θ
- 3: Initialize target action-value function Q_{target} with weights $\theta^- = \theta$
- 4: for episode = 1 to M do
- 5: Sample state s_0
- 6: while NOT EpisodeEnd do
- 7: Calculate $\alpha(s)$ with Equation (8)
- 8: Choose action a_H from $\pi_H(s_t)$
- 9: With probability ϵ choose a random action a_{RL}
- 10: Otherwise select $a_{RL} \sim \pi_{\theta}(s_t)$
- 11: Obtain action $a_t = (1 \alpha) * a_H + \alpha * a_{RL}$
- 12: Execute a_t , observe reward r_t and state s_{t+1}
- 13: Store transition (s_t, a_t, r_t, s_{t+1}) in \mathcal{H} with priority $p_t = max_{i < t}p_i$

14: **for**
$$j = 1$$
 to C_1 **do**

- 15: Sample minibatch of transitions with priorit from \mathcal{H}
- 16: Update transition priority
- 17: Update θ with the method proposed in [40]
- 18: end for
- 19: Every C_2 steps reset $Q_{target} = Q$
- 20: end while
- 21: end for

 $\pi(a|s) = (1 - \alpha(s)) \cdot \pi_H(a|s) + \alpha(s) \cdot \pi_\theta(a|s).$ (1)

Parametric Policy: Double DQN with proportional prioritization

Contribution 2: A region-limited residual reinforcement learning(RRRL) policy based on force-torque information

43

Teaching Experiments

44

Experiments Results

TABLE II EVALUATION IN THE TEACHING PHASE

Teaching phase	Time cost	Maximum contact force
Teach-pendant	60–120 s	15–50 N
Hand-guiding	15–42 s	30–60 N
Our method	23–30 s	3–10 N

Experiments Results

TABLE III

EVALUATION IN THE EXECUTION PHASE

Execution phase	Success rate		Maximum
ſ	Perfect	Uncertainty	contact force
Only teach-pendant	55/100	17/100	15 N
Only hand-guiding	33/100	5/100	15 N
Teach-pendant + spiral searching	69/100	47/100	35 N
Hand-guiding + spiral searching	51/100	33/100	35 N
Our method	95/100	91/100	15 N

Table of Contents

- 1. Introduction
- 2. Related Work
- 3. Studies
 - Impedance controller, admittance controller
 - RL based assembly using impedance controller
 - DRL based assembly using admittance controller

4. Future Work

Dynamic Movement Primitives for More Complex Contact-rich Tasks

- •Complex trajectory assembly
- •Massage Robot

Davchev, T., Luck, K. S., Burke, M., Meier, F., Schaal, S., & Ramamoorthy, S. (2020). Residual Learning from Demonstration: Adapting Dynamic Movement Primitives for Contact-rich Insertion Tasks. *arXiv e-prints*, arXiv-2008.

Sim2Real RL for insertion tasks

- (a) Reach
- (b) Push

(c) Pick-and-place

•Zhan, A., Zhao, P., Pinto, L., Abbeel, P., & Laskin, M. (2020). A Framework for Efficient Robotic Manipulation. *arXiv preprint arXiv:2012.07975*.
•Bogunowicz, Damian, Aleksandr Rybnikov, Komal Vendidandi, and Fedor Chervinskii. "Sim2Real for Peg-Hole Insertion with Eye-in-Hand Camera." *arXiv preprint arXiv:2005.14401* (2020).

MIN Faculty Department of Informatics

Thank you for your attention!