Department of Informatics

Introduction to Robotics

Assignment \#3

Due: 15.06.2020, 23:59

Task 3.1 (4 points) Screw Cap: Consider a simple gripper that is being used to loosen/open a screw cap (illustrated in figure 1). The thread height of the screw cap is given as $\frac{h}{\text { \#rotations }}$.

Figure 1: Loosening of a screw cap.
Determine the time-dependent homogeneous transformation

$$
T(t)=\left[\begin{array}{cccc}
n_{1}(t) & o_{1}(t) & a_{1}(t) & d_{1}(t) \\
n_{2}(t) & o_{2}(t) & a_{2}(t) & d_{2}(t) \\
n_{3}(t) & o_{3}(t) & a_{3}(t) & d_{3}(t) \\
0 & 0 & 0 & 1
\end{array}\right]
$$

that describes the motion of the manipulator. Ignore the acceleration and deceleration phases and choose the z-axis to be the axis of the rotating motion. Furthermore, assume the angular velocity ω_{z} to be constant.

Task 3.2 (4 points) DH-Paremeters: Figure 2 shows a manipulator with three degrees of freedom. The position of the manipulator endpoint is specified by the vector

$$
\mathbf{r}=\left[r_{x}, r_{y}, r_{z}\right]^{T}
$$

The position vector is specified with respect to the coordinate frame Σ_{0}.

(a) 1

(b) 3

(c) 3

Figure 2: (a) Manipulator sizing. (b) Position of the manipulator endpoint. (c) Manipulator geometry.
3.2.1 (2 points): Determine the DH parameters of the given manipulator. Use a table to present the determined DH parameters.
3.2.2 (2 points): From the table, derive ${ }^{0} T_{3}$.

Task 3.3 (3 points) Repetition precision: Various manufacturers of robot manipulators specify the trajectory precision of the manipulator based on the repeatability derived from a series of recorded joint angles. Multiple applications (e.g. previous task) on the other hand require knowledge of the positioning accuracy in order to reach a position in Cartesian space based on information from the vision system. What factors does the positioning accuracy depend on? (Describe at least 2)

What can be considered a limit of the positioning accuracy, especially in combination with vision systems? (Describe at least 3)

Explain your answers.

Task 3.4 (5 points) Singularities: In the lecture, two different types of singularities were discussed. Describe two different kinds of singular configurations for each type of singularities and describe the differences between them.

Discuss the difference between singularities and self-collisions for manipulators.

Task 3.5 (9 points) Jacobian and singularities: Figure 3 shows a 2-joint planar manipulator with the following constraints: $10^{\circ} \leq \theta_{1} \leq 350^{\circ}, 0^{\circ}<\theta_{2}<360^{\circ}$ and $l_{1}>l_{2}$.

Figure 3: 2-joint planar manipulator.
3.5.1 (2 points): Illustrate the workspace of the manipulator.
3.5.2 (3 points): Determine the Jacobian matrix for the manipulator.
3.5.3 (2 points): Determine the singular configurations of the manipulator (mathematically or geometrical).
3.5.4 (2 points): Outline and explain the determined singular configurations (mathematically or geometrical).

Task 3.6 (2 points) Jacobian: Extend the Jacobian matrix for the 3-joint planar manipulator shown in figure 4.

Figure 4: 3-joint planar manipulator.

Task 3.7 (4 points) Singularities of a PUMA560: Consider a PUMA560 manipulator as shown in figure 5. Explain at least three of the possible singular configurations!

Figure 5: PUMA560 manipulator.

Hint: Workspace boundary singularities occur whenever the manipulator is fully extended or is folding back onto itself.

Workspace-internal singularities occur if two or more joint axes enter a collinear configuration.

