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Introduction

The typical industry production line scenario
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Introduction

The industrial robotic assembly line
(YAMAHA Advanced Robotics Automation Platform)
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Example of typical tedious, monotonous tasks

Introduction
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Introduction

• Robotics has largely contributed to increasing industrial productivity and

• to helping factory workers on tedious, monotonous, dangerous tasks

The main industry tasks

Motivation
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Introduction

Problem Statement:

1. Robotic assembly production lines and tasks are difficult to set up
• Installation and tuning of robots and devices cost lots of time 

• Ease-of-programming has been identified as an open challenge in robot assembly

2. Assembly task success rates requirement are high (>99%)

3. TAKT time requirements are high 
• Normally, less time than human worker

Motivation
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Related Work

University of California, Berkeley

•Schoettler, Gerrit, et al. "Deep reinforcement learning for industrial 
insertion tasks with visual inputs and natural rewards." 2020 International 
Conference on Intelligent Robots and Systems (IROS). IEEE, 2020.

•Johannink, Tobias, et al. "Residual reinforcement learning for robot 
control." 2019 International Conference on Robotics and Automation 
(ICRA). IEEE, 2019.

•Luo, Jianlan, et al. "Reinforcement learning on variable impedance 
controller for high-precision robotic assembly." 2019 International 
Conference on Robotics and Automation (ICRA). IEEE, 2019.

•Luo, Jianlan, et al. "Deep reinforcement learning for robotic assembly of 
mixed deformable and rigid objects." 2018 IEEE/RSJ International 
Conference on Intelligent Robots and Systems (IROS). IEEE, 2018.
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Deep Reinforcement Learning for Industrial Insertion Tasks

Related Work

Luo, Jianlan, et al. "Reinforcement learning on variable impedance controller for high-precision robotic assembly." 2019 International Conference on Robotics 
and Automation (ICRA). IEEE, 2019.

University of California, Berkeley
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Related Work

Luo, Jianlan, et al. "Reinforcement learning on variable impedance controller for high-precision robotic assembly." 2019 International Conference on Robotics 
and Automation (ICRA). IEEE, 2019.

University of California, Berkeley

Method overview
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Related Work

Luo, Jianlan, et al. "Reinforcement learning on variable impedance controller for high-precision robotic assembly." 2019 International Conference on Robotics 
and Automation (ICRA). IEEE, 2019.

University of California, Berkeley

Experiment result
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Related Work

Luo, Jianlan, et al. "Reinforcement learning on variable impedance controller for high-precision robotic assembly." 2019 International Conference on Robotics 
and Automation (ICRA). IEEE, 2019.

University of California, Berkeley

Experiment result
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Related Work

Stanford University, Stanford Artificial Intelligence Lab (SAIL)

•Lee, Michelle A., et al. "Making sense of vision and touch: Learning 
multimodal representations for contact-rich tasks." IEEE Transactions on 
Robotics 36.3 (2020): 582-596.

•Lee, Michelle A., et al. "Guided uncertainty-aware policy optimization: 
Combining learning and model-based strategies for sample-efficient policy 
learning." 2020 IEEE International Conference on Robotics and Automation 
(ICRA). IEEE, 2020.

•Lee, Michelle A., et al. "Multimodal Sensor Fusion with Differentiable 
Filters." arXiv preprint arXiv:2010.13021 (2020).

•Martín-Martín, Roberto, et al. "Variable impedance control in end-effector 
space: An action space for reinforcement learning in contact-rich 
tasks." arXiv preprint arXiv:1906.08880 (2019).
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Making Sense of Vision and Touch: 
Learning Multimodal Representations for Contact-Rich Tasks 

Related Work

Stanford University, Stanford Artificial Intelligence Lab (SAIL)
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Force sensor readings in the z-axis (height) and visual observations are shown with
 corresponding stages of a peg insertion task 

Related Work

Method overview

Stanford University, Stanford Artificial Intelligence Lab (SAIL)
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Controller structure

Related Work

Method overview

Stanford University, Stanford Artificial Intelligence Lab (SAIL)
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Neural network architecture for multimodal representation learning with self-supervision

Related Work

Method overview

Stanford University, Stanford Artificial Intelligence Lab (SAIL)
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Related Work

Method overview
Encoder’s architecture settings:

Stanford University, Stanford Artificial Intelligence Lab (SAIL)

•For visual feedback, use a six-layer convolutional neural network (CNN) to 
encode 128 × 128 × 3 RGB images. 
•For depth feedback, use an eighteen-layer CNN with 3 × 3 convolutional filters 
of increasing depths to encode 128 × 128 × 1 depth images. A single fully 
connected layer to the end of both the depth and RGB encoders to transform 
the final activation maps into a 2 × d-dimensional variational parameter vector. 
•For haptic feedback, we take the series and perform five-layer causal 
convolutions with last 32 readings from the six-axis F/T sensor as a 32 × 6 time 
variational parameter vector. 
•For proprioception, we encode the stride 2 to transform the force readings into 
a 2 × d-dimensional current position, roll, linear velocity, and roll angular 
velocity of the end-effector with a four-layer multilayer perceptron (MLP) to 
produce a 2 × d-dimensional variational parameter vector.

For “Self-Supervised Predictions and Decoder Architecture Representations”, please check paper
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Related Work

Method overview

Stanford University, Stanford Artificial Intelligence Lab (SAIL)

Reward design for: reaching (r), aligning (a), inserting (i), and completed (c).

RL policy: trust-region policy optimization (TRPO)

Cartesian end-effector position displacements:

Cartesian roll angle displacements:
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Stanford University, Stanford Artificial Intelligence Lab (SAIL)

Experiment result

Related Work
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Stanford University, Stanford Artificial Intelligence Lab (SAIL)

Experiment result

Related Work
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Studies 

DLR LWR joint structure

Impedance controller, admittance controller 
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Studies 

Impedance controller, admittance controller 

DLR LWR joint modeling:

Force controller:
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Studies 

Impedance controller, admittance controller 
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Studies 

Impedance controller, admittance controller 



29

Studies 

Impedance controller, admittance controller 

Force controller:
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Studies 

Impedance controller, admittance controller 
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Studies 

1. Proactive Action Visual Residual Reinforcement Learning for Contact-Rich 
Tasks Using a Torque-Controlled Robot (ICRA2021)
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Contribution 1: Representation of policies and controller scheme

1. Proactive Action Visual Residual Reinforcement Learning for Contact-Rich Tasks Using a Torque-Controlled Robot 
(ICRA2021)
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Studies 

Visual-based fixed policy

Contact-based parametric policy

We use a simple Q-learning algorithm:
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Studies 

Contribution 2: Proactive  Action

Note: RL action is an impedance controller, while investigative action use a force controller

1. Proactive Action Visual Residual Reinforcement Learning for Contact-Rich Tasks Using a Torque-Controlled Robot 
(ICRA2021)
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Studies 

Contribution 2: Proactive  Action Experiment

1. Proactive Action Visual Residual Reinforcement Learning for Contact-Rich Tasks Using a Torque-Controlled Robot 
(ICRA2021)
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Studies 

Training Experiment Example

Episode 
reward

Episode 
steps

100 Episodes 

100 Episodes 

1. Proactive Action Visual Residual Reinforcement Learning for Contact-Rich Tasks Using a Torque-Controlled Robot 
(ICRA2021)
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Studies 

Experiment Results

1. Proactive Action Visual Residual Reinforcement Learning for Contact-Rich Tasks Using a Torque-Controlled Robot 
(ICRA2021)
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Studies 

2.   Combining Learning from Demonstration with Learning by Exploration to 
Facilitate Contact-Rich Tasks (IROS2021 submission)

2.    Combining Learning from Demonstration with Learning by Exploration to Facilitate Contact-Rich Tasks (IROS2021 submission)
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Studies 

Representation of policies and controller scheme

2.    Combining Learning from Demonstration with Learning by Exploration to Facilitate Contact-Rich Tasks (IROS2021 submission)
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Studies 

Contribution 1: Learning from demonstration based on visual servoing

2.    Combining Learning from Demonstration with Learning by Exploration to Facilitate Contact-Rich Tasks (IROS2021 submission)



41

Studies 

Contribution 2: A region-limited residual reinforcement learning(RRRL) policy 
based on force-torque information

2.    Combining Learning from Demonstration with Learning by Exploration to Facilitate Contact-Rich Tasks (IROS2021 submission)
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Studies 

Contribution 2: A region-limited residual reinforcement learning(RRRL) policy 
based on force-torque information

2.    Combining Learning from Demonstration with Learning by Exploration to Facilitate Contact-Rich Tasks (IROS2021 submission)

Parametric Policy: 
Double DQN with proportional prioritization
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Contribution 2: A region-limited residual reinforcement learning(RRRL) policy 
based on force-torque information

2.    Combining Learning from Demonstration with Learning by Exploration to Facilitate Contact-Rich Tasks (IROS2021 submission)

100 Episodes 

Episode 
reward

Training Experiment Example
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Studies 

Teaching Experiments

2.    Combining Learning from Demonstration with Learning by Exploration to Facilitate Contact-Rich Tasks (IROS2021 submission)
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Studies 

Experiments Results
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Experiments Results
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Future Work

Dynamic Movement Primitives for More Complex Contact-rich Tasks
•Complex trajectory assembly

•Massage Robot

Davchev, T., Luck, K. S., Burke, M., Meier, F., Schaal, S., & Ramamoorthy, S. (2020). Residual Learning from Demonstration: Adapting Dynamic 
Movement Primitives for Contact-rich Insertion Tasks. arXiv e-prints, arXiv-2008.
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Future Work

Sim2Real RL for insertion tasks

•Zhan, A., Zhao, P., Pinto, L., Abbeel, P., & Laskin, M. (2020). A Framework for Efficient Robotic Manipulation. arXiv preprint arXiv:2012.07975.
•Bogunowicz, Damian, Aleksandr Rybnikov, Komal Vendidandi, and Fedor Chervinskii. "Sim2Real for Peg-Hole Insertion with Eye-in-Hand 
Camera." arXiv preprint arXiv:2005.14401 (2020).
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