

MIN Faculty Department of Informatics

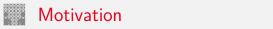
Optimal Velocity for Handover Trajectories

Jonas Tietz

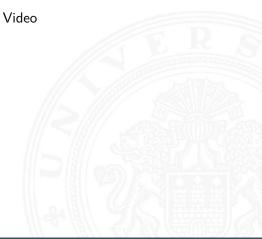
4jtietz@informatik.uni-hamburg.de

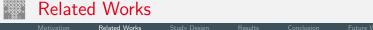
University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems

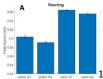

February 16, 2021

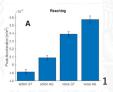
Motivation	Related Works	Study Design	Results	Conclusion	Future Work	References


- 1. Motivation
- 2. Related Works
- 3. Study Design
- 4. Results
- 5. Conclusion
- 6. Future Work
- 7. References

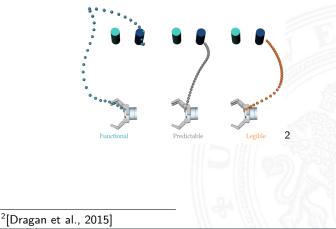


I	Motivation	Related Works	Study Design	Results	Conclusion	Future Work	References

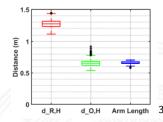

- Handover key part in human robot collaboration
- Industry 4.0
- Eldercare
- Service Robots
- Nursing



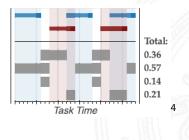
- Vannucci et al.¹investigated effect of aggressive and gentle behavior of the robot giver
- Expressed through vocal commands and motion
- Vocal instructions increased human peak velocity compared to actions
- Aggressive actions and instructions increased human peak acceleration



¹[Vannucci et al., 2018]



- Dragan et al.²studied difference between functional, predictable and legible trajectories
- Legible motions performed best for coordination task


- Nemlekar et al. ³proposed an object transfer point (OTP) estimation method
- Initial OTP estimation is static, based on both agents orientations, midpoint between them and reachability
- dynamically refined with an Probabilistic Movement Primitives based approach

³[Nemlekar et al., 2019]

- Hoffman ⁴ made a survey of fluency evaluation methods for human robot collaboration
- did a study correlating objective fluency measures with subjective measures
- Objective measures: H-IDLE, R-IDLE, C-ACT, F-DEL

H1:

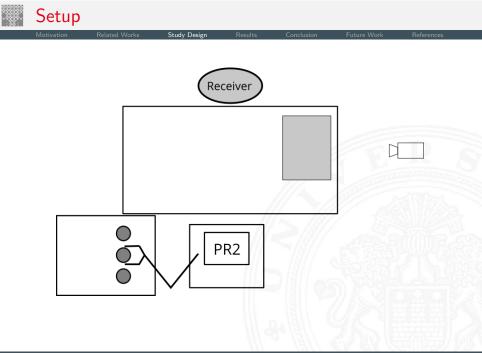
Faster robot trajectories lead to shorter overall handover time.

H2:

Object type affects the overall handover time.

H3:

Faster robot trajectories make humans act slower.


H4:


Faster robot trajectories reduce fluency.

One Handover

- Robot picks up an object
- Executes a trajectory with a specified Cartesian end-effector velocity towards receiver
- Human receiver grasps object from the robot's gripper
- Receiver places object onto the table
- Three different objects per velocity
- After each three objects are handed over, a questionnaire is filled out
- Objects are setup again

	Study Design		

Pre-Study

- Tested tcp velocities [0.2-1.3]m/s in steps of 0.1
- 4 · 3objects · 12velocities = 144handovers
- No questionnaire
- Study
 - 🕨 ca. 20min
 - ► Tested tcp velocities: [0.4-1.2]m/s in steps of 0.2
 - 3participants · 3objects · 5velocities = 45handovers
- Velocity order is randomized

Evaluation Methods

Motivation	Related Works	Study Design	Results	Conclusion	Future Work	References

- Total handover time
- Human activity time
- ► H-IDLE, R-IDLE, C-ACT, F-DEL ⁵
- Questionnaire (fluency, trust, robot contribution ...)

Motivation	Related Works	Study Design	Results	Conclusion	Future Work	References

Robot picks up an object

- Executes a trajectory with an specified velocity towards receiver
- Receiver grasps object from the robot's gripper
- Receiver places object onto the table

Pick - Movelt! Task Constructor⁶

Motivation	Related Works	Study Design	Results	Conclusion	Future Work	References

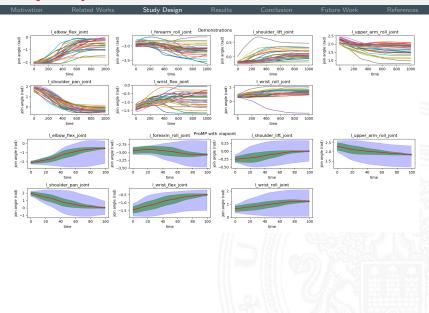
Objects at fixed location

 Gripper effort is fine tuned for each object

🗱 Motion Planning Tasks			
		_	_
Task Tree			
name	1	×	time
 Motion Planning Tasks task pipeline t state collision check current state open gripper move to pre grasp approach object 	2 1 1 2 2	0 3	1,0604 0,0452 0,2843 0,0609
 I grasp pose IK I generate grasp pose allow collision (hand,object) set effort close hand 	5 1 5 5 5	0 0 0	0,0504 0,0001 0,0052 0,3516 0,3516
 attach object allow collision (object,supp lift object forbid collision (object,surf cost weight post grasp pose 	5 5 2 2 2 2	0 3 0	0,0006 0,0048 0,2830 0,0014 0,7790 0,7790

⁶[Görner et al., 2019]

- Robot picks up an object
- Executes a trajectory with an specified velocity towards receiver
- Receiver grasps object from the robot's gripper
- Receiver places object onto the table



Motivation	Study Design		

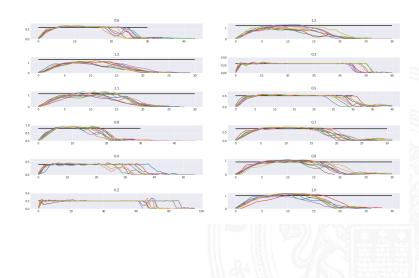
- Kinematically similar movements
- Ability to specify endpoint of trajectory
- ▶ Implemented in C++ and Eigen
- Learned from demonstrations (29 in total)

⁷[Paraschos et al., 2017]

Trajectory - ProMP

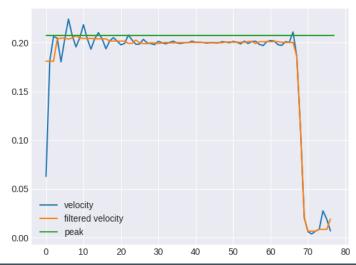
Motivation	Related Works	Study Design	Results	Conclusion	Future Work	References

- Robot picks up an object
- Executes a trajectory with an specified velocity towards receiver
- Receiver grasps object from the robot's gripper
- Receiver places object onto the table

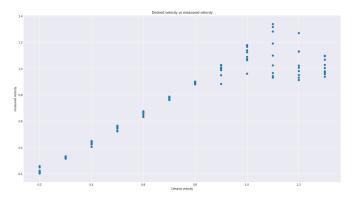

Human activity annotations

Motivation	Related Works	Study Design	Results	Conclusion	Future Work	References

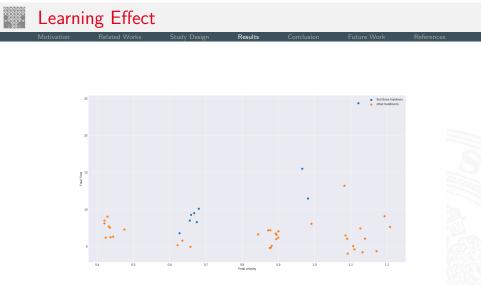
- Robot picks up an object
- Executes a trajectory with an specified velocity towards receiver
- Receiver grasps object from the robot's gripper
- Receiver places object onto the table


Velocity Accuracy

Motivation	Related Works	Study Design	Results	Conclusion	Future Work	References

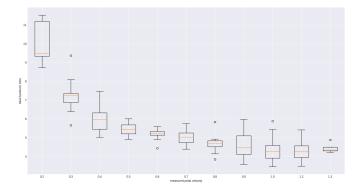

Velocity Accuracy

		Results		



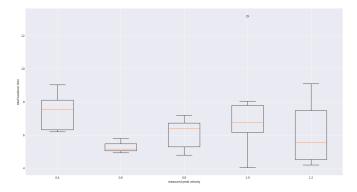
Velocity Accuracy

Motivation	Related Works	Study Design	Results	Conclusion	Future Work	References


Remove first three handovers \rightarrow 36 total handovers

H1:

Faster robot trajectories lead to shorter overall handover time.


H1 - Prestudy - Total handover time

		Results		

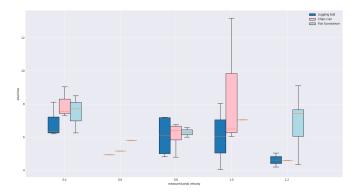
H1 - Study - Total handover time

Motivation	Related Works	Study Design	Results	Conclusion	Future Work	References

* 28

H2:

Object type affects the overall handover time.

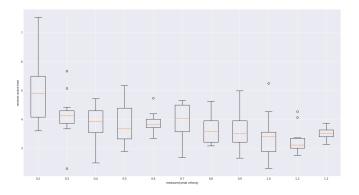

H2 - Prestudy - Total handover time

М	otivation	Related Works	Study Design	Results	Conclusion	Future Work	References
	11	ĨЛ				Jugging Ball Chips Can Flat Screwdriver	
	10						
	9	Ţ					
	aug processor 7	T T	. T				
	6	Ī			Å	Т	
	5	1	- - - - - - - - - - -		e te e		

7 0.8 measured peak velocity

H2 - Study - Total handover time

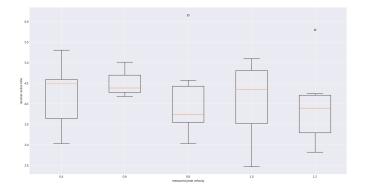
		Results		



H3:

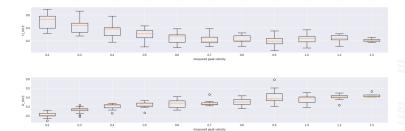
Faster robot trajectories make humans act slower.

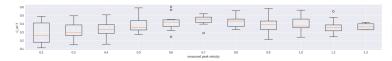
H3 - Prestudy - Human active time


Motivatio	n Related Works	Study Design	Results	Conclusion	Future Work	References

H3 - Study - Human active time

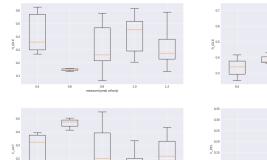
		Results		

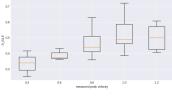

H4:

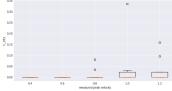

Faster robot trajectories reduce fluency.

H4 - Prestudy - H-IDLE, R-IDLE, C-ACT

Motivation	Related Works	Study Design	Results	Conclusion	Future Work	References



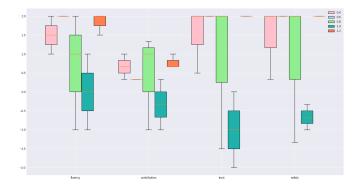




H4 - Study - H-IDLE, R-IDLE, C-ACT, F-DEL

Motivation	Related Works	Study Design	Results	Conclusion	Future Work	References

0.6


0.8 measured peak velocity

0.1

0.4

H4 - Study - Questionnaire

Motivation	Related Works	Study Design	Results	Conclusion	Future Work	References

- Number of participants too small for significant results
- There is some evidence, that faster trajectories lead to a less fluent interaction
- Faster trajectories do not increase the time the receiver is active
- Faster trajectories do reduce the overall handover time
- Object type does affect the overall handover time

		Future Work	

- More participants
- ► Faster robot (e.g. UR5)
- Include training phase
- Heavier or more complex objects
- Shorter questionnaire

[Dragan et al., 2015] Dragan, A. D., Bauman, S., Forlizzi, J., and Srinivasa, S. S. (2015).

Effects of robot motion on human-robot collaboration.

In Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction. ACM.

[Görner et al., 2019] Görner, M., Haschke, R., Ritter, H., and Zhang, J. (2019).

Movelt! Task Constructor for Task-Level Motion Planning. In *IEEE International Conference on Robotics and Automation* (*ICRA*).

[Hoffman, 2019] Hoffman, G. (2019).

Evaluating fluency in human-robot collaboration. *IEEE Transactions on Human-Machine Systems*, 49(3):209–218.

[Nemlekar et al., 2019] Nemlekar, H., Dutia, D., and Li, Z. (2019).

Object transfer point estimation for fluent human-robot handovers.

In 2019 International Conference on Robotics and Automation (ICRA). IEEE.

[Paraschos et al., 2017] Paraschos, A., Daniel, C., Peters, J., and Neumann, G. (2017).

Using probabilistic movement primitives in robotics.

Autonomous Robots, 42(3):529-551.

[Vannucci et al., 2018] Vannucci, F., Cesare, G. D., Rea, F., Sandini, G., and Sciutti, A. (2018).

A robot with style: Can robotic attitudes influence human actions?

In 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids). IEEE.