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Motivation
▪Kick is required in Humanoid Soccer League

▪Current approaches:

▪Keyframe Animations

▪Kick Engines

▪New approach:

▪Learning from Demonstration to improve 
existing solutions
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DeepMimic (Peng et al., 2018)

Learning from Demonstration for various motions
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Learning Agile Robotic Locomotion 
Skills by Imitating Animals (2020)

Reinforcement Learning for Robust 
Parameterized Locomotion Control of 
Bipedal Robots (2021)
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Demonstration used in the training
▪Kick Engine currently used by Bit-Bots

▪Only one motion is used

▪Parameters were optimized for most 
effective and reliable results

▪Multi-objective tree-parzen estimator 
was used for optimization
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Training Setup
▪Environment:

▪PyBullet Simulator

▪Wolfgang Robot and FIFA Size 1 Ball

▪Training:

▪Stable Baselines 3

▪Proximal Policy Optimization

▪30 Hz

▪10 million timesteps (~150.000 episodes)
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Network Architecture
▪Separate Networks for Policy and Value function

▪Two fully connected hidden layers with 512 neurons

▪ReLU activation function

▪Gaussian distribution with fixed variance in output 
layer

▪Normalized input and output
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r=0.7 r I+0.3 rT

▪Imitation Reward

▪Root position

▪End effector positions

▪Joint positions

▪Joint velocities

▪Task Reward

▪Ball velocity
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Imitation Reward

r I=0.1rR+0.15 rE+0.65 rP+0.1rV

rR=exp(−10⋅‖R−R̂‖2
2
)

rE=exp(−40∑
e∈E

‖pe− p̂e‖2
2
)

rP=exp(−2∑
j∈J

‖p j− p̂ j‖2
2
)

rV=exp(−0.1∑
j∈J

‖v j− v̂ j‖2
2
)

▪Rewards closeness to the demonstration

▪Same as in DeepMimic

Root position

End effector positions

Joint positions

Joint velocities
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Task Reward

rT={1−exp(−2⋅vB) if t k≤t≤(t k+0.5)
0 else }

▪Rewards strong ball movement at the correct time 

Ball Velocity
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Actions
▪Ways of controlling the robot’s legs

▪Two different types:

▪Joint action (motor goals)

▪Cartesian action (foot positions)
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States
▪Representation of the robot

▪Available information:

▪Phase: increasing number marking the progress in the kick

▪Proprioception: current position and velocity of feet

▪IMU readings: roll, pitch, and angular velocities

▪Pressure sensor readings
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States
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Training Additions
▪Early Termination

▪Reset the robot when it falls

▪Reference State Initialization

▪Start the robot at random positions of the demonstration

▪Initial Bias

▪Set the bias of the output layer to obtain a stable position
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Source: DeepMimic, Peng et al., 2018
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Training Additions
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Experiments
▪Ablation Study on states

▪Which parts of the input improve the kick?

▪Which parts worsen it?

▪Differences in Cartesian / Joint actions

▪Does the action representation improve the kick?

▪Does it influence the sample efficiency?

➔ 18 different training runs

▪Resistance against pushing
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PhaseState with JointAction




  21

PhaseState with JointAction
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OrientationState with CartesianAction
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PressureFootState with CartesianAction
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Results
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Results
▪Best results: PhaseState, OrientationState, GyroState

▪Stable kick

▪Low number of timesteps (< 3M)

▪Kick distance higher than demonstration

▪Pressure sensors or foot velocities lead to unstable results 

▪Cartesian action might lead to better results
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Discussion
▪Open-Loop Approach (PhaseState) performs best

▪Simulation is mostly deterministic

▪Performance is likely to be worse on real robot

▪Pressures and Foot Velocities worsen the result

▪Relatively noisy or jumpy inputs

▪Might disturb gradient updates
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Possible problems
▪Hyperparameters are not optimized for each problem

▪Network architecture might not be adequate

▪Task reward function can probably be improved
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Future Work
▪Tweak reward function

▪Hyperparameter optimization

▪Sim-to-real transfer

▪Hierarchical approach for different kick directions
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Questions?
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