

Learning 6D Object Pose on Point Clouds

Oral Defense Ge Gao 16.06.2021, Hamburg

1

The problem: what is a 6D pose

The Problem: 6D Object Pose Estimation

The Problem: 6D Object Pose Estimation for Known Objects

List of 3D points (point clouds)

$$P^{O} = \left\{ \mathbf{x}_{i}^{O} \in \mathbb{R}^{3} \mid i = 1, \dots, n \right\}$$
$$P^{C} = \left\{ \mathbf{x}_{i}^{C} \in \mathbb{R}^{3} \mid i = 1, \dots, m \right\}$$
$$\mathbf{x}_{i}^{C} = R\mathbf{x}_{i}^{O} + \mathbf{t}$$

A computer vision system: possible input

RGB Image \Longrightarrow Color

r Depth Image \Rightarrow 2.5D(Z)

Pose Estimator

SOTA: Deep Learning Based Methods

RGB Based

Observation: RGB is the dominant information ...

... but depth has rich geometric information!

RGB-D Based

Overview

¹Gao et al., Occlusion Resistant Object Rotation Regression from Point Cloud Segments, ECCVW, 2018 ²Gao et al., 6D Object Pose Regression via Supervised Learning on Point Clouds, ICRA, 2020

CloudPose: 6D Object Pose Regression on Point Clouds

- Is it possible to achieve state-of-the-art performance when inferring 6D object pose with depth information? And how?
- Should we estimate rotation and translation with separate networks?
 - 1 radian vs. 1 meter
- What is a suitable rotation representation in a supervised learning framework?
 - rotation matrix, euler angles, quaternion, axis angle ...

Pose Estimator

CloudPose: System overview

Ge Gao, Mikko Lauri, Yulong Wang, Xiaolin Hu, Jianwei Zhang, Simone Frintrop: 6D Object Pose Regression via Supervised Learning on Point Clouds, ICRA, 2020

CloudPose: Details

Introduction

Pose Estimator

Data Generator

¹C. R. Qi and H. Su and K. Mo and L. J. Guibas. PointNet: Deep learning on point sets for 3D classification and segmentation, in CVPR, 2017.

Summary

CloudPose: Details

CloudPose: Rotation representation and loss functions

Pose Estimator

Introduction

- Rotation representation
 - Axis-angle
 - Constraint free
- Loss function
 - Rotation loss l_r : geodesic distance
 - Translation loss l_t : L2
 - \circ Total loss: $l=lpha l_t+l_r$

Data Generator

Network output

Summary

CloudPose: Results

YCB Video (2018)

	RGB	Depth	Accuracy
PoseCNN ³	~	~	93.6
DenseFusion ²	~	~	93.2
CloudPose ¹		~	94.7

LineMOD (2012)

	RGB	Depth	Accuracy
PoseCNN ³	~		62.7
DenseFusion ²	~	~	94.3
CloudPose ¹		~	58.3

Depth data quality is poor !

- CloudPose Contribution
 - First system learns 6D object pose from depth
 - Accurate 6D pose can be estimated from depth information

To be improved

• Be robust against noisy depth data

¹Gao et al., 6D Object Pose Regression via Supervised Learning on Point Clouds, ICRA, 2020
 ²Wang et al., DenseFusion: 6D object pose estimation by iterative dense fusion, CVPR, 2019
 ³Xiang et al., a convolutional neural network for 6D object pose estimation in cluttered scenes, RSS, 2018.

BOP Challenge 2019 – YCB-Video

The performance scores are defined in the <u>challenge description</u>. The reported time is the average estimation time per image.

Show 50 🗸 entries

Search:

	Date (UTC)	Submission	÷	Test image 🔶	AR	÷	AR _{VSD}		AR _{mspd} 🔶	Time (s) 🔷
1	2019-10-18 20:16	Pix2Pose-BOP_w/ICP-ICCV19		RGB-D	0.668		0.693	0.693	0.617	2.106
2	2019-10-05 18:03	gao-cloudpose19		D	0.569		0.540	0.659	0.508	-1.000
3	2019-10-22 09:09	Sundermeyer-IJCV19+ICP		RGB-D	<mark>0.49</mark> 8		0.460	0.573	0.462	1.581
4	2019-10-14 14:36	Félix&Neves-ICRA2017-IET2019		RGB-D	0.498		0.708	0.423	0.362	54.509
5	2019-10-22 07:57	Vidal-Sensors18		D	0.435		0.623	0.361	0.322	3.719
6	2019-10-22 02:34	Zhigang-CDPN-ICCV19 (Zhigang-CDPN-ICCV19)		RGB	0.418		0.319	0.432	0.503	0.295
7	2019-10-22 06:37	Sundermeyer-IJCV19		RGB	0.371		0.307	0.407	0.398	0.179
8	2019-08-22 06:12	Drost-CVPR10-Edges		RGB-D	0.368		0.537	0.303	0.263	37.878
9	2019-08-20 09:54	Drost-CVPR10-3D-Only		D	0.332		0.474	0.281	0.241	6.270
10	2019-10-17 07:05	Drost-CVPR10-3D-Only-Faster		D	0.318		0.469	0.263	0.220	1.282
11	2019-08-21 06:09	Drost-CVPR10-3D-Edges		D	0.309		0.454	0.253	0.220	37.479
12	2019-10-14 21:44	Pix2Pose-BOP-ICCV19 (Basic)		RGB	0.284		0.211	0.245	0.398	0.944
13	2019-10-10 14:22	DPOD (synthetic)		RGB	0.222		0.196	0.216	0.254	0.341

Overview

¹Gao et al., Occlusion Resistant Object Rotation Regression from Point Cloud Segments, ECCVW, 2018

²Gao et al., 6D Object Pose Regression via Supervised Learning on Point Clouds, ICRA, 2020

³Gao et al., CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds, ICRA 2021.

UН	
曲	Universität Hamburg
DER FORSCH	IUNG DER LEHRE DER BILDUNG

CloudAAE: Motivation

- Sparsity of information
 - Input dimension e.g. $256 \times 3 = 768$

Introduction

Pose Estimator

- Output dimension 3 + 3 = 6
- Susceptible to input noise
- Augmented autoencoder¹
 - a variant of denoising autoencoder
 - Invariant to noise corruption

¹Sundermeyer et al., Implicit 3D orientation learning for 6D object detection from RGB images, ECCV, 2018.

Data Generator

Pose Estimator

CloudAAE: System Architecture

Ge Gao, Mikko Lauri, Xiaolin Hu, Jianwei Zhang, Simone Frintrop: CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds, ICRA, 2021

CloudAAE: Details

¹Wang et al., Dynamic Graph CNN for Learning on Point Clouds, TOG, 2019

CloudAAE: Results

YCB Video (2018)

	RGB	Depth	Accuracy
DenseFusion ¹	~	~	93.2
PVN3D ²	~	~	96.1
CloudPose ³		~	94.7
CloudAAE ⁴		~	94.0

- CloudAAE contribution
 - Point cloud-based AAE helps to increase robustness against noise

LineMOD (15% / 85%, train / test data, 2012)

	RGB	Depth	Accuracy
PoseCNN⁵	~		62.7
DenseFusion ¹	~	~	94.3
CloudPose ³		~	58.3
CloudAAE ⁴		~	86.7

• To be improved

• Getting more training data (easily)

¹Wang et al., DenseFusion: 6D object pose estimation by iterative dense fusion, CVPR, 2019
 ²He et al., PVN3D: A deep point-wise 3D keypoints voting network for 6DoF pose estimation, CVPR, 2020.
 ³Gao et al., 6D Object Pose Regression via Supervised Learning on Point Clouds, ICRA, 2020
 ⁴Gao et al., CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds, ICRA, 2021
 ⁵Xiang et al., PoseCNN: a convolutional neural network for 6D object pose estimation in cluttered scenes, RSS, 2018

Overview

¹Gao et al., Occlusion Resistant Object Rotation Regression from Point Cloud Segments, ECCVW, 2018

²Gao et al., 6D Object Pose Regression via Supervised Learning on Point Clouds, ICRA, 2020

³Gao et al., CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds, ICRA 2021.

CloudSyn: Motivation

Background

Real data -> Expensive

\$

\$\$\$

Synthetic data -> Less expensive

Denninger et al., BlenderProc, arXiv 2019.

Existing Methods

Textured 3D model

Physically Based Renderer

\$ (time, hardware storage, off-line)

/-	illumination, shadow, reflection,	
	physically plausible pose	

Synthetic RGB-(D) Images for training

CloudSyn: Motivation

Existing Methods

Pose Estimator

Data Generator

Summary

CloudSyn: Data Synthesis Pipeline

Real Segment Synthetic Segment

Speed: < 30 ms for 128 samples

Ge Gao, Mikko Lauri, Xiaolin Hu, Jianwei Zhang, Simone Frintrop: CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds, ICRA, 2021

Train CloudAAE with CloudSyn

LineMOD (Synthetic training)

	RGB	Depth	Accuracy
EEGP-AAE ¹	~		89.2
SSD-6D ²	~	~	90.0
CloudPose ³		~	75.2
CloudAAE+Syn ⁴		~	92.5

How much data is needed (per class)?

Data Generator

- CloudSyn contribution
 Point cloud based sy
 - Point cloud-based synthetic training data can be useful and cheap

¹Wen et al., Edge enhanced implicit orientation learning with geometric prior for 6D pose estimation, RAL, 2020

²Kehl et al., SSD-6D: Making RGB-based 3D detection and 6D pose estimation great again, ICCV, 2017

³Gao et al., 6D Object Pose Regression via Supervised Learning on Point Clouds, ICRA, 2020

⁴Gao et al., CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds, ICRA, 2021

Overview

¹Gao et al., Occlusion Resistant Object Rotation Regression from Point Cloud Segments, ECCVW, 2018

²Gao et al., 6D Object Pose Regression via Supervised Learning on Point Clouds, ICRA, 2020

³Gao et al., CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds, ICRA 2021.

Summary

- CloudPose^{1,2}
 - Accurate 6D pose can be estimated from depth information in point clouds
- CloudAAE³
 - Point cloud-based AAE helps to increase robustness against noise
- CloudSyn³
 - Point cloud-based synthetic training data can be useful and cheap

Related Publication

- 1. **Ge Gao**, Mikko Lauri, Jianwei Zhang, Simone Frintrop: Occlusion Resistant Object Rotation Regression from Point Cloud Segments, **ECCVW**, 2018
- 2. **Ge Gao**, Mikko Lauri, Yulong Wang, Xiaolin Hu, Jianwei Zhang, Simone Frintrop: 6D Object Pose Regression via Supervised Learning on Point Clouds, **ICRA**, 2020
- 3. **Ge Gao**, Mikko Lauri, Xiaolin Hu, Jianwei Zhang, Simone Frintrop: CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds, **ICRA**, 2021

Summary

RGB-D Based

Summary

29

Outlook

• Hand-over task

Open topic:

• Sim2Real gap for (complicated) 3D data

30

Overview

¹Gao et al., Occlusion Resistant Object Rotation Regression from Point Cloud Segments, ECCVW, 2018
 ²Gao et al., 6D Object Pose Regression via Supervised Learning on Point Clouds, ICRA, 2020
 ³Gao et al., CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds, ICRA 2021.

Outlook

• Multimodal data

Overview

¹Gao et al., Occlusion Resistant Object Rotation Regression from Point Cloud Segments, **ECCVW**, 2018

²Gao et al., 6D Object Pose Regression via Supervised Learning on Point Clouds, **ICRA**, 2020

³Gao et al., CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds, ICRA, 2021.

⁴Gao et al., Saliency-guided Adaptive Seeding for Supervoxel Segmentation, IROS, 2017

Thank you!

All contributions are open source: https://github.com/GeeeG

	0	~	d	n	~	~	~
닐	CI.	ou	Q	P	Q	S	e

Code for "6D Object Pose Regression via Supervised Learning on Point Clouds" @ICRA2020

● Python 🟠 38 💡 12

Code for "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" @ICRA2021

● Python 🟠 16 💡 3

SalientSupervoxel

....

H

....

Implementation for "Saliency-guided Adaptive Seeding for Supervoxel Segmentation" @IROS2017

●C++ ☆11 ¥2

Thesis Findings

- CloudPose
 - Accurate 6D pose can be estimated from depth information in point clouds
- CloudAAE
 - Point cloud-based AAE helps to increase robustness against noise
- CloudSyn
 - Point cloud-based synthetic training data can be useful and cheap