Introduction to Robotics

Lecture 1

Shuang Li, Jianwei Zhang

[sli, zhang]@informatik.uni-hamburg.de

University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems
July 11, 2020

Lecture:	Friday 10:15 c.t. - 11:45 c.t.
Room:	F-334
Web:	http://tams.inf...burg.de/lectures/
Exercises	Friday 09:00 c.t. - 11:00 c.t. /
/RPC:	Friday $09: 00$ c.t. $-13: 00$ c.t. (alternating) Ree website for dates
Room:	BigBlueButton/F-334/F-304
Name:	Prof. Dr. Jianwei Zhang
Office:	F-330a
E-mail:	zhang@informatik.uni-hamburg.de
Consultation:	by arrangement

Name:	Shuang Li
Office:	F-330
Tel.:	$+494042883-2504$
E-mail:	sli@informatik.uni-hamburg.de
Consultation:	by arrangement (eMail)
Name:	Yannick Jonetzko
Office:	F-324
Tel.:	+4940 42883-2356
E-mail:	jonetzko@informatik.uni-hamburg.de
Consultation:	by arrangement (eMail)

Secretary: Tatjana Tetsis
Office: F-311
Tel.: $\quad+4940$ 42883-2430
E-mail: tetsis@informatik.uni-hamburg.de

- See website for more information

TAMS course website:
http://tams.informatik.uni-hamburg.de/lectures/2020ss/vorlesung/itr

This course is organized with Moodle:
https://lernen.min.uni-hamburg.de/

Lecture

- Intelligent Robotics (winter, Bestmann)
- RoboCup - Playing football with humanoid robots (Summer, Bestmann)
- Lecture Computer Vision I (winter, Frintrop)
- Lecture Computer Vision II (summer, Frintrop)
- Neural Networks (summer, Wermter)

Projects

- Masterproject intelligent robotics (winter, TAMS)
- RoboCup - Playing football with humanoid robots (winter, Bestmann)
- Human-Computer Interaction (winter, Heinecke)

Previous Knowledge

- Linear algebra
- Essence of linear algebra by 3Blue1Brown
- Basics in physics
- force, torque, work...
- Related computer skills
- Linux (RPC)
- Python (RPC and Excercises)
- Matlab (Excercises)
- git (RPC)
- access to mafiasi.de and pool computers

Own Hardware

If you use your own laptop, you require a Ubuntu 18.06 (Live or Virtual Machine) and fully installed ros-melodic-desktop-full

PR2 robot

Content

- Mathematic concepts
- spatial description
- kinematics
- dynamics
- Control concepts
- movement execution
- Programming aspects
- ROS, URDF, Kinematics Simulator
- Task-oriented movement and planning

Schedule

Slides \& Dates

24.04.	$\# 01$	$[E X]$ Introduction, Coordinate Systems
01.05.	$\# 02$	$[N O]$ Kinematics, Robot Description
08.05.	$\# 03$	$[R P C]$ Robot Description, Inverse Kinematics
15.05.	$\# 04$	$[E X]$ Differential Motion
	$\# 05$	$[E X]$ Jacobian
22.05.	$\# 06$	$[R P C]$ Trajectory Planning
29.05.	$\# 07$	$[E X]$ Trajectory Generation
05.06.	No lecture	(Holiday)
12.06.	$\# 08$	$[R P C]$ Dynamics
19.06.	$\# 09$	$[E X]$ Robot Control
26.06.	$\# 10$	$[R P C]$ Task-oriented Trajectory Generation and Object Representation
03.07.	$\# 11$	$[E X]$ Path Planning
10.07.	$\# 12$	$[R P C]$ Architectures of Sensor-Based Intelligent Systems
	$\# L C$	$[R P C]$ Summary, Conclusion, Outlook

Outline

Introduction

Basic Terms

Degree of Freedom
Robot Classification
Spatial Description and Transformations
Forward Kinematics
Robot Description
Inverse Kinematics for Manipulators
Instantaneous Kinematics
Trajectory Generation 1
Trajectory Generation 2
Dynamics
Robot Control
Path Planning

Outline (cont.)

Task/Manipulation Planning
Telerobotics
Architectures of Sensor-based Intelligent Systems
Summary
Conclusion and Outlook

Robot became popular through a stage play by Karel Čapek in 1920, being a capable servant.

Robotics was first used by Isaac Asimov in 1942.
Three Laws of Robotics

1. A robot may not injure a human being or, through inaction, allow a human being to come to harm.
2. A robot must obey the orders given it by human beings except where such orders would conflict with the First Law.
3. A robot must protect its own existence as long as such protection does not conflict with the First or Second Laws.

Obey or not

12
${ }^{1}$ https://irobot.fandom.com/wiki/l,_Robot_(film)
${ }^{2}$ https://www.rottentomatoes.com/tv/westworld/s03

Legged-robots in Boston Dynamics

SpotMini

Spot

Boston Dynamics 2

Atlas

[^0]
Advanced robots

Medical Robot

456
${ }^{4}$ https://www.dlr.de/content/en/articles/news/2019/02/20190507_dih-hero-a-medical-roboticsnetwork.html
${ }^{5}$ https://newatlas.com/hyundai-robotic-exoskeleton/43331/
${ }^{6}$ https://www.youtube.com/watch?v=wOzw71j4b78\&t=4s

Advanced robots

Industrial Robot

${ }^{7}$ https://www.robotics.org/blog-article.cfm/Industrial-Robot-Sales-Broke-Records-in-2018/136

Robotics

Intelligent combination of computers, sensors and actuators.

Hardwares in TAMS

Degree of Freedom (DOF)

The number of variables to determine position of a control system in space.

- Point on a line
- Point on a plane
- Point in space
- Rigid body
- in space
- on a plane
- Non-rigid body
- Manipulator
- number of independently controllable joints

DOF of rigid body

${ }^{8}$ https://commons.wikimedia.org/wiki/File:6DOF.svg

DOF examples

UR5 robot with Robotiq 3-finger gripper
6-DOF + 3-DOF gripper

$$
9
$$

DOF examples (cont.)

DOF examples (cont.)

DOF examples (cont.)

PR2 service robot with Shadow C6 electrical hand 19-DOF +20 -DOF hand

DOF examples (cont.)

Boston Dynamics Atlas (2020)
28-DOF 10

[^1] hyperbole-it-is-sad-2c24a7f560ba
by input power source

- electrical
- hydraulic
- pneumatic
by field of work
- stationary
- arms with n DOF
- multi-finger hand
- mobile
- portal robot
- mobile platform
- running machines and flying robots
- anthropomorphic robots (humanoids)

Hopping robot

Salto Robot [2]

Robot classification by mechanical structure

by mechanical structure

11

[^2]- rotatory
- revolute
- translatory
- prismatic
- combinations
- spherical
- cylindrical
- planar
revolute joint

${ }^{12}$ https://www.youtube.com/playlist?list=PLrIVgT56nVQ4pm5QFeQ8Z288_VwopKmfW
prismatic joint

13
${ }^{13}$ https://www.youtube.com/playlist?list=PLrIVgT56nVQ4pm5QFeQ8Z288_VwopKmfW
joints with more than one degree of freedom

14
${ }^{14}$ https: //www.youtube.com/playlist?list=PLrIVgT56nVQ4pm5QFeQ8Z288_VwopKmfW

Robot classification by mechanical structure

by mechanical structure

by mechanical structure

- cartesian
- cylindrical
- spherical / polar
- Articulated Robot
- SCARA (Selective Compliance Assembly Robot Arm)

Robot classification by mechanical structure

Selective Compliance Assembly Robot Arm

Task

Please find SCARA robots in the Fanuc industrial robot part.
${ }^{15}$ https: //www.youtube.com/watch?v=97KX-j8Onu0\&t=30s
by usage

- object manipulation
- object processing
- transport
- assembly
- quality testing
- deployment in non-accessible areas
- agriculture and forestry
- underwater
- building industry
- service robot in medicine, housework, ...

Robotics is Fun!

- A dream of mankind:

Computers are the most ingenious product of human laziness to date.
computers \Rightarrow robots

16
${ }^{16}$ https: //www.youtube.com/watch?v=P1Irm1HIwnQ

Outline

Introduction
Spatial Description and Transformations
Rigid Body Configuration
Concatenation of rotation matrices
Homogenous Transformation
Transformation Equation
Forward Kinematics
Robot Description
Inverse Kinematics for Manipulators
Instantaneous Kinematics
Trajectory Generation 1
Trajectory Generation 2
Dynamics
Robot Control

Outline (cont.)

Path Planning
Task/Manipulation Planning
Telerobotics
Architectures of Sensor-based Intelligent Systems
Summary
Conclusion and Outlook

Coordinate Systems

The pose of objects, in other words their position and orientation in Euclidian space can be described through specification of a cartesian coordinate system (B) in relation to a base coordinate system (A).

Position:

- translation along the axes of the base coordinate system (A)

- given by position vector $\mathbf{A} \overrightarrow{\mathbf{P}}=\left[{ }^{A} p_{x},{ }^{A} p_{y},{ }^{A} p_{z}\right]^{T} \in \mathcal{R}^{3}$

Orientation (in space):

- given by Rotation matrix $R_{B}=\left[\begin{array}{lll}\overrightarrow{X_{B}} & \overrightarrow{Y_{B}} & \overrightarrow{Z_{B}}\end{array}\right] \in \mathcal{R}^{3 \times 3}$
- given by Rotation matrix ${ }^{A} R_{B}=\left[{ }^{A} \vec{X}_{B}{ }^{A} \vec{Y}_{B}{ }^{A} \vec{Z}_{B}\right] \in \mathcal{R}^{3 \times 3}$
- ${ }^{A} R_{B}$: the orientation of B with respect to A. (Latex: \$^\{A\}R_\{B\}\$)
- ${ }^{A} \vec{X}_{B},{ }^{A} \vec{Y}_{B},{ }^{A} \vec{Z}_{B}$ are projection of $\overrightarrow{X_{B}}, \overrightarrow{Y_{B}}, \overrightarrow{Z_{B}}$ in A .

Dot product

In terms of the geometric definition, the dot product of two unit vectors \vec{a} and \vec{b} means the projection of the \vec{a} in \vec{b}.
$\vec{a} \cdot \vec{b}=\|a\|\|b\| \cos (\theta)$

$$
\begin{gathered}
A \vec{X}_{B}=\left[\begin{array}{l}
\overrightarrow{X_{B}} \cdot \overrightarrow{X_{A}} \\
\overrightarrow{X_{B}} \cdot \overrightarrow{Y_{A}} \\
\overrightarrow{X_{B}} \cdot \overrightarrow{Z_{A}}
\end{array}\right] \text { and }{ }^{A} R_{B}=\left[\begin{array}{lll}
A \vec{X}_{B} & A \vec{Y}_{B} & A \vec{Z}_{B}
\end{array}\right] \\
{ }^{A} R_{B}=\left[\begin{array}{lll}
\overrightarrow{X_{B}} \cdot \overrightarrow{X_{A}} & \overrightarrow{Y_{B}} \cdot \overrightarrow{X_{A}} & \overrightarrow{Z_{B}} \cdot \overrightarrow{X_{A}} \\
\overrightarrow{X_{B}} \cdot \overrightarrow{Y_{A}} & \overrightarrow{Y_{B}} \cdot \overrightarrow{Y_{A}} & \overrightarrow{Z_{B}} \cdot \overrightarrow{Y_{A}} \\
\overrightarrow{X_{B}} \cdot \overrightarrow{Z_{A}} & \overrightarrow{Y_{B}} \cdot \overrightarrow{Z_{A}} & \overrightarrow{Z_{B}} \cdot \overrightarrow{Z_{A}}
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
& { }^{A} R_{B}=\left[\begin{array}{lll}
\overrightarrow{X_{B}} \cdot \overrightarrow{X_{A}} & \overrightarrow{Y_{B}} \cdot \overrightarrow{X_{A}} & \overrightarrow{Z_{B}} \cdot \overrightarrow{X_{A}} \\
\overrightarrow{X_{B}} \cdot \overrightarrow{Y_{A}} & \overrightarrow{Y_{B}} \cdot \overrightarrow{Y_{A}} & \overrightarrow{Z_{B}} \cdot \overrightarrow{Y_{A}} \\
\overrightarrow{X_{B}} \cdot \overrightarrow{Z_{A}} & \overrightarrow{Y_{B}} \cdot \overrightarrow{Z_{A}} & \overrightarrow{Z_{B}} \cdot \overrightarrow{Z_{A}}
\end{array}\right] \text { the projection of } \overrightarrow{X_{A}} \text { in } B \\
& { }^{A} R_{B}=\left[\begin{array}{lll}
A_{X} \vec{X}_{B} & { }^{A} \vec{Y}_{B} & A \vec{Z}_{B}
\end{array}\right]=\left[\begin{array}{c}
B \vec{X}_{A}^{T} \\
{ }^{B} \vec{Y}_{A}^{T} \\
{ }_{B} \vec{Z}_{A}^{T}
\end{array}\right]=\left[\begin{array}{lll}
B \vec{X}_{A} & B \vec{Y}_{A} & B \vec{Z}_{A}
\end{array}\right]^{T}={ }^{B} R_{A}^{T}
\end{aligned}
$$

$$
{ }^{A} R_{B}=\left[\begin{array}{lll}
A^{{ }_{X}} & A \vec{Y}_{B} & A \vec{Z}_{B}
\end{array}\right]=\left[\begin{array}{c}
B \vec{X}_{A}^{T} \\
B \vec{Y}_{A}^{T} \\
B \vec{Z}_{A}^{T}
\end{array}\right]=\left[\begin{array}{lll}
B \vec{X}_{A} & B \vec{Y}_{A} & B \vec{Z}_{A}
\end{array}\right]^{T}={ }^{B} R_{A}^{T}
$$

The inverse of a rotation matrix is simply its transpose:

$$
{ }^{A} R_{B}^{-1}={ }^{B} R_{A}={ }^{B} R_{A}^{T} \quad \text { and } \quad{ }^{A} R_{B}^{B} R_{A}=1
$$

whereas I is the identity matrix.

- Position:
- given through $\overrightarrow{A P} \in \mathcal{R}^{3}$
- Orientation:
- given through the projection of $\overrightarrow{X_{B}}, \overrightarrow{Y_{B}}, \overrightarrow{Z_{B}} \in \mathcal{R}^{3}$ of B to the origin system A
- summarized to rotation matrix ${ }^{A} R_{B}=\left[{ }^{A} \vec{X}_{B}{ }^{A} \vec{Y}_{B}{ }^{A} \vec{Z}_{B}\right] \in \mathcal{R}^{3 \times 3}$

$$
{ }^{A} R_{B}=\left[\begin{array}{lll}
r_{11} & r_{21} & r_{31} \\
r_{12} & r_{22} & r_{32} \\
r_{13} & r_{23} & r_{33}
\end{array}\right]
$$

- redundant, since there are 9 parameters for 3 degrees of freedom

Write the Rotation matrix of ${ }^{A} R_{B}$.
${ }^{A} R_{B}=\left[{ }^{A} \vec{X}_{B}{ }^{A} \vec{Y}_{B}{ }^{A} \vec{Z}_{B}\right]$
${ }^{A} R_{B}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0\end{array}\right]$

Sequential multiplication of the rotation matrices by order of rotation.

1. rotation φ (phi) around the x-axis
$R_{x, \varphi}-$ Roll
2. rotation θ (theta) around the y-axis $R_{y, \theta}$ - Pitch
3. rotation $\psi(p s i)$ around the z-axis $R_{z, \psi}$ - Yaw

(shortened representation: $S: \sin , C: \cos$)
The rotation matrix corresponding to a rotation around the x-axis with angle φ (phi):

$$
R_{x, \varphi}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & C \varphi & -S \varphi \\
0 & S \varphi & C \varphi
\end{array}\right]
$$

The rotation matrix corresponding to a rotation around the y-axis with angle θ (theta):

$$
R_{y, \theta}=\left[\begin{array}{ccc}
C \theta & 0 & S \theta \\
0 & 1 & 0 \\
-S \theta & 0 & C \theta
\end{array}\right]
$$

The rotation matrix corresponding to a rotation around the z-axis with angle $\psi(p s i)$:

$$
R_{z, \psi}=\left[\begin{array}{ccc}
C \psi & -S \psi & 0 \\
S \psi & C \psi & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
\begin{gathered}
R_{\psi, \theta, \varphi}=R_{z, \psi} R_{y, \theta} R_{x, \varphi} \\
=\left[\begin{array}{ccc}
C \psi & -S \psi & 0 \\
S \psi & C \psi & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
C \theta & 0 & S \theta \\
0 & 1 & 0 \\
-S \theta & 0 & C \theta
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & C \varphi & -S \varphi \\
0 & S \varphi & C \varphi
\end{array}\right] \\
=\left[\begin{array}{ccc}
C \psi C \theta & C \psi S \theta S \varphi-S \psi C \varphi & C \psi S \theta C \varphi+S \psi S \varphi \\
S \psi C \theta & S \psi S \theta S \varphi+C \psi C \varphi & S \psi S \theta C \varphi-C \psi S \varphi \\
-S \theta & C \theta S \varphi & C \theta C \varphi
\end{array}\right]
\end{gathered}
$$

Remark: Matrix multiplication is not commutative:

$$
A B \neq B A
$$

- Several rotations can be multiplied. The following applies:
- If the rotations are performed in relation to the current, newly defined (or changed) coordinate system, the newly added transformation matrices need to be multiplicatively appended on the right-hand side.
- If all of them are performed in relation to the fixed reference coordinate system, the transformation matrices need to be multiplicatively appended on the left-hand side.

Mapping: changing descriptions from frame to frame.
For example, change the reference frame of $B \vec{P}_{1}$?

$$
\begin{aligned}
A \vec{P}_{1} & =\left[\begin{array}{l}
B \vec{X}_{A} \cdot B \vec{P}_{1} \\
B \vec{Y}_{A} \cdot \vec{P}_{1} \\
B \vec{Z}_{A} \cdot B \vec{P}_{1}
\end{array}\right] \\
& =\left[\begin{array}{l}
B \vec{X}_{A}^{T} \\
B \vec{Y}_{A}^{T} \\
B \vec{Z}_{A}^{T}
\end{array}\right] \cdot{ }^{B} \vec{P}_{1} \\
& ={ }^{A} R_{B} \vec{P}_{1}
\end{aligned}
$$

Three common uses of a rotation matrix:

- represent an orientation
- rotate a vector or frame
- change the frame of reference of a vector or frame
- Homogeneous transformation matrix:

$$
T=\left[\begin{array}{ll}
R & \vec{p} \\
P & S
\end{array}\right]
$$

where P depicts the perspective transformation and S the scaling.

- In robotics, $P=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$ and $S=1$. Other values are used for computer graphics.
- Combination of \vec{p} and R to $T=\left[\begin{array}{ll}R & \vec{p} \\ \overrightarrow{0} & 1\end{array}\right] \in \mathcal{R}^{4 \times 4}$
- Concatenation of several T through matrix multiplication
- ${ }^{A} T_{B}{ }^{B} T_{C}={ }^{A} T_{C}$
- not commutative, in other words ${ }^{B} T_{C}{ }^{A} T_{B} \neq{ }^{A} T_{B}{ }^{B} T_{C}$

They are represented as four vectors using the elements of homogeneous transformation.

$$
T=\left[\begin{array}{cccc}
\mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{r}_{3} & \mathbf{p} \tag{1}\\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
r_{11} & r_{21} & r_{31} & p_{x} \\
r_{12} & r_{22} & r_{32} & p_{y} \\
r_{13} & r_{23} & r_{33} & p_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The inverse of a rotation matrix is simply its transpose:

$$
R^{-1}=R^{T} \text { and } R R^{T}=I
$$

whereas $/$ is the identity matrix.
The inverse of (1) is:

$$
T^{-1}=\left[\begin{array}{cccc}
r_{11} & r_{12} & r_{13} & -\mathbf{p}^{\boldsymbol{\top}} \cdot \mathbf{r}_{1} \\
r_{21} & r_{22} & r_{23} & -\mathbf{p}^{\boldsymbol{\top}} \cdot \mathbf{r}_{2} \\
r_{31} & r_{32} & r_{33} & -\mathbf{p}^{\boldsymbol{T}} \cdot \mathbf{r}_{3} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

whereas $\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}$ and \mathbf{p} are the four column vectors of (1) and \cdot represents the dot product of vectors.

A translation with a vector $\left[p_{x}, p_{y}, p_{z}\right]^{T}$ is expressed through a transformation:

$$
T_{\left(p_{x}, p_{y}, p_{z}\right)}=\left[\begin{array}{cccc}
1 & 0 & 0 & p_{x} \\
0 & 1 & 0 & p_{y} \\
0 & 0 & 1 & p_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The transformation corresponding to a rotation around the x-axis with angle φ (phi):

$$
T_{x, \varphi}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & C \varphi & -S \varphi & 0 \\
0 & S \varphi & C \varphi & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The transformation corresponding to a rotation around the y-axis with angle θ (theta):

$$
T_{y, \theta}=\left[\begin{array}{cccc}
C \theta & 0 & S \theta & 0 \\
0 & 1 & 0 & 0 \\
-S \theta & 0 & C \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The transformation corresponding to a rotation around the z-axis with angle ψ ($p s i$):

$$
T_{z, \psi}=\left[\begin{array}{cccc}
C \psi & -S \psi & 0 & 0 \\
S \psi & C \psi & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Coordinate transformations

- Transform of Coordinate systems: frame: a reference S typical frames:
- robot base
- end effector
- table (world)
- object
- camera

One has the following transformations:

- Z:

World \rightarrow Manipulator base

- T_{6} :

Manipulator base \rightarrow Manipulator end

- E:

Manipulator end \rightarrow End effector

- B:

World \rightarrow Object

- G:

Object \rightarrow End effector

There are two descriptions for the desired end effector pose, one in relation to the object and the other in relation to the manipulator. Both descriptions should equal to each other for grasping:

In order to find the manipulator transformation:

$$
T_{6}=Z^{-1} B G E^{-1}
$$

In order to determine the pose of the object:

$$
B=Z T_{6} E G^{-1}
$$

This is also called kinematic chain.

Example: coordinate transformation

Example: coordinate transformation

Given $T_{\text {Base-Apriltag }}, T_{\text {Camera-Apritag }}, T_{\text {Camera-Object }}$, calculate $T_{\text {Base-Object }}$.

$$
T_{\text {Base-Object }}=T_{\text {Base-Apriltag }} T_{\text {Camera-Apritag }}^{-1} T_{\text {Camera-Object }}
$$

- A homogeneous transformation depicts the position and orientation of a coordinate frame in space.
- If the coordinate frame is defined in relation to a solid object, the position and orientation of the solid object is unambiguously specified.
- Three common uses of a transformation matrix: to represent a rigid-body configuration; to change the frame of reference of a vector or a frame; to displace a vector or a frame.
- Several translations and rotations can be multiplied.
- right-hand multiplication \rightarrow in relation to thecurrent, newly defined (or changed) coordinate system, .
- left-hand multiplication \rightarrow in relation to the fixed reference coordinate system.
- Joint coordinates:

A vector $\mathbf{q}(t)=\left(q_{1}(t), q_{2}(t), \ldots, q_{n}(t)\right)^{T}$ (a robot configuration)

- End effector coordinates (Object coordinates):
- A vector $\mathbf{p}=\left[p_{x}, p_{y}, p_{z}\right]^{T}$
- Rotation matrix:

$$
R=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]
$$

Outlook
Spatial Description and Transformations - Transformation Equation

- Can we use less of 9 parameters to represent the orientation?
- How to construct the transformation matrix of the manipulator's end-effector relative to the base of the manipulator?
- Read (available on google \& library):
- J. F. Engelberger, Robotics in service. MIT Press, 1989
- K. Fu, R. González, and C. Lee, Robotics: Control, Sensing, Vision, and Intelligence. McGraw-Hill series in CAD/CAM robotics and computer vision, McGraw-Hill, 1987
- R. Paul, Robot Manipulators: Mathematics, Programming, and Control: the Computer Control of Robot Manipulators. Artificial Intelligence Series, MIT Press, 1981
- J. Craig, Introduction to Robotics: Pearson New International Edition: Mechanics and Control. Always learning, Pearson Education, Limited, 2013
- Repeat your linear algebra knowledge, especially regarding elementary algebra of matrices.

Introduction to Robotics

Lecture 2

Shuang Li, Jianwei Zhang

[sli, zhang]@informatik.uni-hamburg.de

University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems
July 11, 2020

Outline

Introduction

Spatial Description and Transformations

Forward Kinematics

More on presentation of a rigid body
Denavit-Hartenberg convention
Definition of joint coordinate systems
Example DH-Parameter of a single joint Example DH-Parameter for a manipulator Example featuring Mitsubishi PA10-7C
Robot Description
Inverse Kinematics for Manipulators
Instantaneous Kinematics
Trajectory Generation 1
Trajectory Generation 2
Dynamics

Outline (cont.)

Robot Control
Path Planning
Task/Manipulation Planning
Telerobotics
Architectures of Sensor-based Intelligent Systems
Summary
Conclusion and Outlook

- Degree of freedom
- The number of variables to determine position of a control system in space.
- Robot classification
- mechanical structure
- Rotation matrix
- ${ }^{A} R_{B}^{-1}={ }^{B} R_{A}={ }^{B} R_{A}^{T}$ and ${ }^{A} R_{B}{ }^{B} R_{A}=I$
- Homogeneous transformation matrix
- $T=\left[\begin{array}{ll}R & \vec{p} \\ 0 & 1\end{array}\right]$
- Transformation equation

Transformation equation

In order to find the desired end effector pose:

$$
Z T_{6} E=B G
$$

In order to find the manipulator transformation T_{6} :

$$
T_{6}=Z^{-1} B G E^{-1}
$$

In order to determine the pose of the object B :

$$
B=Z T_{6} E G^{-1}
$$

A vector $\overrightarrow{A P}$ is rotated about \hat{Y} by 30 degrees and is subsequently rotated about \hat{X} by 45 degrees. Give the rotation matrix that accomplishes these rotations in the given order.

$$
\begin{aligned}
R & =R_{x, 45} R_{y, 30} \\
& =\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos 45 & -\sin 45 \\
0 & \sin 45 & \cos 45
\end{array}\right]\left[\begin{array}{ccc}
\cos 30 & 0 & \sin 30 \\
0 & 1 & 0 \\
-\sin 30 & 0 & \cos 30
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0.866 & 0 & 0.5 \\
0.353 & 0.707 & -0.612 \\
-0.353 & 0.707 & 0.612
\end{array}\right]
\end{aligned}
$$

More on presentation of orientation: Euler angles

- Euler angles φ, θ, ψ

More on presentation of orientation: Euler angles (cont.)

- Euler-angles φ, θ, ψ

More on presentation of orientation: Euler angles (cont.)

- Euler-angles φ, θ, ψ

More on presentation of orientation: Euler angles (cont.)

- Euler-angles φ, θ, ψ

More on presentation of orientation: Euler angles (cont.)

- Euler-angles φ, θ, ψ

- Euler-angles φ, θ, ψ
- rotations are performed successively around the axes, e. g. $Z Y X$ or $Z X Z$ (12 possibilities!)
- order depends on reference coordinates
- Intrinsic rotations
- Extrinsic (fix angle) rotations
- Roll-Pitch-Yaw

- X-Y-Z fixed angles
- used in aviation and maritime

$$
\begin{aligned}
& R_{x, \varphi}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & C \varphi & -S \varphi \\
0 & S \varphi & C \varphi
\end{array}\right] \\
& R_{y, \theta}=\left[\begin{array}{ccc}
C \theta & 0 & S \theta \\
0 & 1 & 0 \\
-S \theta & 0 & C \theta
\end{array}\right] \\
& R_{z, \psi}=\left[\begin{array}{ccc}
C \psi & -S \psi & 0 \\
S \psi & C \psi & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

More on presentation of orientation

- Rotation matrix
- implicit, easy to use linear algebra to perform computation
- Euler angles
- Gimbal lock!
- When two gimbals rotate around the same axis, the system loses one degree of freedom.

17

- Rotation matrix
- implicit, easy to use linear algebra to perform computation, singularity-free
- Euler angles φ, θ, ψ
- explicit, but gimbal lock/singularity happens
- Equivalent angle-axis representation $R_{k, \theta}$
- the angle for a rotation about an axis vector
- Quaternion $[x, y, z, w]$
- 4D vectors that represent 3D rigid body orientations
- Unit quaternion: $x^{2}+y^{2}+z^{2}+w^{2}=1$

Tools

python: Numpy, pyquaternion
c++: Eigen

[^3]

- A manipulator is considered as set of links connected by joints
- serial robots (vs.parallel robots)
- Types of joints
- revolute joints
- prismatic joints

Forward kinematics

- Movement depiction of the mechanical systems as fixed body chains
- Translate a series of joint parameters \Longrightarrow cartesian pose of the end effector

Purpose

Absolute determination of the position of the end effector (TCP) in the cartesian coordinate system

Using a vector \vec{p}, the TCP position is depicted.
Three unit vectors:

- $\vec{a}:$ (approach vector),
- \vec{o} : (orientation vector),
- \vec{n} : (normal vector)
specify the orientation of the TCP.

Thus, the transformation T consists of the following elements:

$$
T=\left[\begin{array}{cccc}
\vec{n} & \vec{o} & \vec{a} & \vec{p} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- Transformation regulation, which describes the relation between joint coordinates of a robot \mathbf{q} and the environment coordinates of the end effector \mathbf{x}
- Solely determined by the geometry of the robot
- Base frame
- Relation of frames to one another
\Longrightarrow Formation of a recursive chain
- Joint coordinates:

$$
q_{i}=\left\{\begin{array}{l}
\theta_{i}: \text { rotational joint } \\
d_{i}: \text { translation joint }
\end{array}\right.
$$

- In each link, a coordinate frame is attached
- A homogeneous matrix ${ }^{i-1} T_{i}$ depicts the relative translation and rotation between two consecutive joints
- joint transition
- For a manipulator consisting of six joints:
- ${ }^{0} T_{1}$: depicts position and orientation of the first link with respect to the base
- ${ }^{5} T_{6}$: depicts position and orientation of the 6th link in regard to link 5

The resulting product is defined as:

$$
T_{6}={ }^{0} T_{1}{ }^{1} T_{2}{ }^{2} T_{3}{ }^{3} T_{4}{ }^{4} T_{5}{ }^{5} T_{6}
$$

- Calculation of $T_{6}=\prod_{i=1}^{n} T_{i}, T_{i}$ short for ${ }^{i-1} T_{i}$
- T_{6} defines, how n joint transitions describe 6 cartesian DOF
- Definition of one coordinate system (CS) per segment i
- generally arbitrary definition
- Determination of one transformation T_{i} per segment $i=1$..n
- generally 6 parameters (3 rotational +3 translational) required
- different sets of parameters and transformation orders possible

Solution

Denavit-Hartenberg (DH) convention

- first published by Denavit and Hartenberg in 1955
- established principle
- determination of a transformation matrix T_{i} using four parameters
- link length, link twist, link offset and joint angle $\left(a_{i}, \alpha_{i}, d_{i}, \theta_{i}\right)$

Parameters for description of two arbitrary links

Two parameters for the description of the link structure i

- link length a_{i}
- link twist α_{i}

Two parameters for the description of the link structure i

- link length a_{i} : shortest distance between the axis $i-1$ and the axis i
- link twist α_{i} : rotation angle from axis $i-1$ to axis i in the right-hand sense about a_{i}
a_{i} and α_{i} are constant values due to construction

Parameters for describing two arbitrary links (cont.)

Two for relative distance and angle of adjacent links

Two for relative distance and angle of adjacent links

- link offset d_{i} : the distance along the common axis $i-1$ from link $i-1$ to the link i
- joint angle θ_{i} : the amount of rotation about the common axis $i-1$ between the link $i-1$ and the link i
θ_{i} and d_{i} are variable
- rotational: θ_{i} variable, d_{i} fixed
- translational: d_{i} variable, θ_{i} fixed

Four DH parameters:
link length, link twist, link offset and joint angle
$\left(a_{i}, \alpha_{i}, d_{i}, \theta_{i}\right)$

- 3 fixed link parameters
- one joint variable
- revolute: θ_{i} variable
- prismatic: d_{i} variable
- a_{i}, α_{i} : describe the link i
- d_{i}, θ_{i} : describe the link's connection

Configuration 1

Configuration 3

Definition of joint coordinate systems (classic)

- axis z_{i-1} is set along the axis of motion of the $i^{t h}$ joint
- axis x_{i} is parallel to the common normal of z_{i-1} and $z_{i}\left(x_{i} \|\left(z_{i-1} \times z_{i}\right)\right)$.
- axis y_{i} concludes a right-handed coordinate system
- $C S_{0}$ is the stationary origin at the base of the manipulator

DH Parameters

- link length a_{i} : distance from z_{i-1}-axis to z_{i}-axis measured along x_{i}-axis
- link twist α_{i} : angle from z_{i-1}-axis to z_{i}-axis measured around x_{i}-axis
- link offset d_{i} : distance from x_{i-1} to x_{i} measured along z_{i-1}-axis
- joint angle θ_{i} : joint angle from x_{i-1} to x_{i} measured around z_{i-1}-axis

Classic Parameters

Transformation order

$$
T_{i}=R_{z_{i-1}}\left(\theta_{i}\right) \cdot T_{z_{i}-1}\left(d_{i}\right) \cdot T_{x_{i}}\left(a_{i}\right) \cdot R_{x_{i}}\left(\alpha_{i}\right) \rightarrow C S_{i}
$$

Creation of the relation between frame i and frame ($i-1$) through the following rotations and translations:

- Rotate around z_{i-1} by angle θ_{i}
- Translate along z_{i-1} by d_{i}
- Translate along x_{i} by a_{i}
- Rotate around x_{i} by angle α_{i}

Using the product of four homogeneous transformations, which transform the coordinate frame $i-1$ into the coordinate frame i, the matrix A_{i} can be calculated as follows:

$$
T_{i}=R_{z_{i-1}}\left(\theta_{i}\right) \cdot T_{z_{i-1}}\left(d_{i}\right) \cdot T_{x_{i}}\left(a_{i}\right) \cdot R_{x_{i}}\left(\alpha_{i}\right) \rightarrow C S_{i}
$$

$$
\begin{aligned}
T_{i}= & {\left[\begin{array}{cccc}
C \theta_{i} & -S \theta_{i} & 0 & 0 \\
S \theta_{i} & C \theta_{i} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cc}
\cdots & 0 \\
\ldots & 0 \\
\ldots & d_{i} \\
\ldots & 1
\end{array}\right]\left[\begin{array}{cc}
\cdots & a_{i} \\
\cdots & 0 \\
\cdots & 0 \\
\cdots & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & C \alpha_{i} & -S \alpha_{i} & 0 \\
0 & S \alpha_{i} & C \alpha_{i} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] } \\
& =\left[\begin{array}{cccc}
C \theta_{i} & -S \theta_{i} C \alpha_{i} & S \theta_{i} S \alpha_{i} & a_{i} C \theta_{i} \\
S \theta_{i} & C \theta_{i} C \alpha_{i} & -C \theta_{i} S \alpha_{i} & a_{i} S \theta_{i} \\
0 & S \alpha_{i} & C \alpha_{i} & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Transformation order

$$
T_{i}=R_{x_{i-1}}\left(\alpha_{i-1}\right) \cdot T_{x_{i-1}}\left(a_{i-1}\right) \cdot R_{z_{i}}\left(\theta_{i}\right) \cdot T_{z_{i}}\left(d_{i}\right) \rightarrow C S_{i}
$$

Definition of joint coordinate systems: Exceptions

Beware

The Denavit-Hartenberg convention is ambiguous!

- z_{i-1} is parallel to z_{i}
- arbitrary shortest normal
- usually $d_{i}=0$ is chosen
- z_{i-1} intersects z_{i}
- usually $a_{i}=0$ such that

CS lies in the intersection point

- orientation of CS_{n} ambigous, as no joint $n+1$ exists

- x_{n} must be a normal to z_{n-1}
- usually z_{n} is chosen to point in the direction of the approach vector \vec{a} of the tcp

Example DH-Parameter of a single joint

Determination of DH-Parameter (θ, d, a, α) for calculation of joint transformation: $T_{1}=R_{z}\left(\theta_{1}\right) T_{z}\left(d_{1}\right) T_{x}\left(a_{1}\right) R_{x}\left(\alpha_{1}\right)$
joint angle rotate by θ_{1} around z_{0}, such that x_{0} is parallel to x_{1}

$$
R_{z}\left(\theta_{1}\right)=\left[\begin{array}{cccc}
\cos \theta_{1} & -\sin \theta_{1} & 0 & 0 \\
\sin \theta_{1} & \cos \theta_{1} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

for the shown joint configuration $\theta_{1}=0^{\circ}$

link offset translate by d_{1} along z_{0} until the intersection of z_{0} and x_{1}

$$
T_{z}\left(d_{1}\right)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d_{1} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

link length translate by a_{1} along x_{1} such that the origins of both CS are congruent

$$
T_{\times}\left(a_{1}\right)=\left[\begin{array}{cccc}
1 & 0 & 0 & a_{1} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

link twist rotate z_{0} by α_{1} around x_{1}, such that z_{0} lines up with z_{1}

$$
R_{x\left(\alpha_{1}\right)}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \left(\alpha_{1}\right) & -\sin \left(\alpha_{1}\right) & 0 \\
0 & \sin \left(\alpha_{1}\right) & \cos \left(\alpha_{1}\right) & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

for the shown joint configuration, $\alpha_{1}=-90^{\circ}$ due to construction

- total transformation of $C S_{0}$ to $C S_{1}$ (general case)

$$
\begin{aligned}
{ }^{0} T_{1} & =R_{z}\left(\theta_{1}\right) \cdot T_{z}\left(d_{1}\right) \cdot T_{x}\left(a_{1}\right) \cdot R_{x}\left(\alpha_{1}\right) \\
& =\left[\begin{array}{cccc}
\cos \theta_{1} & -\sin \theta_{1} \cos \alpha_{1} & \sin \theta_{1} \sin \alpha_{1} & a_{1} \cos \theta_{1} \\
\sin \theta_{1} & \cos \theta_{1} \cos \alpha_{1} & -\cos \theta_{1} \sin \alpha_{1} & a_{1} \sin \theta_{1} \\
0 & \sin \alpha_{1} & \cos \alpha_{1} & d_{1} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

- rotary case: variable θ_{1} and fixed d_{1}, a_{1} und $\left(\alpha_{1}=-90^{\circ}\right)$

$$
\begin{aligned}
{ }^{0} T_{1} & =R_{z}\left(\theta_{1}\right) \cdot T_{z}\left(d_{1}\right) \cdot T_{x}\left(a_{1}\right) \cdot R_{x}\left(-90^{\circ}\right) \\
& =\left[\begin{array}{cccc}
\cos \theta_{1} & 0 & -\sin \theta_{1} & a_{1} \cos \theta_{1} \\
\sin \theta_{1} & 0 & \cos \theta_{1} & a_{1} \sin \theta_{1} \\
0 & -1 & 0 & d_{1} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

- Fixed origin: $C S_{0}$ is the fixed frame at the base of the manipulator
- Determination of axes and consecutive numbering from 1 to n
- Positioning O_{i} on rotation- or shear-axis i, z_{i} points aways from z_{i-1}
- Determination of normal between the axes; setting x_{i} (in direction to the normal)
- Determination of y_{i} (right-hand system)
- Read off Denavit-Hartenberg parameters
- Calculation of overall transformation

Example DH-Parameter for Quickshot

- Definition of CS corresponding to DH convention
- Determination of DH-Parameter

$$
\begin{aligned}
& T_{6}=T_{1} \cdot T_{2} \cdot T_{3} \cdot T_{4} \\
& =\left[\begin{array}{cccc}
\cos \theta_{1} & 0 & -\sin \theta_{1} & 20 \cos \theta_{1} \\
\sin \theta_{1} & 0 & \cos \theta_{1} & 20 \sin \theta_{1} \\
0 & -1 & 0 & 100 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
\cos \theta_{2} & -\sin \theta_{2} & 0 & 160 \cos \theta_{2} \\
\sin \theta_{2} & \cos \theta_{2} & 0 & 160 \sin \theta_{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& {\left[\begin{array}{cccc}
\cos \theta_{3} & 0 & \sin \theta_{3} & 0 \\
\sin \theta_{3} & 0 & -\cos \theta_{3} & 0 \\
0 & 1 & 0 & 28 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
\cos \theta_{4} & -\sin \theta_{4} & 0 & 0 \\
\sin \theta_{4} & \cos \theta_{4} & 0 & 0 \\
0 & 0 & 1 & 250 \\
0 & 0 & 0 & 1
\end{array}\right]} \\
& =\left[\begin{array}{cccc}
\cos \theta_{1} \cos \theta_{4}\left(\cos \theta_{2} \cos \theta_{3}-\sin \theta_{2} \sin \theta_{3}\right)-\sin \theta_{1} \sin \theta_{4} & \ldots & \ldots & \ldots \\
\sin \theta_{1} \cos \theta_{4}\left(\sin \theta_{2} \cos \theta_{3}+\cos \theta_{2} \sin \theta_{3}\right)+\cos \theta_{1} \sin \theta_{4} & \ldots & \ldots & \ldots \\
-\cos \theta_{4}\left(\sin \theta_{2} \cos \theta_{3}+\cos \theta_{2} \sin \theta_{3}\right) & \ldots & \ldots & \ldots \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Sum-of-Angle formula

$C_{23}=C_{2} C_{3}-S_{2} S_{3}$,
$S_{23}=C_{2} S_{3}+S_{2} C_{3}$

Mitsubishi PA10-7C

Robotic arm kinematic GUI from MRPT

Download link

18
${ }^{18}$ Mobile Robot Programming Toolkit, https://www.mrpt.org/MRPT_in_GNU/Linux_repositories

Write your own FK function!

- Robotics toolbox in Matlab
- the implementation of book "Robotics, Vision \& Control" by Peter Corke
- PythonRobotics
- Python code collection of robotics algorithms, especially for autonomous navigation
- Robotics library
- C ++ framework for robot kinematics, dynamics, motion planning, control
- pybotics
- provides a simple and clear interface to simulate and evaluate common robot concepts

Introduction to Robotics

Lecture 3

Shuang Li, Jianwei Zhang

[sli, zhang]@informatik.uni-hamburg.de

University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems
July 11, 2020

Outline

Introduction
Spatial Description and Transformations
Forward Kinematics
Robot Description
Recapitulation of DH-Parameter URDF

Inverse Kinematics for Manipulators
Instantaneous Kinematics
Trajectory Generation 1
Trajectory Generation 2
Dynamics
Robot Control
Path Planning
Task/Manipulation Planning

Outline (cont.)

Telerobotics
Architectures of Sensor-based Intelligent Systems
Summary
Conclusion and Outlook

- universal minimal robot description
- based on frame transformations
- four parameters per frame transformation
- serial chain of transformations
- unique description of T_{6}

Drawbacks

- ambiguous convention
- only kinematic chain described
- missing information on geometry, physical constraints, dynamics, collisions, inertia, sensors, ...

Definition of joint coordinate systems

- CS_{0} is the stationary origin at the base of the manipulator
- axis z_{i-1} is set along the axis of motion of the $i^{t} h$ joint
- axis x_{i} is the common normal of $z_{i-1} \times z_{i}$
- axis y_{i} concludes a right-handed coordinate system

Two parameters for the description of the link structure i

Two for relative distance and angle of adjacent links

- d_{i} : distance origin O_{i-1} of the $(i-1)^{\text {st }}$ CS to intersection of z_{i-1}-axis with x_{i}-axis
- θ_{i} : joint angle around z_{i-1}-axis to align $x_{i-1^{-}}$parallel to x_{i}-axis into
x_{i-1}, y_{i-1}-plane
θ_{i} and d_{i} are variable
- rotational: θ_{i} variable, d_{i} fixed
- translational: d_{i} variable, θ_{i} fixed

Example featuring PUMA 560

DH parameters of PUMA 560

In order to transfer the manipulator-endpoint into the base coordinate system, T_{6} is calculated as follows:

Universal Robot Description Format

Documentation

http://wiki.ros.org/urdf
http://wiki.ros.org/urdf/XML
http://wiki.ros.org/urdf/Tutorials

- robot description format used in ROS^{19}
- hierarchical description of components
- XML format representing robot model
- kinematics and dynamics
- visual
- collision
- configuration

[^4]
URDF: XML Tree Structure

- $1^{\text {st }}$-level structure

```
<robot name="samplerobot">
</robot>
```

- $2^{\text {nd }}$-level structure
link, joints, sensors, transmissions, gazebo, model_state
- $3^{\text {rd }}$-level structure
visual, inertia, collision, origin, parent, ...
- $4^{\text {th }}$-level structure
- Filename: robotname.urdf
- XML prolog:

```
<?xml version="1.0" encodingg="utf-8"?>
```

- XML element types

```
<tag attribute="value"/>
<tag attribute="value">
text or element(s)
</tag>
```

- XML comments

```
<!-- Comments are placed within these tags -->
```


URDF: Link

Link describes geometrical properties of a rigid body.

Link origin

```
<link name="sample_link">
<!-- describes the mass and inertial properties of
the link -->
<inertial/>
<!-- describes the visual appearance of the link.
can be described using geometric primitives or
meshes -->
<visual/>
<!-- describes the collision space of the link.
is described like the visual appearance -->
<collision/>
</link>
```

${ }^{20}$ http://wiki.ros.org/urdf/XML/link

URDF: Link - visual - primitives

Geometric primitives for describing visual appearance of the link

```
<link name="base_link">
    <visual>
        <origin xyz="0 0 0.01" rpy="0 0 0"/>
        <geometry>
            <box size="0.2 0.2 0.02"/>
        </geometry>
        <material name="cyan">
            <color rgba="0 1.0 1.0 1.0"/>
        </material>
    </visual>
</link>
```

- Geometric primitives: <box>, <cylinder>, <sphere>
- Materials: <color>, <texture>

3D meshes for describing visual appearance of the link

```
<link name="base_link">
    <visual>
        <origin xyz="0 0 0.01" rpy="0 0 0"/>
        <geometry>
            <mesh filename="meshes/base_link.dae"
        </geometry>
    </visual>
    <collision>
        <origin xyz="0 0 0.01" rpy="0 0 0"/>
        <geometry>
            <cylinder radius="1" length="0.5"/>
        </geometry>
    </collision>
</link>
```

- the <collision> element can be simpler from the <visual> in order to reduce computation time

URDF: Link - inertial

Parameters describing the physical properties of the link

```
<link name="base_link">
    <inertial>
            <origin xyz="0 0 0" rpy="0 0 0"/>
            <mass value="1">
            <inertia ixx="100" ixy="0" ixz="0"
                        iyy="100" iyz="0" izz="100" />
    </inertial>
</link>
```

- center of gravity <origin xyz>
- object mass <mass value>
- inertia tensor <intertia>

Inertia tensor describes the distribution of mass of the link

- orientation and position of the inertia CS described by <origin> tag

$$
A I=\left[\begin{array}{ccc}
I_{x x} & -I_{x y} & -I_{x z} \\
-I_{x y} & I_{y y} & -I_{y z} \\
-I_{x z} & -l_{y z} & I_{z z}
\end{array}\right]
$$

- diagonal values describe main inertial axes ixx, iyy, izz
- ixy, ixz, iyz are 0 for symmetric primitives
- rotations around largest and smallest inertial axis are most stable
- moments of inertia:
$I_{x x}=\int\left(y^{2}+z^{2}\right) d m I_{y y}=\int\left(x^{2}+z^{2}\right) d m I_{z z}=\int\left(x^{2}+y^{2}\right) d m$

- Products of Inertia:
$I_{x y}=I_{y x}=\int x y d m I_{z y}=I_{y z}=\int y z d m I_{x z}=I_{z x}=\int z y d m$

Joint describes geometrical connections of two links.


```
<joint name="base_link_to_cyl" type="revolute">
    <!-- describes joint position and orientation -->
    <origin xyz="0 0 0.07" rpy="0 0 0"/>
    <!-- describes the related links -->
    <parent link="base_link"/>
    <child link="base_cyl"/>
    <!-- describes the axis of rotation-->
    <axis xyz="0 0 1"/>
    <!-- describes the joint limits-->
    <limit velocity="1.5707963267"
        lower="-3.1415926535" upper=" 3.1415926535" / >
</joint>
```

${ }^{21}$ http://wiki.ros.org/urdf/XML/joint
type revolute, continuous, prismatic, fixed, floating, planar parent_link link which the joint is connected to child_link link which is connected to the joint
axis joint axis relative to the joint CS. Represented using a normalized vector
limit joint limits for motion (lower, upper), velocity and effort dynamics damping, friction
calibration rising, falling
mimic joint, multiplier, offset
safety_controller soft_lower_limit, soft_upper_limit, k_position, k_velocity

URDF: Other elements

- sensor
- position and orientation relative to link
- sensor properties
- update rate
- resolution
- minimum / maximum angle
- transmissions
- relation of motor to joint motion
- gazebo
- simulation properties
- model state
- description of different robot configurations

Complex Hierachy

Full URDF hierarchy of the TAMS PR2 with the Shadow Hand.

Outline

Introduction

Spatial Description and Transformations
Forward Kinematics
Robot Description
Inverse Kinematics for Manipulators
Workspace
Algebraic solvability of manipulator
Geometrical solvability of manipulator
Popular inverse kinematics solutions
Instantaneous Kinematics
Trajectory Generation 1
Trajectory Generation 2
Dynamics
Robot Control

Outline (cont.)

Path Planning
Task/Manipulation Planning
Telerobotics
Architectures of Sensor-based Intelligent Systems
Summary
Conclusion and Outlook

- Forward Kinematics: given robot configurations(joint angles), find position \& orientations of the end-effector

Set of problems

- In the majority of cases the control of robot manipulators takes place in the joint space,
- The informations about objects are mostly given in the cartesian space.
- Inverse Kinematics: give position \& orientations of the end-effector, find robot configurations(joint angles)

Existence of solutions: Workspace

Workspace: the volume of space that is reachable for the tool of the manipulator.

- reachable workspace
- dexterous workspace

Existence of solutions: Workspace (cont.)

if $I_{1} \neq I_{2}$, the reachable workspace becomes a ring of outer radius $\left|l_{1}+I_{2}\right|$, and inner radius $\left|I_{1}-I_{2}\right|$.

Existence of solutions: Workspace (cont.)

Does the workspace change if joint limits are considered?
For example, $q_{1} \in[0, \pi], q_{2} \in[0, \pi]$.

$$
T_{6}=T^{\prime} T^{\prime \prime}=\left[\begin{array}{cccc}
n_{x} & o_{x} & a_{x} & p_{x} \\
n_{y} & o_{y} & a_{y} & p_{y} \\
n_{z} & o_{z} & a_{z} & p_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

where

$$
\begin{align*}
& n_{x}=C_{1}\left[C_{23}\left(C_{4} C_{5} C_{6}-S_{4} S_{6}\right)-S_{23} S_{5} C_{6}\right]-S_{1}\left(S_{4} C_{5} C_{6}+C_{4} S_{6}\right) \tag{2}\\
& n_{y}=S_{1}\left[C_{23}\left(C_{4} C_{5} C_{6}-S_{4} S_{6}-S_{23} S_{5} S_{6}\right]+C_{1}\left(S_{4} C_{5} C_{6}+C_{4} S_{6}\right)\right. \tag{3}\\
& n_{z}=-S_{23}\left[C_{4} C_{5} C_{6}-S_{4} S_{6}\right]-C_{23} S_{5} C_{6} \tag{4}
\end{align*}
$$

$$
\begin{align*}
& o_{x}=\ldots \tag{5}\\
& o_{y}=\ldots \tag{6}\\
& o_{z}=\ldots \tag{7}\\
& a_{x}=\ldots \tag{8}\\
& a_{y}=\ldots \tag{9}\\
& a_{z}=\ldots \tag{10}\\
& p_{x}=C_{1}\left[d_{6}\left(C_{23} C_{4} S_{5}+S_{23} C_{5}\right)+S_{23} d_{4}+a_{3} C_{23}+a_{2} C_{2}\right]-S_{1}\left(d_{6} S_{4} S_{5}+d_{2}\right) \tag{11}\\
& p_{y}=S_{1}\left[d_{6}\left(C_{23} C_{4} S_{5}+S_{23} C_{5}\right)+S_{23} d_{4}+s_{3} C_{23}+a_{2} C_{2}\right]+C_{1}\left(d_{6} S_{4} S_{5}+d_{2}\right) \tag{12}\\
& p_{z}=d_{6}\left(C_{23} C_{5}-S_{23} C_{4} S_{5}\right)+C_{23} d_{4}-a_{3} S_{23}-a_{2} S_{2} \tag{13}
\end{align*}
$$

- Non-linear equations
- Existence of solutions
- Multiple solutions
- Different solution strategy: closed solutions vs. numerical solutions

Closed form (analytical):
An expression is said to be a closed-form experession if it can be expressed analytically in terms of a bounded number of certain 'well-known' functions.
$0+-\times \div$

- nth roots
- exponent and logarithm
- trigonometric and inverse trigonometric functions
- Do not include infinite series, continued fractions, integrals or limits.

Closed form (analytical):

- algebraic solution
+ accurate solution by means of equations
- solution is not geometrically representative
- geometrical solution
+ case-by-case analysis of possible robot configurations
- robot specific

Numerical form:

- iterative methods
+ the methods are transferable
- computationally intensive, for several exceptions the convergence can not be guaranteed

Algebraic Approach manipulates the given equations into a form whose solution is known.

- Method1: Transcendental equations

1. $\sin \theta=a \Rightarrow \theta=A \tan 2\left(a, \pm \sqrt{1-a^{2}}\right)$
2. $\cos \theta=b \Rightarrow \theta= \pm A \tan 2\left(\sqrt{1-b^{2}}, b\right)$
3. $\left\{\begin{array}{r}\sin \theta=a \\ \cos \theta=b\end{array} \Rightarrow \theta=A \tan 2(a, b)\right.$
4. $a \cos \theta+b \sin \theta=0 \Rightarrow \theta=A \tan 2(a,-b)$ or $\theta=A \tan 2(-a, b)$
5. $a \cos \theta+b \sin \theta=c \Rightarrow \theta=A \tan 2(b, a) \pm A \tan 2\left(\sqrt{a^{2}+b^{2}-c^{2}}, c\right)$
6. $\left\{\begin{array}{l}a \cos \theta-b \sin \theta=c \\ a \sin \theta+b \cos \theta=d\end{array} \Rightarrow \theta=A \tan 2(a d-b a, a c-b d)\right.$

We define the function Atan2 as:

$$
\theta=\operatorname{Atan} 2(y, x)= \begin{cases}\operatorname{Atan}\left(\frac{y}{x}\right) & \text { for }+x \\ \operatorname{Atan}\left(\frac{y}{x}\right)+\pi & \text { for }-x,+y_{0} \\ \operatorname{Atan}\left(\frac{y}{x}\right)-\pi & \text { for }-x,-y \\ \frac{\pi}{2} & \text { for } x=0,+y \\ \frac{-\pi}{2} & \text { for } x=0,-y \\ \operatorname{NaN} & \text { for } x=0, y=0\end{cases}
$$

Example: a planar 3 DOF manipulator

Joint	α_{i-1}	a_{i-1}	d_{i}	θ_{i}
1	0	0	0	θ_{1}
2	0	I_{1}	0	θ_{2}
3	0	I_{2}	0	θ_{3}

$$
T_{6}={ }^{0} T_{3}=\left[\begin{array}{cccc}
C_{123} & -S_{123} & 0 & I_{1} C_{1}+I_{2} C_{12} \\
S_{123} & C_{123} & 0 & I_{1} S_{1}+I_{2} S_{12} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

with $C_{i j[k]}=\cos \left(\theta_{i}+\theta_{j}\left[+\theta_{k}\right]\right)$
Specification for the TCP: (x, y, ϕ). For such kind of vectors applies:

$$
{ }^{0} T_{3}=\left[\begin{array}{cccc}
C_{\phi} & -S_{\phi} & 0 & x \\
S_{\phi} & C_{\phi} & 0 & y \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Resultant, four equations can be derived:

$$
\begin{align*}
C_{\phi} & =C_{123} \tag{14}\\
S_{\phi} & =S_{123} \tag{15}\\
x & =I_{1} C_{1}+I_{2} C_{12} \tag{16}\\
y & =I_{1} S_{1}+I_{2} S_{12} \tag{17}
\end{align*}
$$

Square and add (20) $\left(x=I_{1} C_{1}+I_{2} C_{12}\right)$ and (21) $\left(y=I_{1} S_{1}+I_{2} S_{12}\right)$

$$
x^{2}+y^{2}=I_{1}^{1}+I_{2}^{2}+2 I_{1} l_{2} C_{2}
$$

using

$$
C_{12}=C_{1} C_{2}-S_{1} S_{2}, S_{12}=C_{1} S_{2}+S_{1} C_{2}
$$

giving

$$
C_{2}=\frac{x^{2}+y^{2}-I_{1}^{2}-I_{2}^{2}}{2 I_{1} I_{2}}
$$

for goal in workspace

$$
S_{2}= \pm \sqrt{1-C_{2}^{2}}
$$

solution

$$
\theta_{2}=\operatorname{atan} 2\left(S_{2}, C_{2}\right)
$$

solve (20) $\left(x={ }_{1} 1_{1}+{ }_{2} C_{12}\right)$ and $(21)\left(y=h_{1} S_{1}+{ }_{2} S_{12}\right)$ for θ_{1}

$$
\theta_{1}=\operatorname{atan} 2(y, x)-\operatorname{atan} 2\left(k_{2}, k_{1}\right)
$$

where $k_{1}=I_{1}+I_{2} C_{2}$ and $k_{2}=I_{2} S_{2}$.
solve θ_{3} from (19) $\left(c_{\phi}=c_{123}\right)$ and (18) $\left(s_{\phi}=s_{123}\right)$

$$
\theta_{1}+\theta_{2}+\theta_{3}=\operatorname{atan} 2\left(S_{\phi}, C_{\phi}\right)=\phi
$$

The closed solution exists if specific constraints (sufficient constraints) for the arm geometry are satisfied:

If 3 sequent axes intersect in a given point
or if 3 sequent axes are parallel to each other

- manipulators should be designed regarding these constraints
- most of them are
- PUMA 560: axes 4, 5 \& 6 intersect in a single point
- Mitsubishi PA10, KUKA LWR, PR2
- 3-DOF planar (RPC)

Method2: Reduction to polynomial
The following substitutions are used for the polynomial conversion of transcendental equations:

$$
\begin{aligned}
u & =\tan \frac{\theta}{2} \\
\cos \theta & =\frac{1-u^{2}}{1+u^{2}} \\
\sin \theta & =\frac{2 u}{1+u^{2}}
\end{aligned}
$$

Example:
The following transcendental equation is given:

$$
a \cos \theta+b \sin \theta=c
$$

$\Rightarrow \theta=A \tan 2(b, a) \pm A \tan 2\left(\sqrt{a^{2}+b^{2}-c^{2}}, c\right)$
After the polynomial conversion:

$$
a\left(1-u^{2}\right)+2 b u=c\left(1+u^{2}\right)
$$

The solution for u :

$$
u=\frac{b \pm \sqrt{b^{2}-a^{2}-c^{2}}}{a+c}
$$

Then:

$$
\theta=2 \tan ^{-1}\left(\frac{b \pm \sqrt{b^{2}-a^{2}-c^{2}}}{a+c}\right)
$$

- Decompose the spatial geometry of the arm into several plane geometry problems
- Law of cosines: $c^{2}=a^{2}+b^{2}-2 a b \cos \alpha$

The geometrical solution for the example 1

Calculate θ_{2} via the law of cosines:

$$
x^{2}+y^{2}=l_{1}^{2}+l_{2}^{2}-2 l_{1} I_{2} \cos \left(180+\theta_{2}\right)
$$

The solution:

$$
\begin{gathered}
\theta_{2}= \pm \cos ^{-1} \frac{x^{2}+y^{2}-l_{1}^{2}-l_{2}^{2}}{2 l_{1} I_{2}} \\
\theta_{1}=\beta \pm \psi
\end{gathered}
$$

where:

$$
\beta=\operatorname{atan} 2_{m}(y, x), \quad \cos \psi=\frac{x^{2}+y^{2}-l_{1}^{2}-l_{2}^{2}}{2 l_{1} \sqrt{x^{2}+y^{2}}}
$$

For $\theta_{1}, \theta_{2}, \theta_{3}$ applies:

$$
\theta_{1}+\theta_{2}+\theta_{3}=\phi
$$

Exercise

Assume we have derived the forward kinematics as:

$$
{ }^{0} T_{3}=\left[\begin{array}{cccc}
C_{1} C_{23} & -C_{1} S_{23} & S_{1} & C_{1}\left(C_{2} I_{2}+I_{1}\right) \\
S_{1} C_{23} & -S_{1} S_{23} & -C_{1} & S_{1}\left(C_{2} I_{2}+I_{1}\right) \\
S_{23} & C_{23} & 0 & S_{2} I_{2} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

And we know:

$$
{ }^{0} T_{3}=\left[\begin{array}{cccc}
r_{11} & r_{12} & r_{13} & p_{x} \\
r_{21} & r_{22} & r_{23} & p_{y} \\
r_{31} & r_{32} & r_{33} & p_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Question: How to solve the inverse kinematics?

- Closed-form solutions
- OpenRAVE
- faster ($4 \mu s$) but only work with any number of joints arranged in a chain
- Tutorial: ikfast Movelt! kinematics_base plugin
- TRACLabs' IK solver
- Tutorial: trac_ik Movelt! kinematics_base plugin
- two IK implementations:

KDL's Newton-based convergence algorithm SQP (Sequential Quadratic Programming) nonlinear optimization approach

- trac_ik_python (RPC)

Biolk

Download link: bio_ik Movelt! kinematics_base plugin 22
${ }^{22}$ Ruppel, P., Hendrich, N., Starke, S. and Zhang, J., 2018, May. Cost functions to specify full-body motion and multi-goal manipulation tasks. In 2018 ICRA (pp. 3152-3159). IEEE.

Introduction to Robotics

Lecture 4

Shuang Li, Jianwei Zhang

[sli, zhang]@informatik.uni-hamburg.de

$\underset{M}{T} \mid \mathbf{A}$
University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems
July 11, 2020

- Workspace
- reachable workspace
- dexterous workspace
- closed solutions:
- algebraic solution
- geometrical solution

The closed solution exists if specific constraints (sufficient constraints) for the arm geometry are satisfied:

If 3 sequent axes intersect in a given point
or if 3 sequent axes are parallel to each other

- numerical solutions

Example featuring PUMA 560

Exercise

Assume we have derived the forward kinematics as:

$$
{ }^{0} T_{3}=\left[\begin{array}{cccc}
C_{1} C_{23} & -C_{1} S_{23} & S_{1} & C_{1}\left(C_{2} I_{2}+I_{1}\right) \\
S_{1} C_{23} & -S_{1} S_{23} & -C_{1} & S_{1}\left(C_{2} I_{2}+I_{1}\right) \\
S_{23} & C_{23} & 0 & S_{2} I_{2} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

And we know:

$$
{ }^{0} T_{3}=\left[\begin{array}{cccc}
r_{11} & r_{12} & r_{13} & p_{x} \\
r_{21} & r_{22} & r_{23} & p_{y} \\
r_{31} & r_{32} & r_{33} & p_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Question: How to solve the inverse kinematics?

$$
{ }^{0} T_{3}=\left[\begin{array}{cccc}
C_{1} C_{23} & -C_{1} S_{23} & S_{1} & C_{1}\left(C_{2} l_{2}+I_{1}\right) \\
S_{1} C_{23} & -S_{1} S_{23} & -C_{1} & S_{1}\left(C_{2} l_{2}+I_{1}\right) \\
S_{23} & C_{23} & 0 & S_{2} l_{2} \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
r_{11} & r_{12} & r_{13} & p_{x} \\
r_{21} & r_{22} & r_{23} & p_{y} \\
r_{31} & r_{32} & r_{33} & p_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\begin{align*}
& S_{1}=r_{13} \tag{18}\\
& C_{1}=-r_{23} \tag{19}
\end{align*}
$$

Using the two-argument arctangent to solve for θ_{1},

$$
\theta_{1}=
$$

Exercise

$$
\begin{align*}
C_{1}\left(C_{2} l_{2}+I_{1}\right) & =p_{x} \tag{20}\\
S_{1}\left(C_{2} l_{2}+I_{1}\right) & =p_{y} \tag{21}\\
S_{2} I_{2} & =p_{z} \tag{22}
\end{align*}
$$

solve θ_{2} from (20-22),

Exercise

$$
\begin{align*}
& S_{23}=r_{31} \tag{23}\\
& C_{23}=r_{32} \tag{24}
\end{align*}
$$

solve θ_{3} from (20-22),

Outline

Introduction

Spatial Description and Transformations
Forward Kinematics
Robot Description
Inverse Kinematics for Manipulators
Instantaneous Kinematics
Velocity of rigid body
Velocity Propagation between Links
Jacobian of a Manipulator
Singular Configurations
Trajectory Generation 1
Trajectory Generation 2
Dynamics
Robot Control

Outline (cont.)

Path Planning
Task/Manipulation Planning
Telerobotics
Architectures of Sensor-based Intelligent Systems
Summary
Conclusion and Outlook

Differential motion

- Forward kinematics: $\theta \longrightarrow x$
- Inverse kinematics: $x \longrightarrow \theta$
- instantaneous kinematics: $\theta+\delta \theta \longrightarrow x+\delta x$
- Relationship $\delta \theta \leftrightarrow \delta x$

$$
\begin{gathered}
\dot{\theta} \leftrightarrow \dot{x} \\
\text { Joint velocities } \leftrightarrow \text { end-effector velocities }
\end{gathered}
$$

- Linear velocity
- Angular velocity

$$
\begin{equation*}
{ }^{A} V_{P}=\frac{d}{d t}\left({ }^{A} P\right)=\lim _{\Delta t \rightarrow 0} \frac{\Delta \boldsymbol{P}(t)}{\Delta t}=\lim _{\Delta t \rightarrow 0} \frac{\boldsymbol{P}(t+\Delta t)-\boldsymbol{P}(t)}{\Delta t} \tag{25}
\end{equation*}
$$

- \boldsymbol{P} is a time-varying position vector w.r.t. $\{A\}$.
- ${ }^{A} V_{P}$ is the linear velocity of the point \boldsymbol{P} in space

Representing ${ }^{A} V_{P}$ in another frame $\{B\}$, then we get

$$
{ }^{B}\left({ }^{A} V_{P}\right)={ }^{B}\left(\frac{d}{d t}\left({ }^{A} P\right)\right)=\frac{d}{d t}\left({ }^{B} R_{A}\left({ }^{A} P\right)\right)={ }^{B} R_{A} \frac{d}{d t}\left({ }^{A} P\right)={ }^{B} R_{A} \cdot{ }^{A} V_{P}
$$

Note, as ${ }^{A} R_{B}$ remains invariant during the motion.

Notation

- if \boldsymbol{P} is the origin of a frame $\{\mathrm{C}\}$, which is moving, we typically use $v_{c}={ }^{U} V_{C}$ to denote the linear velocity of the origin of $\{c\}$ w.r.t. the reference frame $\{U\}$
- ${ }^{A} v_{c}$ means the linear velocity of the origin of $\{C\}$ w.r.t. $\{U\}$ expressed in $\{A\}$

Angular velocity describes rotational motion of a frame.

Notation

- ${ }^{A} \Omega_{B}$ denotes the angular velocity of $\{B\}$ w.r.t. $\{A\}$
- $\omega_{c}={ }^{U} \Omega_{C}$ denotes the angular velocity of $\{c\}$ w.r.t. $\{U\}$

- the direction of ${ }^{A} \Omega_{B}$ indicates the instantaneous axis of rotation
- the magnitude of ${ }^{A} \Omega_{B}$ indicates the speed of rotation

Linear velocity of rigid body

Assume that there is only a linear motion of $\{B\}$ w.r.t. $\{A\}$

$$
{ }^{A} P={ }^{A} P_{B}+{ }^{A} R_{B} \cdot{ }^{B} P
$$

Differentiating the above equation

$$
\begin{aligned}
{ }^{A} V_{P} & ={ }^{A} V_{B}+\frac{d}{d t}\left({ }^{A} R_{B} \cdot{ }^{B} P\right) \\
& ={ }^{A} V_{B}+{ }^{A} R_{B} \frac{d}{d t}\left({ }^{B} P\right) \\
& ={ }^{A} V_{B}+{ }^{A} R_{B} \cdot{ }^{B} V_{P}
\end{aligned}
$$

Note, as ${ }^{A} R_{B}$ remains invariant during the motion.

Assume that:

1. No linear velocity of $\{B\}$ w.r.t. $\{A\}$
2. There is a rotational velocity of $\{B\}$ w.r.t. $\{\mathrm{A}\},{ }^{A} R_{B}$ is time-varying.
3. Point P is fixed in $\{B\}$

${ }^{A} V_{P}$ is proportional to:

- $\left\|^{A} \Omega_{B}\right\|$
- $\left\|^{A} P \sin \theta\right\|$
and
- ${ }^{A} V_{P} \perp^{A} \Omega_{B}$
- ${ }^{A} V_{P} \perp{ }^{A} P$

$$
{ }^{A} V_{P}={ }^{A} \Omega_{B} \times{ }^{A} P
$$

Cross Product Operator

$$
a=\left[\begin{array}{l}
a_{x} \\
a_{y} \\
a_{z}
\end{array}\right], b=\left[\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z}
\end{array}\right] \longrightarrow c=a \times b \Longrightarrow c=\hat{a} b
$$

$a \times \Longrightarrow \hat{a}:$ a skew-symmetric matrix vectors \Longrightarrow matrices

$$
c=\hat{a} b=\left[\begin{array}{ccc}
0 & -a_{z} & a_{y} \\
a_{z} & 0 & -a_{x} \\
-a_{y} & a_{x} & 0
\end{array}\right]\left[\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z}
\end{array}\right]
$$

$$
\begin{gathered}
{ }^{A} V_{P}={ }^{A} \Omega_{B} \times{ }^{A} P={ }^{A} \hat{\Omega}_{B}{ }^{A} P \\
{ }^{A} \Omega_{B}=\left[\begin{array}{l}
\Omega_{x} \\
\Omega_{y} \\
\Omega_{z}
\end{array}\right],{ }^{A} P=\left[\begin{array}{l}
A \\
A_{x} \\
{ }^{A} P_{y} \\
{ }^{A} P_{z}
\end{array}\right] \\
{ }^{A} V_{P}={ }^{A} \hat{\Omega}_{B}{ }^{A} P=\left[\begin{array}{ccc}
0 & -\Omega_{z} & \Omega_{y} \\
\Omega_{z} & 0 & -\Omega_{x} \\
-\Omega_{y} & \Omega_{x} & 0
\end{array}\right]\left[\begin{array}{l}
A \\
{ }^{A} P_{x} \\
{ }^{A} P_{y} \\
{ }^{A} P_{z}
\end{array}\right]
\end{gathered}
$$

Assume that:

1. No linear velocity of $\{B\}$ w.r.t. $\{A\}$
2. There is a rotational velocity of $\{B\}$ w.r.t. $\{A\},{ }^{B} R_{A}$ is time-varying.
3. Point P is fixed in $\{B\}$

$$
\begin{gathered}
{ }^{A} V_{P}={ }^{A} \Omega_{B} \times{ }^{A} P \\
\Downarrow{ }^{B} V_{P} \\
{ }^{A} V_{P}={ }^{A} R_{B}{ }^{B} V_{P}+{ }^{A} \Omega_{B} \times{ }^{A} P \\
={ }^{A} R_{B}{ }^{B} V_{P}+{ }^{A} \Omega_{B} \times{ }^{A} R_{B}{ }^{B} P
\end{gathered}
$$

Assume that:

1. No linear velocity of $\{B\}$ w.r.t. $\{A\}$
2. There is a rotational velocity of $\{B\}$ w.r.t. $\{A\},{ }^{B} R_{A}$ is time-varying.
3. Point Q is fixed in $\{B\}$

$$
\begin{gathered}
{ }^{A} V_{P}={ }^{A} R_{B}{ }^{B} V_{P}+{ }^{A} \Omega_{B} \times{ }^{A} R_{B}{ }^{B} P \\
\Downarrow{ }^{A} V_{B} \\
{ }^{A} V_{P}={ }^{A} V_{B}+{ }^{A} R_{B}{ }^{B} V_{P}+{ }^{A} \Omega_{B} \times{ }^{A} R_{B}{ }^{B} P
\end{gathered}
$$

- Linear motion

$$
{ }^{A} V_{P}={ }^{A} V_{B}+{ }^{A} R_{B}{ }^{B} V_{P}
$$

- Rotational motion

$$
{ }^{A} V_{P}={ }^{A} R_{B}{ }^{B} V_{P}+{ }^{A} \Omega_{B} \times{ }^{A} R_{B}{ }^{B} P
$$

- General

$$
{ }^{A} V_{P}={ }^{A} V_{B}+{ }^{A} R_{B}{ }^{B} V_{P}+{ }^{A} \Omega_{B} \times{ }^{A} R_{B}{ }^{B} P
$$

Velocity propagation

Motion of the links of a manipulator.

- v: linear velocity
- ω : angular velocity

For a revolute joint i, the angular velocity ${ }^{i-1} \omega_{i-1}$ of the link i is:
$\dot{\theta}_{i}{ }^{i} Z_{i-1}$

- $\dot{\theta}_{i}$ is a scalar, the velocity of the joint i
${ }^{i} Z_{i-1}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
- scalar multiplication

Angular velocity ${ }^{i-1} \omega_{i}$ of the link $i+1$ is influenced by:

- the angular velocity ${ }^{i-1} \omega_{i-1}$ of the link i
- if joint $i+1$ is a revolute joint, the joint velocity along the z-axis Z_{i} of the link

$$
\begin{aligned}
& { }^{i-1} \omega_{i}={ }^{i-1} \omega_{i-1}+{ }^{i-1} R_{i} \dot{\theta}_{i+1}{ }^{i} Z_{i} \\
& { }^{i} \omega_{i}={ }^{i} R_{i-1}{ }^{i-1} \omega_{i-1}+\dot{\theta}_{i+1}{ }^{i} Z_{i}
\end{aligned}
$$

For a prismatic joint i, the linear velocity ${ }^{i-1} v_{i-1}$ of the link i is:
$\dot{d}_{i}{ }^{i} Z_{i-1}$

- \dot{d}_{i} is a scalar, the velocity of the link i
- ${ }^{i} Z_{i-1}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$

Linear velocity ${ }^{i-1} v_{i}$ of the link $i+1$ is influenced by:

- the linear velocity ${ }^{i-1} v_{i-1}$ of the joint i
- if joint i is a revolute joint, the linear velocity of the origin of frame $\{i+1\}$
- if joint $i+1$ is a prismatic joint, the joint velocity along the z-axis Z_{i} of the joint
${ }^{i-1} v_{i}={ }^{i-1} v_{i-1}+{ }^{i-1} \omega_{i-1} \times{ }^{i-1} P_{i}+\dot{d}_{i+1}{ }^{i} Z_{i}$
${ }^{i} v_{i}={ }^{i} R_{i-1}\left({ }^{i-1} v_{i-1}+{ }^{i-1} \omega_{i-1} \times{ }^{i-1} P_{i}\right)+\dot{d}_{i+1}{ }^{i} Z_{i}$

Velocity propagation summary

- Prismatic joint
${ }^{i} v_{i}={ }^{i} R_{i-1}\left({ }^{i-1} v_{i-1}+{ }^{i-1} \omega_{i-1} \times{ }^{i-1} P_{i}\right)+\dot{d}_{i+1}{ }^{i} Z_{i}$
${ }^{i} \omega_{i}={ }^{i} R_{i-1}{ }^{i-1} \omega_{i-1}$
- Revolute joint

$$
\begin{aligned}
& { }^{i} v_{i}={ }^{i} R_{i-1}\left({ }^{i-1} v_{i-1}+{ }^{i-1} \omega_{i-1} \times{ }^{i-1} P_{i}\right) \\
& { }^{i} \omega_{i}={ }^{i} R_{i-1}{ }^{i-1} \omega_{i-1}+\dot{\theta}_{i+1}{ }^{i} Z_{i}
\end{aligned}
$$

$$
\left[\begin{array}{l}
{ }^{0} v_{n} \\
{ }^{0} \omega_{n}
\end{array}\right]=\left[\begin{array}{cc}
{ }^{0} R_{n} & 0 \\
0 & { }^{0} R_{n}
\end{array}\right]\left[\begin{array}{l}
{ }^{n} v_{n} \\
{ }^{n} \omega_{n}
\end{array}\right]
$$

Example

Given the 2 dof planar robot, find the velocity of the origin of $\{2\}$ w.r.t. $\{2\}$ and $\{0\}$.
${ }^{0} \omega_{0}=\quad,{ }^{0} v_{0}=$
${ }^{1} \omega_{1}=$
${ }^{1} v_{1}=$

Example

Velocity propagation

How to simplify the calculation of end-effector velocity?

> Joint velocities \Leftrightarrow End-effector velocities \Downarrow

Jacobian

Definition

In the field of robotics, we generally use Jacobians to relate joint velocities to Cartesian velocities of the end-effecter.

$$
x=f(q),\left[\begin{array}{c}
x_{1} \tag{26}\\
x_{2} \\
\ldots \\
x_{m}
\end{array}\right]=\left[\begin{array}{c}
f_{1}(q) \\
f_{2}(q) \\
\ldots \\
f_{n}(q)
\end{array}\right]
$$

- x is the Cartesian location of the end-effector
- m is number of degree of freedom in the Cartesian space
- Define $q=\left[q_{1}, q_{2}, . . q_{n}\right]^{T}, q_{1}, q_{2}, . . q_{n}$ are joint variables of an n-link manipulator

Jacobian of a manipulator (cont.)
By the chain rule of differentiation:

$$
\begin{gather*}
\delta x_{1}=\frac{\partial f_{1}}{\partial q_{1}} \delta q_{1}+\ldots+\frac{\partial f_{1}}{\partial q_{n}} \delta q_{n} \\
\vdots \\
\delta x_{m}=\frac{\partial f_{m}}{\partial q_{1}} \delta q_{1}+\ldots+\frac{\partial f_{m}}{\partial q_{n}} \delta q_{n} \tag{27}\\
\delta x=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial q_{1}} & \ldots & \frac{\partial f_{1}}{\partial q_{n}} \\
\vdots & \ldots & \vdots \\
\frac{\partial f_{m}}{\partial q_{1}} & \ldots & \frac{\partial f_{m}}{\partial q_{n}}
\end{array}\right] \cdot \delta q \tag{28}\\
\delta x_{(m \times 1)}=J_{(m \times n)} \delta q_{(n \times 1)} \quad \text { where } \quad J_{i j}(q)=\frac{\partial}{\partial q_{j}} f_{i}(q)
\end{gather*}
$$

$$
\begin{aligned}
\partial x_{(m \times 1)} & =J_{(m \times n)} \partial q_{(n \times 1)} \\
\dot{x}_{(m \times 1)} & =J_{(m \times n)} \dot{q}_{(n \times 1)}
\end{aligned}
$$

- A Jacobian-matrix is a multidimensional representation of partial derivatives.
- If we divide both sides with the differential time element, we can think of the Jacobian as mapping velocities in q to those in x .
- Jacobians are time-varying linear transformations.
- ${ }^{0} \omega_{n}$ to be the angular velocity of the end effector
- ${ }^{0} v_{n}$ is the linear velocity of the end effector
- The Jacobian matrix consists of two components, that solve the following equations:

$$
{ }^{0} v_{n}={ }^{0} J_{v} \dot{q} \quad \text { and } \quad{ }^{0} \omega_{n}={ }^{0} J_{w} \dot{q}
$$

The manipulator Jacobian

$$
J=\left[\begin{array}{c}
J_{v} \tag{29}\\
J_{w}
\end{array}\right], \quad\left[\begin{array}{l}
0 \\
v_{n} \\
{ }^{0} \omega_{n}
\end{array}\right]=\left[\begin{array}{c}
J_{v} \\
J_{w}
\end{array}\right] \dot{q}
$$

Angular velocity ${ }^{i-1} \omega_{i}$ is:

$$
{ }^{i-1} \omega_{i}={ }^{i-1} \omega_{i-1}+{ }^{i-1} R_{i} \dot{\theta}_{i+1}{ }^{i} Z_{i}
$$

We get:

$$
\begin{aligned}
{ }^{0} \omega_{n} & =p_{1} \dot{q}_{1}^{0} Z_{0}+p_{2} \dot{q}_{2}^{0} R_{1}^{1} Z_{1}+\ldots+p_{n} \dot{q}_{n}^{0} R_{n-1}^{n-1} Z_{n-1} \\
& =p_{1} \dot{q}_{1}^{0} Z_{0}+p_{2} \dot{q}_{2}^{0} Z_{1}+\ldots+p_{n} \dot{q}_{n}^{0} Z_{n-1}
\end{aligned}
$$

where:

$$
p_{i}= \begin{cases}0 & \text { if joint } \mathrm{i} \text { is prismatic } \tag{30}\\ 1 & \text { if joint } \mathrm{i} \text { is revolute }\end{cases}
$$

The Angular Velocity Jacobian

$$
J_{w}=\left[\begin{array}{llll}
p_{1}{ }^{0} Z_{0} & p_{2}{ }^{0} Z_{1} & \ldots & p_{n}{ }^{0} Z_{n-1} \tag{31}
\end{array}\right]
$$

(Hint: J_{w} is a $3 \times n$ matrix.)

The linear velocity of the end effector is: ${ }^{0} v_{n}={ }^{0} \dot{x}_{n}=\left[\begin{array}{c}\dot{x} \\ \dot{y} \\ \dot{z}\end{array}\right]$
By the chain rule of differentiation:

$$
{ }^{0} \dot{x}_{n}=\frac{\partial^{0} x_{n}}{\partial q_{1}} \dot{q}_{1}+\frac{\partial^{0} x_{n}}{\partial q_{2}} \dot{q}_{2}+\ldots+\frac{\partial^{0} x_{n}}{\partial q_{n}} \dot{q}_{n}
$$

therefore the linear part of the Jacobian is:

$$
J_{v}=\left[\begin{array}{lll}
\frac{\partial^{0} x_{n}}{\partial q_{1}} & \frac{\partial^{0} x_{n}}{\partial q_{2}} & \cdots \tag{32}
\end{array} \frac{\partial^{0} x_{n}}{\partial q_{n}}\right]
$$

Computing the final Jacobian

Two approaches:

1. derive v, ω for each link until the end-effector
2. use the explicit form

Computing the final Jacobian

- get ${ }^{0} J_{V}$

$$
{ }^{0} T_{6}=\left[\begin{array}{cc}
{ }^{0} R_{N} & { }^{0} P_{N} \\
0 & 1
\end{array}\right]{ }^{0} x \quad \longrightarrow{ }^{0} v_{n} \quad \longrightarrow \quad{ }^{0} J_{v}
$$

- get ${ }^{0} J_{\omega}$

$$
J_{w}=\left[\begin{array}{llll}
p_{1}^{0} Z_{0} & p_{2}^{0} Z_{1} & \ldots & p_{n}^{0} Z_{n-1}
\end{array}\right]
$$

- ${ }^{0} x_{i}$ is equal to the first three elements of the 4 th column of matrix ${ }^{0} T_{i}$
$-{ }^{0} Z_{i}$ is equal to the first three elements of the 3 rd column of matrix ${ }^{0} T_{i}$
${ }^{0} T_{i}$ has to be computed for every joint.

Example1

$$
\begin{aligned}
& { }^{0} \omega_{2}={ }^{0} R_{2}{ }^{2} \omega_{2}=\left[\begin{array}{c}
0 \\
0 \\
\dot{\theta_{1}}+\dot{\theta_{2}}
\end{array}\right] \\
& { }^{0} v_{2}={ }^{0} R_{2}{ }^{2} v_{2}=\left[\begin{array}{c}
-l_{1} s_{1} \dot{\theta_{1}}-l_{2} s_{12}\left(\dot{\theta_{1}}+\dot{\theta_{2}}\right) \\
l_{1} c_{1} \dot{\theta_{1}}+l_{2} c_{12}\left(\dot{\theta_{1}}+\dot{\theta}_{2}\right) \\
0
\end{array}\right]
\end{aligned}
$$

Give the ${ }^{0} J$ Jacobian matrix.

Example2

For a 3-DOF robot, given the following transformation matrices, find the Jacobian ${ }^{0} \mathrm{~J}$.
${ }^{0} T_{1}=\left[\begin{array}{cccc}c_{1} & -s_{1} & 0 & 0 \\ s_{1} & c_{1} & 0 & 0 \\ 0 & 0 & 1 & h \\ 0 & 0 & 0 & 1\end{array}\right],{ }^{1} T_{2}=\left[\begin{array}{cccc}c_{2} & -s_{2} & 0 & 0 \\ 0 & 0 & -1 & 0 \\ s_{2} & c_{2} & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right],{ }^{2} T_{3}=\left[\begin{array}{cccc}c_{3} & -s_{3} & 0 & e \\ s_{3} & c_{3} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right],{ }^{3} T_{4}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & f \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 \\ 0 & 0 & 1\end{array}\right]$,
where h, e, f are the length of the $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ link, respectively.

$$
{ }^{0} T_{4}=\left[\begin{array}{cccc}
c_{1} c_{23} & -c_{1} s_{23} & s_{1} & e c_{1} c_{2}+f c_{1} c_{23} \\
s_{1} c_{23} & -s_{1} c_{23} & -c_{1} & e s_{1} c_{2}+f s_{1} c_{23} \\
s_{23} & c_{23} & 0 & h+e s_{2}+f s_{23} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Example2

Calculate ${ }^{0} T_{1},{ }^{0} T_{2},{ }^{0} T_{3},{ }^{0} T_{4}$:

$$
\begin{gathered}
{ }^{0} T_{1}=\left[\begin{array}{cccc}
c_{1} & -s_{1} & 0 & 0 \\
s_{1} & c_{1} & 0 & 0 \\
0 & 0 & 1 & h \\
0 & 0 & 0 & 1
\end{array}\right],{ }^{0} T_{2}={ }^{0} T_{1}{ }^{1} T_{2}=\left[\begin{array}{cccc}
c_{1} c_{2} & -s_{2} c_{1} & s_{1} & 0 \\
s_{1} c_{2} & -s_{1} s_{2} & -c_{1} & 0 \\
s_{2} & c_{2} & 0 & h \\
0 & 0 & 0 & 1
\end{array}\right] \\
{ }^{0} T_{3}={ }^{0} T_{2}{ }^{2} T_{3}=\left[\begin{array}{ccccc}
-s_{2} s_{3} c_{1}+c_{1} c_{2} c_{3} & -s_{2} c_{1} c_{3}-s_{3} c_{1} c_{2} & s_{1} & e c_{1} c_{2} \\
-s_{1} s_{2} s_{3}+s_{1} c_{2} c_{3} & -s_{1} s_{2} c_{3}-s_{1} s_{3} c_{2} & -c_{1} & e s_{1} c_{2} \\
s_{2} c_{3}+s_{3} c_{2} & -s_{2} s_{3}+c_{2} c_{3} & 0 & e s_{2}+h \\
0 & 0 & 1
\end{array}\right] \\
0
\end{gathered} \begin{array}{ccccc}
{ }^{0} T_{4} & =\left[\begin{array}{cccc}
c_{1} c_{23} & -c_{1} s_{23} & s_{1} & e c_{1} c_{2}+f c_{1} c_{23} \\
s_{1} c_{23} & -s_{1} c_{23} & -c_{1} & e s_{1} c_{2}+f s_{1} c_{23} \\
s_{23} & c_{23} & 0 & h+e s_{2}+f s_{23} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{array}
$$

$$
0 J=\left[\begin{array}{l}
J_{v} \\
J_{w}
\end{array}\right]=\left[\begin{array}{ccc}
-e s_{1} c_{2}-f s_{1} c_{23} & -e c_{1} s_{2}-f c_{1} s_{23} & -f c_{1} s_{23} \\
e c_{1} c_{2}+f c_{1} c_{23} & -e s_{1} s_{2}-f s_{1} s_{23} & -f s_{1} s_{23} \\
0 & e c_{2}+f c_{23} & f c_{23} \\
0 & s_{1} & s_{1} \\
0 & -c_{1} & -c_{1} \\
1 & 0 & 0
\end{array}\right]
$$

Changing a Jacobian's frame of reference

Given a Jacobian written in frame $\{B\}$,

$$
\left[\begin{array}{l}
{ }^{B} v_{n} \\
B^{B} \omega_{n}
\end{array}\right]=\left[\begin{array}{l}
B \\
J_{v} \\
B \\
{ }^{\prime}
\end{array}\right] \dot{q}
$$

$A 6 \times 1$ Cartesian velocity vector given in $\{B\}$ is described relative to $\{A\}$ by the transformation

$$
\left[\begin{array}{l}
{ }^{A} v_{n} \\
{ }^{A} \omega_{n}
\end{array}\right]=\left[\begin{array}{cc}
{ }^{A} R_{B} & 0 \\
0 & { }^{A} R_{B}
\end{array}\right]\left[\begin{array}{l}
{ }^{B} v_{n} \\
{ }^{B} \omega_{n}
\end{array}\right]
$$

Hence, we can get

$$
\left[\begin{array}{c}
{ }^{A} v_{n} \tag{33}\\
{ }^{A} \omega_{n}
\end{array}\right]=\left[\begin{array}{cc}
{ }^{A} R_{B} & 0 \\
0 & { }^{A} R_{B}
\end{array}\right]\left[\begin{array}{ll}
B & J_{v} \\
{ }^{B} J_{w}
\end{array}\right] \dot{q}
$$

Question

Is the Jacobian invertible?
If it is, then:

$$
\dot{\mathbf{q}}=J^{-1}(\mathbf{q}) \dot{\mathrm{x}}
$$

\Longrightarrow to move the the end effector of the robot in Cartesian Space with a certain velocity.

For most manipulators there exist values of \mathbf{q} where the Jacobian gets singular.

Singularity

$$
\operatorname{det} J=0 \Longrightarrow J \text { is not invertible }
$$

Such configurations are called singularities of the manipulator.

From the Task Space perspective:

- reduce the degree of freedom in velocity domain in task space

From the Joint Space perspective:

- Infinite solutions to the inverse kinematics problem may exist
- Near the singularity, small velocities in operational space may cause large velocities in the joint space.

Two Main types of Singularities:

- Workspace boundary singularities occur when the manipulator is fully stretched out or folded back on itself in such a way that the end-effector is at or very near the boundary of the workspace.
- Workspace internal singularities occur away from the workspace boundary; they generally are caused by a lining up of two or more joint axes
$N=6$ For fully actuated robots, the Jacobian (6×6) is invertible

$$
\delta x_{(m \times 1)}=J_{(m \times n)} \delta q_{(n \times 1)} \quad \text { where } \quad J_{i j}(q)=\frac{\partial}{\partial q_{j}} f_{i}(q)
$$

- m is number of degree of freedom of the manipulator in the Cartesian space
- n is the number of joint variables of the manipulator
$N=6$ For fully actuated robots, the Jacobian (6×6) is invertible $N<6$ Under actuated robots $(6 \times N)$ \Longrightarrow remove some spatial degrees of freedom, get a square Jacobian matrix. Example:

$$
\left[\begin{array}{l}
T_{6} d_{x} \\
{ }^{6} d_{y}
\end{array}\right]=J_{2 \times 2}\left[\begin{array}{l}
d q_{1} \\
d q_{2}
\end{array}\right]
$$

for a 2-joint planar manipulator
$N=6$ For fully actuated robots, the Jacobians (6×6) are invertible $N<6$ Under actuated robots $(6 \times N)$
\Longrightarrow remove some spatial degrees of freedom
$N>6$ Over actuated robots $(6 \times N)$

- have spare joints
- use the pseudoinverse of J

$$
\begin{align*}
\dot{q} & =J(q)^{+} v \tag{34}\\
J^{+} & =\left(J^{T} J\right)^{-1} J^{T} \tag{35}
\end{align*}
$$

UR5 example

${ }^{23}$ https://www.youtube.com/watch?v=6Wmw4IUHIX8

Introduction to Robotics

Lecture 5

Shuang Li, Jianwei Zhang

[sli, zhang]@informatik.uni-hamburg.de

University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems
July 11, 2020

Joint velocities \Leftrightarrow End-effector velocities \Downarrow

Jacobian

- Jacobian

$$
\delta x_{(m \times 1)}=J_{(m \times n)} \delta q_{(n \times 1)} \quad \text { where } \quad J_{i j}(q)=\frac{\partial}{\partial q_{j}} f_{i}(q)
$$

- Angular/Linear velocity Jacobian

$$
J=\left[\begin{array}{l}
J_{v} \\
J_{w}
\end{array}\right], \quad\left[\begin{array}{l}
0_{v_{n}} \\
0 \\
\omega_{n}
\end{array}\right]=\left[\begin{array}{l}
J_{v} \\
J_{w}
\end{array}\right] \dot{q}
$$

- Computation of the final Jacobian
- Geometric singularities:
- for any two revolute joints, the joint axes are collinear
- any three parallel rotation axes lie in a plane
- any four rotational axes intersect at a point
- any three coplanar revolute axes intersect at a point
- Mathematical singularities:

$$
\operatorname{det} J=0 \Longrightarrow J \text { is not invertible }
$$

Where the determinant is equal to zero, the Jacobian has lost full rank and is singular.

Outline

Introduction

Spatial Description and Transformations
Forward Kinematics
Robot Description
Inverse Kinematics for Manipulators
Instantaneous Kinematics
Trajectory Generation 1
Trajectory and related concepts
Trajectory generation
Solutions of trajectory generation
Optimizing motion
Application
Trajectory Generation 2
Dynamics
Robot Control

Outline (cont.)

Path Planning
Task/Manipulation Planning
Telerobotics
Architectures of Sensor-based Intelligent Systems
Summary
Conclusion and Outlook

Definition

A trajectory is a time history of position, velocity and acceleration
for each DOF
Describes motion of TCP frame relative to base frame

- abstract from joint configuration
- Changes in position, velocity and acceleration of all joints are analyzed over a period of time
- Trajectory with n DOF is a parameterized function $q(t)$ with values in its motion region.
- Trajectory $q(t)$ of a robot with n DOF is then a vector of n parameterized functions $q_{i}(t), i \in\{1 \ldots n\}$ with one common parameter t :

$$
q(t)=\left[q_{1}(t), q_{2}(t), \ldots, q_{n}(t)\right]^{T}
$$

Problem

The robot is at point A and wants move to point B.

- How does the robot get to point B?
- How long does it take the left arm to get to point B ?
- Which possible constraints exist for moving from A to B ?

Problem

The robot is at point A and wants move to point B.

- How does the robot get to point B?
- How long does it take the left arm to get to point B ?
- Which possible constraints exist for moving from A to B ?

Solution

- generate a possible and smooth trajectory
- describe intermediate poses (waypoints)
- usually fixed temporal intervals
- obey the physical boundaries of the mechanics of the robot

Pick pos $_{\text {Start }}=$ object, vel $S_{\text {Start }}=0, a c c_{S t a r t}=0$
Lift-off limited velocity and acceleration
Motion continuous via waypoints, full velocity and acceleration Set-down similar to Lift-off

Place similar to Pick

Trajectory planning (cont.)
Trajectory Generation 1 - Trajectory and related concepts

UR10e arm, Shadow C5 hand, feed-forward policy, 10 demonstrations, video speed: 2.4

Generation of trajectories

Task

- find a smooth trajectory for moving the robot from start to goal pose
- use continuous functions of time
- A trajectory is C^{k}-continuous, if all derivatives up to the k-th (including) exist and are continuous.
- A trajectory is called smooth, if it is at least C^{2}-continuous
- $q(t)$ is the trajectory,
- $\dot{q}(t)$ is the velocity,
- $\ddot{q}(t)$ is the acceleration,
- $\dddot{q}(t)$ is the jerk

Task

- find trajectory for moving the robot from start to goal pose
- use continuous functions of time

Representation solution:

- calculation of Cartesian trajectories for the TCP
- calculation for trajectories in joint space

Generation of trajectories (cont.)

Pouring setup

Pushing setup

Disadvantages:

- more expensive at run time
- after the path is calculated need joint angles in a lot of points by IK
- Discontinuity problems

Advantages:

- near to the task specification
- advantageous for collision avoidance
- can specify the spatial shape of the path

Joint position commands

Difficulties of trajectories in Cartesian space

1. Waypoints cannot be realized

- workspace boundaries, object collision, self-collision

Difficulties of trajectories in Cartesian space (cont.)

2. Velocities in the vicinity of singular configurations are too high

Difficulties of trajectories in Cartesian space (cont.)

3. Start and end configurations can be achieved, but there are different solutions

- ambiguous solutions

Joint position commands

Joint space:

- no inverse kinematics in joint space required
- the planned trajectory can be immediately applied
- no problem with singularities
- physical joint constraints can be considered

Primitive solution

Naive approach

Set the pose for the next time step (e.g. 10 ms later) to B.

- possible only in simulation
- the moving distance for a manipulator at the next time step may be too large (velocity approaches ∞)

Next best approach

- divide distance between A and B to shorter (sub-)distances
- use linear interpolation for these (sub-)distances
- respect the maximum velocity constraint

Linear interpolation - visualization

Trajectory Generation 1 - Solutions of trajectory generation

Problem

The physical constraints are violated

- joint velocity is limited by maximum motor rotation speed
- joint acceleration is limited by maximum motor torque

Implicitly these contraints are valid for motion in cartesian space.

- robot dynamics (joint moments resulting from the robot motion) affect the boundary condition

Solution

- dynamical trajectory generation
- advanced optimization methods \rightarrow current topic of research

Next best approach

- Limitation of joint velocity and acceleration
- Two different methods
- trapezoidal interpolation
- polynomial interpolation

Trapezoidal interpolation - visualization

- Position is quadratic during acceleration and deceleration, and linear elsewhere
- Linear segment with Parabolic Blends
- Velocity linearly ramps up/down to maximum velocity
- Acceleration and deceleration is constant for each trajectory segment.
- consider joint velocity and acceleration contraints
- optimal time usage (move with maximum acceleration and velocity)
- acceleration is not differentiable (the jerk is not continuous)
- start and end velocity equals 0
- not sensible for concatenating trajectories
- improved by polynomial interpolation

Problem

Multidimensional trapezoidal interpolations

- different run time for joints (or cartesian dimensions)
- multiple velocity and acceleration contraints
- results in various time switch points
- from acceleration to continuous velocity
- from continuous velocity to deceleration
- moving along a line in joint/cartesian space is impossible.

Trapezoidal interpolation - constraints

Solution

- Normalization to the joint that takes longest to reach its goal
- Synchronize phase switching points and overall execution time

Trapezoidal interpolation - normalization

Normalize to the slowest joint

- Consider velocity and acceleration boundary conditions
- calculation of extremum and duration of trajectory
- Acceleration differentiable
- continuous jerk
- smooth trajectory
- interesting only in the theory - for momentum control
- Start and end velocity may be $\neq 0$
- sensible for concatenating trajectories
- Usually a polynomial with degree of 3 (cubic spline) or 5
- Calculation of coefficient with respect to boundary constraints
- $3^{\text {rd }}$-degree polynomial: consider 4 boundary constraints
- position and velocity; start and goal
- $5^{\text {th }}$-degree polynomial: consider 6 boundary constraints
- position, velocity and acceleration; start and goal

Polynomial interpolation (cont.)

Cubic polynomials between two configurations

- third-degree polynomial \Rightarrow four constraints(position and velocity; start and goal):

$$
\begin{gathered}
\theta(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3} \\
\theta(t)=a_{1}+2 a_{2} t+3 a_{3} t^{2} \\
\theta \ddot{(t)}=2 a_{2}+6 a_{3} t
\end{gathered}
$$

- if the start and end velocity is 0 then

$$
\begin{align*}
\theta(0) & =\theta_{0} \tag{36}\\
\theta\left(t_{f}\right) & =\theta_{f} \tag{37}\\
\dot{\theta}(0) & =0 \tag{38}\\
\dot{\theta}\left(t_{f}\right) & =0 \tag{39}
\end{align*}
$$

- The solution

$$
\begin{array}{ll}
\text { eq. (36) } & a_{0}=\theta_{0} \\
\text { eq. (38) } & a_{1}=0 \\
& a_{2}=\frac{3}{t_{f}^{2}}\left(\theta_{f}-\theta_{0}\right) \\
& a_{3}=-\frac{2}{t_{f}^{3}}\left(\theta_{f}-\theta_{0}\right)
\end{array}
$$

- Similar to the previous example:
- positions of waypoints are given (same)
- velocities of waypoints are different from 0 (different)

$$
\begin{align*}
\theta(0) & =\theta_{0} \tag{40}\\
\theta\left(t_{f}\right) & =\theta_{f} \tag{41}\\
\dot{\theta}(0) & =\dot{\theta}_{0} \tag{42}\\
\dot{\theta}\left(t_{f}\right) & =\dot{\theta}_{f} \tag{43}
\end{align*}
$$

- The solution

$$
\begin{aligned}
\text { eq. (40) } & a_{0} \\
\text { eq. (42) } & a_{1} \\
& =\dot{\theta}_{0} \\
a_{2} & =\frac{3}{t_{f}^{2}}\left(\theta_{f}-\theta_{0}\right)-\frac{2}{t_{f}} \dot{\theta}_{0}-\frac{1}{t_{f}} \dot{\theta}_{f} \\
a_{3} & =-\frac{2}{t_{f}^{3}}\left(\theta_{f}-\theta_{0}\right)+\frac{1}{t_{f}^{2}}\left(\dot{\theta}_{f}+\dot{\theta}_{0}\right)
\end{aligned}
$$

Velocity calculation at the waypoints

- Manually specify waypoints
- based on cartesian linear and angle velocity of the tool frame
- Automatic calculation of waypoints in cartesian or joint space
- based on heuristics
- Automatic determination of the parameters
- based on continous acceleration at the waypoints

Example $5^{\text {th }}$-degree
$\theta(x)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}+a_{5} t^{5}$
Boundary conditions for start $\left(x=t_{0}\right)$ and goal $\left(x=t_{d}\right)$:

- $\theta\left(t_{0}\right)=\operatorname{pos}_{\text {Start }}, \theta\left(t_{d}\right)=\operatorname{pos}_{\text {Goal }}$
- $\theta\left(\dot{t}_{0}\right)=$ vel $_{\text {Start }},\left(\dot{t}_{d}\right)=$ vel $_{\text {Goal }}$
- $\theta\left(\ddot{t}_{0}\right)=\operatorname{accstart},\left(\tilde{t}_{d}\right)=\operatorname{acc} G_{\text {Goal }}$
- The smoothest curves are generated by infinitly often differentiable functions.
- e^{x}
- $\sin (x), \cos (x)$
- $\log (x)($ for $x>0)$
- ...
- Polynomials are suitable for interpolation
- Problem: oscillations caused by a degree which is too high
- Piecewise polynomials with specified degree are applicable
- cubic polynomial
- splines
- B-Splines

Factors for time optimal motion - Arc Length

If the curve in the n-dimensional space is given by

$$
\mathbf{q}(t)=\left[q^{1}(t), q^{2}(t), \ldots, q^{n}(t)\right]^{T}
$$

then the arc length can be defined as follows:

$$
s=\int_{0}^{t}\|\dot{\mathbf{q}}(t)\|_{2} d t
$$

where $\|\dot{\mathbf{q}}(t)\|_{2}$ is the euclidean norm of vector $d \mathbf{q}(t) / d t$ and is labeled as a flow velocity along the curve.

$$
\|\mathbf{x}\|_{2}:=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}
$$

With the following two points given
$\mathbf{p}_{0}=\mathbf{q}\left(t_{s}\right)$ und $\mathbf{p}_{1}=\mathbf{q}\left(t_{f}\right)$,
the arc length L between \mathbf{p}_{0} and \mathbf{p}_{1} is the integral:

$$
L=\int_{\mathbf{p}_{0}}^{\mathbf{p}_{1}} d s=\int_{t_{s}}^{t_{f}}\|\dot{\mathbf{q}}(t)\|_{2} d t
$$

"The trajectory parameters should be calculated in the way that the arc length
L under the given constraints has the shortest possible value."

Factors for time optimal motion - Curvature

Curvature

Defines the sharpness of a curve. A straight line has zero curvature. Curvature of large circles is smaller than of small circles.

At first the unit vector of a curve $\mathbf{q}(t)$ can be defined as

$$
\mathbf{U}=\frac{d \mathbf{q}(t)}{d s}=\frac{d \mathbf{q}(t) / d t}{d s / d t}=\frac{\dot{\mathbf{q}}(t)}{|\dot{\mathbf{q}}(t)|}
$$

If s is the parameter of the arc length and \mathbf{U} as the unit vector is given, the curvature of curve $\mathbf{q}(t)$ can be defined as

$$
\kappa(s)=\left|\frac{d \mathbf{U}}{d s}\right|
$$

The bending energy of a smooth curve $\mathbf{q}(t)$ over the interval $t \in[0, T]$ is defined as

$$
E=\int_{0}^{L} \kappa(s)^{2} d s=\int_{0}^{T} \kappa(t)^{2}|\dot{\mathbf{q}}(t)| d t
$$

where $\kappa(t)$ is the curvature of $\mathbf{q}(t)$.
"The bending energy E of a trajectory should be as small as possible under consideration of the arc length."

Factors for time optimal motion - Motion Time

If a motion consists of n successive segments

$$
q_{j}, j \in\{1 \ldots n\}
$$

then

$$
u_{j}=t_{j+1}-t_{j}
$$

is the required time for the motion in the segment \mathbf{q}_{j}. The total motion time is

$$
T=\sum_{j=1}^{n-1} u_{j}
$$

- Proposed by Flash \& Hogan (1985) [7]
- Optimization Criterion minimizes the jerk in the trajectory

$$
H(x(t))=\frac{1}{2} \int_{t=t_{i}}^{t_{f}} \dddot{x}^{2} d t
$$

- The minimum-jerk solution can be written as:

$$
x(t)=x_{i}+\left(x_{i}-x_{f}\right)\left(15\left(\frac{t}{d}\right)^{4}-6\left(\frac{t}{d}\right)^{5}-10\left(\frac{t}{d}\right)^{3}\right)
$$

- Predicts bell shaped velocity profiles

$$
\dot{x}(t)=\frac{1}{d}\left(x_{i}-x_{f}\right)\left(60\left(\frac{t}{d}\right)^{3}-30\left(\frac{t}{d}\right)^{4}-30\left(\frac{t}{d}\right)^{2}\right)
$$

Minimum jerk trajectory (cont.)

Dynamical constraints for all joints

The borders for the minimum motion time $T_{\text {min }}$ for the trajectory $\mathbf{q}_{j}^{i}(t)$ are defined over dynamical parameters of all joints.
For joint $i \in\{1 \ldots n\}$ of trajectory part $j \in\{1 \ldots m\}$ this kind of constraint can be described as follows

$$
\begin{align*}
\left|\dot{q}_{j}^{i}(t)\right| & \leq \dot{q}_{\text {max }}^{i} \tag{44}\\
\left|\ddot{q}_{j}^{i}(t)\right| & \leq \ddot{q}_{\text {max }}^{i} \tag{45}\\
\left|m_{j}^{i}(t)\right| & \leq m_{\text {max }}^{i} \tag{46}
\end{align*}
$$

- m^{i} is the torque (moment of force) for the joint i and can be calculated from the dynamical equation (motion equation).
- $\dot{q}_{\text {max }}^{i}, \ddot{q}_{\text {max }}^{i}$ and $m_{\text {max }}^{i}$ represent the important parameters of the dynamical capacity of the robot.
- Reflexxes Motion Libraries (Download, Overview)
- specialize on instantaneously generating smooth trajectories based on joint states and their limits
- Prof. Dr. Torsten Kroeger
- paper: Online Trajectory Generation: Basic Concepts for Instantaneous Reactions to Unforeseen Events [8]

Examples of using Reflexxes in TAMS

- Real-time object shape detection using ROS, the KUKA LWR4+ and a force/torque Sensor
- to specify the target position and target velocity at the target position

Examples of using Reflexxes in TAMS (cont.)

- Adaptive pouring of liquids based on human motions using a Robotic Arm
- to recalculate the speeds of a joint trajectory (returned by CCP) to match the original time-line of the

25

[^5]
Introduction to Robotics

Lecture 6

Shuang Li, Jianwei Zhang

[sli, zhang]@informatik.uni-hamburg.de

University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems
July 11, 2020

Outline

Introduction

Spatial Description and Transformations

Forward Kinematics

Robot Description
Inverse Kinematics for Manipulators
Instantaneous Kinematics
Trajectory Generation 1
Trajectory Generation 2
Recapitulation
Approximation and Interpolation
Interpolation methods
Bernstein-Polynomials
B-Splines
Dynamics
Robot Control

Outline (cont.)

Path Planning
Task/Manipulation Planning
Telerobotics
Architectures of Sensor-based Intelligent Systems
Summary
Conclusion and Outlook

The trajectory of a robot with n degrees of freedom (DoF) is a vector of n parametric functions with a common parameter:

Time

$$
q(t)=\left[q^{1}(t), q^{2}(t), \ldots, q^{n}(t)\right]^{T}
$$

- Deriving a trajectory yields
- velocity \dot{q}
- acceleration \ddot{q}
- jerk \dddot{q}
- Jerk represents the change of acceleration over time, allowing for non-constant accelerations.
- A trajectory is C^{k}-continuous, if the first k derivatives of its path exist and are continuous.
- A trajectory is defined as smooth if it is at least C^{2}-continuous.

Trajectory generation

- Cartesian space
- closer to the problem
- better suited for collision avoidance
- Joint space
- trajectories are immediately executable
- limited to direct kinematics
- allows accounting for joint angle limitations
- Linear interpolation
- respect the minimum velocity constraint
- Trapezoidal interpolation
- normalization
- Polynomial interpolation.
- differentiable acceleration
- cubic polynomials
- Approximation of the relation between x and y (curve, plane, hyperplane) with a different function, given a limited number n of data points $D=\left\{\mathbf{x}_{i}, y_{i}\right\}$

Approximation

Definition

An approximation is a non-exact representation of something that is difficult to determine precisely (e.g. functions).

Necessary if

- equations are hard to solve
- mathematically too difficult or computationally too expensive

Advantages are

- simple to derive
- simple to integrate
- simple to compute

Stone-Weierstrass theorem (1937)

Theorem

- Every non-periodic continuous function on a closed interval can be approximated as closely as desired using algebraic polynomials.
- Every periodic continuous function can be approximated as closely as desired using trigonometric polynomials.
- A special case of approximation is interpolation, where the model exactly matches all data points.
If many points are given or measurement data is affected by noise, approximation should preferably be used.

Definition

Interpolation is the process of constructing new data points within the range of a discrete set of known data points.

- Interpolation is a kind of approximation.
- A function is designed to match the known data points exactly, while estimating the unknown data in between in an useful way.
- In robotics, interpolation is common for computing trajectories and motion/-controllers.
- Approximation: Fitting a curve to given data points.
- Online tool: https://mycurvefit.com/
- Interpolation: Defining a curve exactly through all given data points
- In the case of many, especially noisy, data points, approximation is often better suited than interpolation

Overfitting example

Complete the sequence: $1,3,5,7$, ?

Interpolation without Overfitting

- Base
- subset of a vector space
- able to represent arbitrary vectors in space
- finite linear combination
- Uniqueness
- $n^{\text {th }}$-degree polynomials only have n zero-points
- resulting system of equations is unique
- Oscillation
- high-degree polynomials may oscillate due to many extrema
- workaround: composition of sub-polynomials

Whatever the degree n of the polynomial is, there's $n-1$ turning points.

Interpolation methods

Generation of robot-trajectories in joint-space over multiple stopovers requires appropriate interpolation methods.

Some interpolation methods using polynomials:

- Bernstein-polynomials (Bézier curves)
- Basis-Splines (B-Splines)
- Lagrange-polynomials
- Newton-polynomials

Examples of polynomials interpolation:

- http://polynomialregression.drque.net/online.php
- https://arachnoid.com/polysolve/
- http://www.hvks.com/Numerical/webinterpolation.html

Bernstein-polynomials (named after Sergei Natanovich Bernstein) are real polynomials with integer coefficients.

Definition

Bernstein basis polynomials of degree k are defined as:

$$
B_{i, k}(t)=\binom{k}{i}(1-t)^{k-i} t^{i}, \quad i=0,1, \ldots, k
$$

where $\binom{k}{i}$ is the binomial coefficients, $\binom{k}{i}=\frac{i!}{k!(i-k)!}$ and $k \geqslant i \geqslant 0$.

$$
B_{i, k}(t)=\binom{k}{i}(1-t)^{k-i} t^{i}, \quad i=0,1, \ldots, k
$$

Bernstein Polynomials:

$$
\mathbf{y}=\mathbf{b}_{0} B_{0, k}(t)+\mathbf{b}_{1} B_{1, k}(t)+\cdots+\mathbf{b}_{k} B_{k, k}(t)
$$

where \mathbf{b}_{k} is Bernstein coefficients.

1id Polynomial of degree 15

Properties

Properties of Bernstein basis polynomials:

- base property: the Bernstein basis polynomials [$B_{i, k}: 0 \leq i \leq k$] are linearly independent and form a base of the space of polynomials of degree $\leq k$,
- positivity $B_{i, k}(t) \geq 0$ for $t \in[0,1]$,
- decomposition of one: $\sum_{i=0}^{k} B_{i, k}(t) \equiv \sum_{i=0}^{k}\binom{k}{i} t^{i}(1-t)^{k-i} \equiv 1$,
- recursivity: $B_{i, k-1}(t)=\frac{k-i}{k} B_{i, k}(t)+\frac{i+1}{k} B_{i+1, k}(t)$

Bernstein Polynomials:

$$
\mathbf{y}=\mathbf{b}_{0} B_{0, k}(t)+\mathbf{b}_{1} B_{1, k}(t)+\cdots+\mathbf{b}_{k} B_{k, k}(t)
$$

where \mathbf{b}_{k} is Bernstein coefficients.

If \mathbf{b}_{k} is a set of control points P_{0}, \cdots, P_{n}, where n is called its order of the Bézier curve ($\mathrm{n}=1$ for linear, 2 for quadratic, etc.).

Animation of Bézier curves

- Cubic polynomials ($3^{r d}$-degree) most used
- derivatives exist
- velocity
- acceleration
- jerk
- provides smooth trajectory

B-spline curves and basis functions

- A B-spline or basis spline is a polynomial function that has minimal support with respect to a given degree, smoothness, and domain partition
- A B-spline curve of order k is composed of linear combinations of B-Splines (piecewise) of degree $k-1$ in a set of control points

B-spline curves and basis functions (cont.)

B-spline curves and basis functions (cont.)

Linear splines correspond to piecewise linear functions
Advantages:

- splines are more flexible than polynomials due to their piecewise definition
- still, they are relatively simple and smooth
- prevent strong oscillation
- Generally, $2^{\text {nd }}$ derivatives are continuous at intersections
- also applicable for representing surfaces (CAD modeling)
- the domain of B-splines are subdivided by

$$
\mathbf{t}=\left(t_{0}, t_{1}, t_{2}, \ldots, t_{m}, t_{m+1}, \ldots, t_{m+k}\right),
$$

where

- t : is the knot vector, has $m+k$ non-decreasing parameters
- m-th knot span is the half-open inteval $\left[t_{m}, t_{m+1}\right.$)
- m : is the number of control points to be interpolated
- k : is the order of the B-spline curve

B-splines $N_{i, k}$ of order k :

- for $k=1$, the degree is $p=k-1=0$:

$$
N_{i, 1}(t)=\left\{\begin{array}{lll}
1 & : & \text { for } t_{i} \leq t<t_{i+1} \\
0 & : & \text { else }
\end{array}\right.
$$

- a recursive definition for $k>1$

$$
N_{i, k}(t)=\frac{t-t_{i}}{t_{i+k-1}-t_{i}} N_{i, k-1}(t)+\frac{t_{i+k}-t}{t_{i+k}-t_{i+1}} N_{i+1, k-1}(t)
$$

with $i=0, \ldots, m$.

- the above is referred to as the Cox-de Boor recursion formula

The recursive definition of a B-spline basis function $N_{i, k}(t)$:

Examples of B-splines

Examples of B-splines

Overlapping

There are $k=p+1$ overlapping B-splines within an interval.

Uniform B-splines

- Distance between uniform B-splines' control points is constant
- Weight-functions of uniform B-splines are periodic
- All functions have the same form
- Easy to compute

$$
B_{m, k}=B_{m+1, k}=B_{m+2, k}
$$

Non-uniform B-spline of order 3

- Partition of unity: $\sum_{i=0}^{k} N_{i, k}(t)=1$.
- Positivity: $N_{i, k}(t) \geq 0$.
- Local support: $N_{i, k}(t)=0$ for $t \notin\left[t_{i}, t_{i+k}\right]$.
- C^{k-2} continuity:

If the knots $\left\{t_{i}\right\}$ are pairwise different from each other, then

$$
N_{i, k}(t) \in C^{k-2}
$$

i.e. $N_{i, k}(t)$ is $(k-2)$ times continuously differentiable.

A B-spline curve can be composed by combining pre-defined control-points with B-spline basis functions:

$$
\mathbf{r}(t)=\sum_{j=0}^{m} \mathbf{v}_{j} \cdot N_{j, k}(t)
$$

where t is the time, $\mathbf{r}(t)$ is a point on this B -spline curve and \mathbf{v}_{j} are called its control points (de-Boor points).
$\mathbf{r}(t)$ is a C^{k-2} continuous curve if the range of t is $\left[t_{k-1}, t_{m+1}\right]$.

- A series of de-Boor points forms a convex hull for the interpolating curve
- Path always constrained to de-Boor point's convex hull
- De-Boor points are of same dimensionality as B-spline curve
- B-spline curves have locality properties
- control point P_{i} influences the curve only within the interval $\left[\tau_{i}, \tau_{i+p}\right]$

The influence of different control points

The influence of different control points (cont.)

The influence of different control points (cont.)

Question

Given a set of m data points and a degree p, find a B-spline curve of degree p defined by m control points that passes all data points in the given order.

Two methods:

- by solving the following system of equations [9]

$$
\mathbf{q}_{j}(t)=\sum_{j=0}^{m} \mathbf{v}_{j} \cdot N_{j, k}(t) \Longrightarrow Q=N \cdot V
$$

where \mathbf{q}_{j} are the data points to be interpolated, $j=0, \cdots, m$;
N is a $m \times m$ matrix;
V and Q is a $m \times s$ matrices, s is the space dimension.

- by learning, based on gradient-descend.[10]
- Surface reconstruction from laser scan data using B-splines [11]

Pointcloud (16,585 points)

35 patches, 1.36% max. error

285 patches, 0.41% max. error

Surface reconstruction with B-Splines (cont.)

Pointcloud (20,021 points)

Pointcloud (37,974 points)

29 patches, 1.20% max. error

15 patches, 3.00% max. error

156 patches, 0.27% max. error

94 patches, 0.69\% max. error

Surface reconstruction with B-Splines (cont.)

- Surface approximation from mesh data (reduced to 30,000 faces)

Mesh (69,473 faces)

72 patches, 4.64% max. error

153 patches, 1.44% max. error

To match $I+1$ data points $\left(x_{i}, y_{i}\right)(i=0,1, \ldots, I)$ with a polynomial of degree I, the following approach of Lagrange can be used:

$$
p_{l}(x)=\sum_{i=0}^{l} y_{i} L_{i}(x)
$$

The interpolation polynomial in the Lagrange form is defined as follows:

$$
\begin{gathered}
L_{i}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{i-1}\right)\left(x-x_{i+1}\right) \cdots\left(x-x_{l}\right)}{\left(x_{i}-x_{0}\right)\left(x_{i}-x_{1}\right) \cdots\left(x_{i}-x_{i-1}\right)\left(x_{i}-x_{i+1}\right) \cdots\left(x_{i}-x_{l}\right)} \\
L_{i}\left(x_{k}\right)=\left\{\begin{array}{l}
1 \text { if } i=k \\
0 \text { if } i \neq k
\end{array}\right.
\end{gathered}
$$

Introduction to Robotics

Lecture 7

Shuang Li, Jianwei Zhang

[sli, zhang]@informatik.uni-hamburg.de

University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems
July 11, 2020

Outline

Introduction

Spatial Description and Transformations
Forward Kinematics
Robot Description
Inverse Kinematics for Manipulators
Instantaneous Kinematics
Trajectory Generation 1
Trajectory Generation 2
Dynamics
Forward and inverse Dynamics
Dynamics of Manipulators
Newton-Euler-Equation
Langrangian Equations
General dynamic equations
Robot Control

Outline (cont.)

Path Planning
Task/Manipulation Planning
Telerobotics
Architectures of Sensor-based Intelligent Systems
Summary
Conclusion and Outlook

- A multibody system is a mechanical system of single bodies
- connected by joints,
- influenced by forces
- The term dynamics describes the behavior of bodies influenced by forces
- Typical forces: weight, friction, centrifugal, magnetic, spring, ...
- kinematics just models the motion of bodies (without considering forces), therefore it can be seen as a subset of dynamics

Forward and inverse Dynamics

We consider a force F and its effect on a body:

$$
F=m \cdot a=m \cdot \dot{v}
$$

In order to solve this equation, two of the variables need to be known.

If the force F and the mass of the body m is known:

$$
a=\dot{v}=\frac{F}{m}
$$

Hence the following can be determined:

- velocity (by integration)
- coordinates of single bodies
- forward dynamics
- mechanical stress of bodies

Input

$\tau_{i}=$ torque at joint i that effects a trajectory Θ.
$i=1, \ldots, n$, where n is the number of joints.

Output
$\Theta_{i}=$ joint angle of i
$\dot{\Theta}_{i}=$ angular velocity of joint i
$\ddot{\Theta}_{i}=$ angular acceleration of joint i

If the time curves of the joint angles are known, it can be differentiated twice.
This way,

- internal forces
- and torques
can be obtained for each body and joint.
Problems of highly dynamic motions:
- models are not as complex as the real bodies
- differentiating twice (on sensor data) leads to high inaccuracy

Input
$\Theta_{i}=$ joint angle i
$\dot{\Theta}_{i}=$ angular velocity of joint i
$\ddot{\Theta}_{i}=$ angular acceleration of joint i
$i=1, \ldots, n$, where n is the number of joints.

Output

$\tau_{i}=$ required torque at joint i to produce trajectory Θ.

Dynamics of Manipulators

- Forward dynamics:
- Input: joint forces / torques;
- Output: kinematics;
- Application: Simulation of a robot model.
- Inverse Dynamics:
- Input: desired trajectory of a manipulator;
- Output: required joint forces / torques;
- Application: model-based control of a robot.

$$
\begin{aligned}
\tau(t) & \rightarrow \text { direct dynamics } \rightarrow \mathbf{q}(t),(\dot{\mathbf{q}}(t), \ddot{\mathbf{q}}(t)) \\
\mathbf{q}(t) & \rightarrow \text { inverse dynamics } \rightarrow \tau(t)
\end{aligned}
$$

Unlike kinematics, the inverse dynamics is easier to solve than forward dynamics

Two methods for calculation:

- Analytical methods
- based on Lagrangian equations
- Synthetic methods:
- based on the Newton-Euler equations

Computation time

Complexity of solving the Lagrange-Euler-model is $O\left(n^{4}\right)$ where n is the number of joints.
$n=6: 66,271$ multiplications and 51,548 additions.

The description of manipulator dynamics is directly based on the relations between the kinetic K and potential energy P of the manipulator joints.

Here:

- constraining forces are not considered
- deep knowledge of mechanics is necessary
- high effort of defining equations
- can be solved by software

The Lagrangian function L is defined as the difference between kinetic energy K and potential energy P of the system.

$$
L\left(q_{i}, \dot{q}_{i}\right)=K\left(q_{i}, \dot{q}_{i}\right)-P\left(q_{i}\right)
$$

- K: kinetic energy due to linear velocity of the link's center of mass and angular velocity of the link
- P : potential energy stored in the manipulator that is the sum of the potential energy in the individual links

The Lagrangian function L is defined as:

$$
L\left(q_{i}, \dot{q}_{i}\right)=K\left(q_{i}, \dot{q}_{i}\right)-P\left(q_{i}\right)
$$

Theorem

The motion equations of a mechanical system with coordinates $\mathbf{q} \in \Theta^{n}$ and the Lagrangian function L is defined by:

$$
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{i}}-\frac{\partial L}{\partial q_{i}}=F_{i}, \quad i=1, \ldots, n
$$

where
q_{i} : the coordinates, where the kinetic and potential energy is defined;
\dot{q}_{i} : the velocity;
F_{i} : the force or torque, depending on the type of joint (rotational or linear)

- Determine the kinematics from the fixed base to the TCP (relative kinematics)
- The resulting acceleration leads to forces towards rigid bodies
- The combination of constraining forces, payload forces, weight forces and working forces can be defined for every rigid body. All torques and momentums need to be in balance
- Solving this formula leads to the joint forces
- Especially suitable for serial kinematics of manipulator

Recursive Newton-Euler Method (cont.)

1. Newton's equation

$$
F=m \dot{v}_{c}
$$

where F is the force acting at the center of mass of a body, m is the total mass of the body, v_{c} is the acceleration.

2. Euler's equation

$$
\tau={ }^{C} \mathbf{l} \dot{\omega}+\omega \times{ }^{C} \mathbf{l} \omega
$$

- where ${ }^{C} \mathbf{I}$ is the inertia tensor of the body written in a frame C, whose origin is located at the center of the mass.

$$
C_{I}=\left[\begin{array}{ccc}
I_{x x} & -I_{x y} & -I_{x z} \\
-I_{x y} & I_{y y} & -I_{y z} \\
-I_{x z} & -I_{y z} & 1 z z
\end{array}\right]
$$

- τ is the torque
- $\omega, \dot{\omega}$ are the angular velocity and angular acceleration respectively
- Functional affordance
- trajectory and velocity of links
- load on a link
- Control quantity
- velocity and acceleration of joints
- forces and torques
- Robot-specific elements
- geometry
- mass distribution
- Determining joint forces and torques for one point of a trajectory $(\Theta, \dot{\Theta}, \ddot{\Theta})$
- Determining the motion of a link or the complete manipulator for given joint-forces and -torques (τ)
To achieve this the mathematical model is applied.

Formulation of robot dynamics

- Combining the different influence factors in the robot specific motion equation from kinematics $(\Theta, \dot{\Theta}, \ddot{\Theta})$
- Practically the Newton-, Euler- and motion-equation for each joint are combined
- Advantages: numerically efficient, applicable for complex geometry, can be modularized
- We can determine the forces with the Newton-equation
- The Euler-equation provides the torque
- The combination provides force and torque for each joint.

Example: A 2 DOF manipulator

Dynamics of a multibody system, example: a two joint manipulator.

Using Newton's second law, the forces at the center of mass at link 1 and 2 are:

$$
\mathbf{F}_{1}=m_{1} \ddot{\mathbf{r}}_{1}
$$

$$
\mathbf{F}_{2}=m_{2} \ddot{\mathbf{r}}_{2}
$$

where

$$
\begin{gathered}
\mathbf{r}_{1}=\frac{1}{2} l_{1}\left(\cos \theta_{1} \vec{i}+\sin \theta_{1} \vec{j}\right) \\
\mathbf{r}_{2}=2 \mathbf{r}_{1}+\frac{1}{2} l_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right) \vec{i}+\sin \left(\theta_{1}+\theta_{2}\right) \vec{j}\right]
\end{gathered}
$$

Newton-Euler-Equations for 2 DOF manipulator (cont.)

Euler equations:

$$
\begin{aligned}
& \tau_{1}=\mathbf{I}_{1} \dot{\omega}_{1}+\omega_{1} \times \mathbf{I}_{1} \omega_{1} \\
& \tau_{2}=\mathbf{I}_{2} \dot{\omega}_{2}+\omega_{2} \times \mathbf{I}_{2} \omega_{2}
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathbf{I}_{1}=\frac{m_{1} /_{1}^{2}}{12}+\frac{m_{1} R^{2}}{4} \\
& \mathbf{I}_{2}=\frac{m_{2} /_{2}^{2}}{12}+\frac{m_{2} R^{2}}{4}
\end{aligned}
$$

Newton-Euler-Equations for 2 DOF manipulator (cont.)

The angular velocities and angular accelerations are:

$$
\begin{gathered}
\omega_{1}=\dot{\theta}_{1} \\
\omega_{2}=\dot{\theta}_{1}+\dot{\theta}_{2} \\
\dot{\omega}_{1}=\ddot{\theta}_{1} \\
\dot{\omega}_{2}=\ddot{\theta}_{1}+\ddot{\theta}_{2}
\end{gathered}
$$

As $\omega_{i} \times \mathbf{I}_{i} \omega_{i}=0$, the torques at the center of mass of links 1 and 2 are:

$$
\begin{gathered}
\tau_{1}=\mathbf{l}_{1} \ddot{\theta}_{1} \\
\tau_{2}=\mathbf{I}_{2}\left(\ddot{\theta}_{1}+\ddot{\theta}_{2}\right)
\end{gathered}
$$

$\mathbf{F}_{1}, \mathbf{F}_{2}, \tau_{1}, \tau_{2}$ are used for force and torque balance and are solved for joint 1 and 2.

Example: A two joint manipulator

The kinetic energy of mass m_{1} is:

$$
K_{1}=\frac{1}{2} m_{1} d_{1}^{2}{\dot{\theta_{1}}}^{2}
$$

The potential energy is:

$$
P_{1}=-m_{1} g d_{1} \cos \left(\theta_{1}\right)
$$

The cartesian positions are:

$$
\begin{gathered}
x_{2}=d_{1} \sin \left(\theta_{1}\right)+d_{2} \sin \left(\theta_{1}+\theta_{2}\right) \\
y_{2}=-d_{1} \cos \left(\theta_{1}\right)-d_{2} \cos \left(\theta_{1}+\theta_{2}\right)
\end{gathered}
$$

The cartesian components of velocity are:

$$
\begin{aligned}
& \dot{x}_{2}=d_{1} \cos \left(\theta_{1}\right) \dot{\theta}_{1}+d_{2} \cos \left(\theta_{1}+\theta_{2}\right)\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right) \\
& \dot{y}_{2}=d_{1} \sin \left(\theta_{1}\right) \dot{\theta}_{1}+d_{2} \sin \left(\theta_{1}+\theta_{2}\right)\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right)
\end{aligned}
$$

The square of velocity is:

$$
v_{2}^{2}={\dot{x_{2}}}^{2}+{\dot{y_{2}}}^{2}
$$

The kinetic energy of link 2 is:

$$
K_{2}=\frac{1}{2} m_{2} v_{2}^{2}
$$

The potential energy of link 2 is:

$$
P_{2}=-m_{2} g d_{1} \cos \left(\theta_{1}\right)-m_{2} g d_{2} \cos \left(\theta_{1}+\theta_{2}\right)
$$

The Lagrangian function is:

$$
L=\left(K_{1}+K_{2}\right)-\left(P_{1}+P_{2}\right)
$$

The force/torque to joint 1 and 2 are:

$$
\begin{aligned}
& \tau_{1}=\frac{d}{d t} \frac{\partial L}{\partial \dot{\theta}_{1}}-\frac{\partial L}{\partial \theta_{1}} \\
& \tau_{2}=\frac{d}{d t} \frac{\partial L}{\partial \dot{\theta}_{2}}-\frac{\partial L}{\partial \theta_{2}}
\end{aligned}
$$

Langragian Method for two joint manipulator (cont.)

τ_{1} and τ_{2} are expressed as follows:

$$
\begin{aligned}
\tau_{1}= & D_{11} \ddot{\theta}_{1}+D_{12} \ddot{\theta}_{2}+D_{111} \dot{\theta}_{1}^{2}+D_{122} \dot{\theta}_{2}^{2} \\
& +D_{112} \dot{\theta}_{1} \dot{\theta}_{2}+D_{121} \dot{\theta}_{2} \dot{\theta}_{1}+D_{1} \\
\tau_{2}= & D_{21} \ddot{\theta}_{1}+D_{22} \ddot{\theta}_{2}+D_{211} \dot{\theta}_{1}^{2}+D_{222} \dot{\theta}_{2}^{2} \\
& +D_{212} \dot{\theta}_{1} \dot{\theta}_{2}+D_{221} \dot{\theta}_{2} \dot{\theta}_{1}+D_{2}
\end{aligned}
$$

where
$D_{i i}$: the inertia to joint i;
$D_{i j}$: the coupling of inertia between joint i and j;
$D_{i j j}$: the coefficients of the centripetal force to joint i because of the velocity of joint j;
$D_{i i k}\left(D_{i k i}\right)$: the coefficients of the Coriolis force to joint i effected by the velocities of joint i and k;
D_{i} : the gravity of joint i.

General dynamic equations of a manipulator

$$
\tau=M(\Theta) \ddot{\Theta}+V(\Theta, \dot{\Theta})+G(\Theta)
$$

$M(\Theta)$: the position dependent $n \times n$-mass matrix of a manipulator For the example given above:

$$
M(\Theta)=\left[\begin{array}{ll}
D_{11} & D_{12} \\
D_{21} & D_{22}
\end{array}\right]
$$

$V(\Theta, \dot{\Theta})$: an $n \times 1$-vector of centripetal and coriolis coefficients For the example given above:

$$
V(\Theta, \dot{\Theta})=\left[\begin{array}{l}
D_{111} \dot{\theta}_{1}^{2}+D_{122} \dot{\theta}_{2}^{2}+D_{112} \dot{\theta}_{1} \dot{\theta}_{2}+D_{121} \dot{\theta}_{2} \dot{\theta}_{1} \\
D_{211} \dot{\theta}_{1}^{2}+D_{222} \dot{\theta}_{2}^{2}+D_{212} \dot{\theta}_{1} \dot{\theta}_{2}+D_{221} \dot{\theta}_{2} \dot{\theta}_{1}
\end{array}\right]
$$

- a term such as $D_{111} \dot{\theta}_{1}^{2}$ is caused by coriolis force;
- a term such as $D_{112} \dot{\theta}_{1} \dot{\theta}_{2}$ is caused by coriolis force and depends on the (math.) product of the two velocities.
- $G(\Theta)$: a term of velocity, depends on Θ.
- for the example given above

$$
G(\Theta)=\left[\begin{array}{l}
D_{1} \\
D_{2}
\end{array}\right]
$$

Robot dynamics with flexible joint model

$$
\begin{aligned}
M(q) \ddot{q}+C(q, \dot{q}) \dot{q}+g(q) & =\tau+D K^{-1} \dot{\tau}+\tau_{e x t} \\
B \ddot{\theta}+\tau+D K^{-1} \dot{\tau} & =\tau_{m}-\tau_{f} \\
\tau & =K(\theta-q)
\end{aligned}
$$

- flexible joint as a two-mass model

Applications of robot dynamics

KUKA LWR's model-based control

- shortening the motion time without generating overshoots
- giving large reduction of the tracking error

Applications of robot dynamics (cont.)

KUKA iiwa's hand teaching

- Free movement by hand with dynamics compensation on each joint

Introduction to Robotics

Lecture 8

Shuang Li, Jianwei Zhang

[sli, zhang]@informatik.uni-hamburg.de

University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems

July 11, 2020

Outline

Introduction
Spatial Description and Transformations
Forward Kinematics
Robot Description
Inverse Kinematics for Manipulators
Instantaneous Kinematics
Trajectory Generation 1
Trajectory Generation 2
Dynamics
Robot Control
Introduction
Internal Sensors of Robots
PID controller
Classification of Robot Arm Controllers

Outline (cont.)

Path Planning
Task/Manipulation Planning
Telerobotics
Architectures of Sensor-based Intelligent Systems
Summary
Conclusion and Outlook

Dynamics - Recapitulation

- Forward dynamics:
- Input: joint forces / torques;
- Output: kinematics;
- Application: Simulation of a robot model.
- Inverse Dynamics:
- Input: desired trajectory of a manipulator;
- Output: required joint forces / torques;
- Application: model-based control of a robot.

$$
\begin{aligned}
\tau(t) & \rightarrow \text { direct dynamics } \rightarrow \mathbf{q}(t),(\dot{\mathbf{q}}(t), \ddot{\mathbf{q}}(t)) \\
\mathbf{q}(t) & \rightarrow \text { inverse dynamics } \rightarrow \tau(t)
\end{aligned}
$$

Dynamics - Recapitulation

General inverse dynamic equations of a manipulator:

$$
\tau=M(\Theta) \ddot{\Theta}+V(\Theta, \dot{\Theta})+G(\Theta)
$$

Forward dynamic equations of a manipulator:

$$
\begin{aligned}
& \ddot{\Theta}=M^{-1}(\Theta)(\tau-V(\Theta, \dot{\Theta})-G(\Theta)) \\
& \dot{\Theta}=\int \ddot{\Theta} d t \\
& \Theta=\int \dot{\Theta} d t
\end{aligned}
$$

Unlike kinematics, the inverse dynamics is easier to solve than forward dynamics.

Dynamics - Recapitulation

Two methods for calculation:

- Analytical methods
- based on Lagrangian equations

$$
L\left(q_{i}, \dot{q}_{i}\right)=K\left(q_{i}, \dot{q}_{i}\right)-P\left(q_{i}\right)
$$

- Synthetic methods:
- based on the Newton-Euler equations

Drawing task

Wiping task

Controller

- Influences one or more physical variables
- meet a control variable
- reduce disturbances
- Compares actual value to reference value
- minimize control deviation

Development of Control Engineering - Timeline

1788 J. Watt: engine speed governor
1877 J. Routh: differential equation for the description of control processes
1885 A. Hurwitz: stability studies
1932 A. Nyquist: frequency response analysis
1940 W. Oppelt: frequency response analysis, Control Engineering becomes an independent discipline
1945 H . Bode: discipline new methods for frequency response analysis
1950 N. Wiener: statistical methods
1956 L. Pontrjagin: optimal control theory, maximum principle
1957 R. Bellmann: dynamic programming
1960 direct digital control
1965 L. Zadeh: Fuzzy-Logic
1972 Microcomputer use
1975 Control systems for automation
1980 Digital device technology
1985 Fuzzy-controller for industrial use
1995 Artificial neuronal networks for industrial use

Control Problem

Given: dynamic system (to be controlled)

- Model describing dynamic system (e.g. Jacobian)
- Input variables - control variables
- measured values (sensor data)
- Output variables - controlled variables
- system input (force/torque data)

Problem

- Keep control variable values constant and / or
- Follow a reference value and / or
- Minimize the influence of disturbances

Sought: controller (for dynamic system)

- Implement hardware or software controller
- Alter controlled-variables (output)
- Based on control variables (input)
- Solve the problem

Example: Cruise Control

Input

- Speed over ground
- Relative speed to traffic
- Distance to car in front
- Distance to car behind
- Weather conditions
- Relative position in road lane

Output

- Throttle
- Brakes
- Steering

Control System of a Robot

- Target values
- $\Theta_{d}(t)$
- $\dot{\Theta}_{d}(t)$
- $\ddot{\Theta}_{d}(t)$
- Magnitude of error
- $E=\Theta_{d}-\Theta, \dot{E}=\dot{\Theta}_{d}-\dot{\Theta}$
- Output (Control) value
- $\Theta(t)$
- $\dot{\Theta}(t)$
- Controlled value
- τ

- Placed inside the robot
- Monitor the internal state of the robot
- e.g. position and velocity of a joint

Position measurement systems

- Potentiometer
- Incremental/absolute encoder
- Resolver

Velocity measurement systems

- Speedometers
- Calculate from position change over time

Optical Incremental Encoders

Optical Absolute Encoder

- analog rotation encoding
- phase shift between U_{A} and U_{B} determines rotation
- precision depending on digital converter
- Encoder:
- higher accuracy
- simplicity of integration, and update
- suitable for applications with high acceleration and deceleration rates
- Resolver:
- lack of sensitive optics
- resistant to electrical disturbances
- complexity of integrating a resolver into a system
- suitable for extremely harsh applications, such as military and aerospace equipment

Control System Architecture of PUMA-Robot

- two-level hierachical structure of control system
- DEC LSI-11 sends joint values at 35.7 Hz (28 ms)
- trajectory
- Distance of actual value to goal value is interpolated
- using $8,16,32$ or 64 increments

Control System Architecture of PUMA-Robot (cont.)

- The joint control loop operates at 1143 Hz (0.875 ms)
- Encoders are used as position sensors
- No dedicated speedometer
- velocity is calculated as the difference of joint positions over time
- more than half of the industrial controllers in use today are PID controllers or modified PID controllers
- many different types of tuning rules have been proposed in the literature
- Using these tuning rules, delicate and fine tuning of PID controllers can be made on-site

P Proportional controller
I Integral controller
D Derivative controller

Bang Bang (On-off) controller

This is the simplest form of control.

Proportional control

In proportional mode, there is a continuous linear relation between value of the controlled variable and position of the final control element.

- $e(t)=\theta_{d}-\theta$
- output of proportional controller is $\tau(t)=K_{p} e(t), K_{p}$ is proportional gain.

Proportional control (cont.)

- Using P control is simple, but often insufficient:
- If K_{p} is small, the sensor reading will approach the setpoint slowly and never reach it
- As the gain is increased the system responds faster to changes in set-point but becomes progressively underdamped and eventually unstable.
- If K_{p} is large, the system may overshoot, oscillate (i.e. become unstable)

- $\tau(t)=K_{p} e(t)+K_{i} \int e d t$
- The P term will take care of the large movement
- Integral signal is sum of all instantaneous errors
- The I term will take care of any steady-state error

Proportional-Integral (PI) control (cont.)

- It eliminates steady-state error
- It can help with stability of the system, especially if K_{p} is large
- But, it responds relatively slowly to an error signal

Proportional-Derivative (PD) control

- $\tau(t)=K_{p} e(t)+K_{d} \dot{e}(t)$
- Differential term at time $n=K_{d}(e(n)-e(n-1) / \Delta t)$

The main advantages of the PD controllers are:

- The derivative term acts as "brake" to the system
- It can improve the system's tolerance to external disturbances

P Proportional controller: $\tau(t)=k_{p} \cdot e(t)$ The amplification factor k_{p} defines the sensitivity.
I Integral controller: $\tau(t)=k_{i} \cdot \int_{t_{0}}^{t} e\left(t^{\prime}\right) d t^{\prime}$
Long term errors will sum up.
D Derivative controller: $\tau(t)=k_{v} \cdot \dot{e}(t)$
This controller is sensitive to changes in the deviation.
Combined \Rightarrow PID-controller:

$$
\tau(t)=k_{p} \cdot e(t)+k_{v} \cdot \dot{e}(t)+k_{i} \int_{t_{0}}^{t} e\left(t^{\prime}\right) d t^{\prime}
$$

Linear Control for Trajectory Tracking

$$
\begin{equation*}
f^{\prime}=\ddot{x}_{d}+k_{v} \dot{e}+k_{p} e+k_{i} \int e d t \tag{47}
\end{equation*}
$$

is called the principle of PID-control.

	Rise time	Overshoot	Settling time	S-S error
Kp	decrease	increase	small change	decrease
Ki	decrease	increase	increase	eliminate
Kd	small change	decrease	decrease	small change

Further Resources

- PID Control with Python (simple-pid)
- PID Control with MATLAB and Simulink

1. Obtain an open-loop response and deternine what needs to be improved
2. Add a P control to improve the rise time
3. Add a D control to improve the overshoot
4. Add a I control to eliminate the steady-state error
5. Adjust each of K_{p}, K_{d}, K_{i} until you obtain a desrired overall response

Model-Based Control for Trajectory Tracking

The dynamic equation:

$$
\tau=M(\Theta) \ddot{\Theta}+V(\Theta, \dot{\Theta})+G(\Theta)
$$

where $M(\Theta)$ is the position-dependent $n \times n$-mass matrix of the manipulator, $V(\Theta, \dot{\Theta})$ is a $n \times 1$-vector of centripetal and Coriolis factors, and $G(\Theta)$ is a complex function of Θ, the position of all joints of the manipulator.

Classification of Robot Arm Controllers

As the problem of trajectory-tracking:

- Joint space: PID, plus model-based
- Cartesian space: joint-based
- using kinematics or using inverse Jacobian calculation
- Adaptive: model-based adaptive control, self-tuning
- controller (structure and parameter) adapts to the time-invariant or unknown system-behavior
- basic control circle is superimposed by an adaptive system
- process of adaption consists of three phases
- identification
- decision-process
- modification
- Hybrid force and position control is also a popular research topic

- Cartesian trajectory is converted into joint space first
- joint space trajectory is sent to the controller
- trajectory controller sends joint targets to motor controllers
- motor controller sends torque data to motor
- sensors output joint state

- controller operates in cartesian space
- joint space conversion within control cycle
- error values in cartesian space using FK

Control in Cartesian Space - Method III

- no explicit joint space conversion
- dynamic conversion using inverse Jacobian

Robot Control Improvements

Scientific Research

- model-based control
- adaptive control
- hybrid control

Industrial robotcs

- PID-control system with gravity compensation

$$
\tau=\dot{\Theta}_{d}+K_{v} \dot{E}+K_{p} E+K_{i} \int E d t+\hat{G}(\Theta)
$$

Motivation

Certain tasks require control of both: position and force of the end effector:

- assembly
- grinding
- opening/closing doors
- crank winding

An example shows two feedback loops for separate control of position and force

Franke Emika Panda

Introduction to Robotics

Lecture 09

Shuang Li, Jianwei Zhang

[sli, zhang]@informatik.uni-hamburg.de

University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems

July 11, 2020

Outline

Introduction
Spatial Description and Transformations
Forward Kinematics
Robot Description
Inverse Kinematics for Manipulators
Instantaneous Kinematics
Trajectory Generation 1
Trajectory Generation 2
Dynamics
Robot Control
Path Planning
Feasible Trajectories
Geometry Representations
C-Space

Planner Approaches
Discretized Space Planning
Potential Field Method
Probabilistic Planners
Probabilistic Road Maps
Rapidly-exploring Random Trees
Expansive Space Trees
Auxiliary Techniques
Optimal Planning
Planner*
Task/Manipulation Planning
Telerobotics
Architectures of Sensor-based Intelligent Systems
Summary
Conclusion and Outlook

Problem: Generate a continuous trajectory from state A to state B

Approach from previous lectures:
Generate quintic B-Splines from A to B :

- Trapezoidal time parameterization
- Minimum jerk parameterization
- Time-optimal motion parameterization

UR5 setup with exemplary start and goal states

From A to B - Trajectory Generation

Generated splines of trapezoidal trajectory

All waypoints of generated trapezoidal trajectory

Start and Goal state with box obstacle

If the path is blocked, the generated trajectory is invalid/infeasible and should not be executed!

Typical obstacles include:

- Walls / Tables
- Robot links
- Objects (to be manipulated)
- Humans

Getting this right is harder than it looks.

Start and Goal state with box obstacle

Infeasible Trajectories

Shadow Hand rammed into styrofoam table

All waypoints of collision-free trajectory

From A to B

Splines of collision-free trajectory

Workspace with two box obstacles

All waypoints of collision-free trajectory

From A to B

Splines of collision-free trajectory

Feasible trajectories have to satisfy hard geometric constraints.
The most important criterion is a collision-free trajectory.

- Collisions between parts of the robot (self collisions)
- Collisions with the environment

Countless other criteria can also be important:

- Carrying a container with liquid, no liquid must spill
- Spraying color on a workpiece, the nozzle must always point at the piece
- Getting close or moving directly towards humans

Most of these constraints define Constraint Manifolds in the full planning space. This lecture focuses on collision-aware planning.

Path Planning
Feasible Trajectories
Geometry Representations
C-Space
Planner Approaches
Probabilistic Planners
Optimal Planning

Detecting Collisions

In order to detect expected collisions, we need a geometric Environment Model.

- Need to represent all relevant collision shapes
- Trade-off between exact representations and computational load
- Collision tests should run as fast as possible

end-effector collision with box

end-effector collision with upper arm link
- Standard 3D representation for arbitrary shapes
- General collision checks are costly (Triangle intersection tests)
- Modelled details should depend on required accuracy
- Usually very coarse
- Convex Meshes are much more efficient to test. Non-colliding objects can always be separated by a plane.

PR2 left arm mesh representation

Visual model and convex collision representation of Panda robot arm

Sphere Representations

Parameters: center point c, radius r.

- Sphere/Sphere collisions afford the cheapest check: $\left\langle c_{1}, r 1\right\rangle$ and $\left\langle c_{2}, r_{2}\right\rangle$ collided iff $\left|c_{1}-c_{2}\right|<r_{1}+r_{2}$
- Sufficient spheres can approximate any shape reasonably accurate:

Approximation of PR2 robot with 139 spheres with radius 10 cm

Cowley 2013 [12]

Primitive analytical shapes can be used for more accurate descriptions:

- Cube: pose p, scales for 3 axes
- Cylinder: pose p, radius r, height h
- Cone: pose p, radius r, height h
- Plane: pose p

Many analytical shapes allow for faster collision checks.
To do (??)

Capsules comprise two half-spheres and a connecting cylinder.

Less common analytical shape, supported in many robotics contexts.

Parameters: pose p, radius r, height h, optionally scale parameters

A primitive capsule

To do (??)

Visual and collision model of a Shadow Dexterous Hand with tactile fingertips

Voxelgrids / Octomaps

All analytical shapes require geometric knowledge about the scene.
Octomaps represent sensor data (depth measurements) directly

- Keeps geometric structure
- Sparse representation
- Efficient updates

Parameters: pose p, minimal voxel resolution r, datapoints

Octomap representation of a tree at different resolutions
A. Hornung et.al. 2013 [13]

Voxel representation of a human interacting with a UR10 robot
© GPU Voxels

- Hybrid models allow to trade-off computation time and accuracy
- Requires collision checks between each pair of types of collision body

Huge amount of background literature and research in 3D Computer Graphics. Collision checking in full scenes can be optimized much further optimization:

- Broadphase-collision checking
- Convex decompositions
- Hardware-accelerated checking

Path Planning

Feasible Trajectories
Geometry Representations

C-Space

Planner Approaches
Probabilistic Planners
Optimal Planning

Workspace And Configuration Space - Illustration

reachable workspace

Configuration Space

Definition

The parameters that define the configuration of the system are called Generalized
Coordinates, and the vector space defined by these coordinates is called the Configuration Space \mathcal{X}.

In robotics, generalized coordinates include

- Joint positions for each controlled joint
- Cartesian poses for mobile robots
$\mathcal{X}_{\text {obs }} \subset \mathcal{X}$ describes the set of all configurations in collision.
$\mathcal{X}_{\text {free }}=\mathcal{X} \backslash \mathcal{X}_{\text {obs }}$ describes the collision-free planning space.

Whereas all intuitive reasoning and system description takes place in the Workspace, planning usually proceeds in the C-space.

Confusing terminology:

- The workspace is often referred to as reachable Cartesian space.
- Configuration space is often shortened to \mathbf{C}-space.
- For mobile robots, Cartesian poses can be (part of) the C-space.

Workspace to Configuration Space - Example

Workspace scheme with multiple states

\bigcirc
1

Workspace with target end-effector regions

- Workspaces (position-only) are described by 2 or 3 dimensions
- Effective C-spaces have 6 or more dimensions

Trajectory in n-dimensional C-space

C-space visualization for simulated 3dof arm
D. Berenson et.al. 2009 [14]

- The parameters of a system, i.e. Generalized Coordinates, span a vector space
- This space is called the C-space \mathcal{X} of the system
- $\mathcal{X}_{\text {free }}$ describes the collision-free subspace of \mathcal{X}
- $x \in \mathcal{X}_{\text {free }}$ can be tested by collision-checking
- Usually the space is not parameterized (can not be easily described)
- Cartesian space and C-space can coincide in navigation tasks where only the pose of the robot is a parameter

Path Planning

Feasible Trajectories

Geometry Representations

C-Space

Planner Approaches
Discretized Space Planning Potential Field Method
Probabilistic Planners Optimal Planning

Definition

A Path Planning Problem is described by a triple $\left\langle\mathcal{X}_{\text {free }}, x_{\text {start }}, \mathcal{X}_{\text {goal }}\right\rangle$, where

- $x_{\text {start }} \in \mathcal{X}_{\text {free }}$ is the start state
- $\mathcal{X}_{\text {goal }} \subset \mathcal{X}$ describes a goal region

Definition

A mapping $\tau:[0,1] \rightarrow R^{n}$ onto a C-space \mathcal{R}^{n} is called a

- Path if it describes a finite, continous trajectory.
- Collision-free Path if $\operatorname{Range}(\tau) \subseteq \mathcal{X}_{\text {free }}$
- Feasible Path if it is collision-free, $\tau(0)=x_{\text {start }}$, and $\tau(1) \in \mathcal{X}_{\text {goal }}$

Feasible Path Planning requires planners to find a feasible path for any given path planning problem. The ideal planner is

- correct - all reported paths are feasible
- complete - if a feasible path exist, it will be found
- performs with bounded runtime - if no path exists, it will fail

In practice,

- correctness is often traded for feasible runtime performance.
- actual correctness is defined by the real world, not by the planning model. If an object is not modelled, it will not be considered.
- most methods can not report failures and are only asymptotically complete.

Simple Idea: Discretize planning space \& run A^{*} on the resulting grid

- Classical path search algorithm
- Returns optimal plan in grid
- Works well for planar path planning

A* planner finding an optimal path in the grid

- Solutions limited to grid resolution
- Sufficiently high resolution required for correctness/completeness
- Discretization explicitly represents the whole space volume
- Curse-of-Dimensionality:
- assuming 1 deg resolution and 360 deg joint range
- 2 joints yield 129600 unique states
- 3 joints yield 46656000 unique states
- 6 joints yield $\sim 2.18 e 15$ unique states
- Explicit representation of the whole space is clearly not feasible.

Alternative Idea: Represent space entirely through continuous function $f: R^{n} \rightarrow R$.

- No explicit space representation
- Can be evaluated as needed

Khatib 1986:
The manipulator moves in a field of forces. The position to be reached is an attracting pole for the end effector and obstacles are repulsive surfaces for the manipulator parts.

- Initially developed for real-time collision avoidance
- Potential field associates a scalar value $f(p)$ to every point p in space
- Robot moves along the negative gradient $-\nabla f(p)$, a "force" applied to the robot
- f 's global minimum should be at the goal configuration
- An ideal field used for navigation should
- be smooth
- have only one global minimum
- the values should approach ∞ near obstacles

- The attracting force (of the goal)

$$
\vec{F}_{\text {goal }}(\mathbf{p})=-\kappa_{\rho}\left(\mathbf{p}-\mathbf{p}_{\text {goal }}\right)
$$

- where
κ_{ρ} is a constant gain factor
- The potential field (of obstacles)

$$
U(\mathbf{x})= \begin{cases}\frac{1}{2} \eta\left(\frac{1}{\rho(\mathbf{p})}-\frac{1}{\rho_{0}}\right)^{2} & \text { if } \rho(\mathbf{p}) \leq \rho_{0} \\ 0 & \text { else }\end{cases}
$$

- where
η is a constant gain factor
$\rho(\mathbf{p})$ is the shortest distance to the obstacle O
ρ_{0} is a threshold defining the region of influence of an obstacle
- The repulsive force of an obstacle

$$
\vec{F}_{\text {obstacle }}(\mathbf{p})= \begin{cases}\eta\left(\frac{1}{\rho(\mathbf{p})}-\frac{1}{\rho_{0}}\right) \frac{1}{\rho(\mathbf{p})^{2}} \frac{d \rho(\mathbf{p})}{d \mathbf{p}} & \text { if } \rho(\mathbf{p}) \leq \rho_{0} \\ 0 & \text { if } \rho(\mathbf{p})>\rho_{0}\end{cases}
$$

- where $\frac{d \rho(\mathbf{p})}{d \mathbf{p}}$ is the partial derivative vector of the distance from the point to the obstacle.

Basic Principle

Advantages:

- Implicit State Representation
- Real-time capable

Disadvantages:

- Incomplete algorithm
- Existing solution might not be found
- Calculation might not terminate if no solution exists
- $\rho(p)$ is only intuitive in 2D and 3D
- Obstacles in 6D C-space have complex shapes

Introduction to Robotics

Lecture 10

Shuang Li, Jianwei Zhang

[sli, zhang]@informatik.uni-hamburg.de

University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems
July 11, 2020

Path Planning

Probabilistic Planners

Probabilistic Road Maps
Rapidly-exploring Random Trees
Expansive Space Trees
Auxiliary Techniques

- Planning on graphs of reasonable size is simple
- Operating on grids ignores continuous spaces in $\mathcal{X}_{\text {free }}$
- Instead rely on Probabilistic Sampling to represent the space

Key questions:

- How to generate the samples?
- How can the samples be connected to form a planning graph?
- How many samples do you need to describe the space?

Abstract C-space with sampled valid states

Proposed by Lydia E. Kavraki et.al. 1996 [17]
Two Step algorithm:

1. Construction Phase - Build Roadmap
2. Query Phase - Connect start and goal to graph and solve graph search

Abstract C-space with sampled valid states

Probabilistic Road Maps - Algorithm

```
Algorithm: sPRM
\(\mathbf{1} V \leftarrow\left\{x_{\text {init }}\right\} \cup\left\{\text { SampleFree }_{i}\right\}_{i=1, \ldots, n} ; E \leftarrow \emptyset ;\)
2 foreach \(v \in V\) do
\(3 \quad U \leftarrow \operatorname{Near}(G=(V, E), v, r) \backslash\{v\} ;\)
\(4 \quad\) foreach \(u \in U\) do
\(5 \quad \quad \quad\) if CollisionFree \((v, u)\) then \(E \leftarrow E \cup\{(v, u),(u, v)\}\)
6 return \(G=(V, E)\);
```

$$
\sqrt{2} \sqrt{2}
$$

Milestones and Roadmap - Query
Path Planning - Probabilistic Planners - Probabilistic Road Maps
Introduction to Robotics


```
Algorithm: sPRM
\(V \leftarrow\left\{x_{\text {init }}\right\} \cup\left\{\text { SampleFree }_{i}\right\}_{i=1, \ldots, n} ; E \leftarrow \emptyset ;\)
2 foreach \(v \in V\) do
\(3 \quad U \leftarrow \operatorname{Near}(G=(V, E), v, r) \backslash\{v\} ;\)
\(4 \quad\) foreach \(u \in U\) do
            if CollisionFree \((v, u)\) then \(E \leftarrow E \cup\{(v, u),(u, v)\}\)
6 return \(G=(V, E)\);
```

- SampleFree - Sample states from $\mathcal{X}_{\text {free }}$
- Near - Choose Distance metric and threshold
- CollisionFree (v, u) - Check motion between states for collisions

SampleFree - sample states from $\mathcal{X}_{\text {free }}$

- Traditionally: Rejection Sampling

Take samples uniformally, add sample if $x \in \mathcal{X}_{\text {free }}$

- Alternatives:
- Projective Sampling: Replace samples $x \in \mathcal{X}_{\text {obs }}$ by closest state $x^{\prime} \in \mathcal{X}_{\text {free }}$
- Generative Samoling: For a sufficient narameterized space $\mathcal{X}^{\prime} \subset \mathcal{X}_{\text {froo }}$:

Example

3dof planning problem

Definition

If only a single path is requested in a potentially changing scene, this is called single-query planning. If datastructures remain valid between motion requests, this is called multi-query planning.

PRM solves a multi-query problem by building an undirected graph.
For single-shot planning, the graph search can be avoided altogether.

Proposed by Kuffner and LaValle 2000 [18]

Instead of building a graph, grow a tree from the start state.

If for any leaf state $x \in \mathcal{X}_{\text {goal }}$, a solution is found.

RRT at multiple stages of extension

```
Algorithm 3: RRT
\(\mathbf{1} V \leftarrow\left\{x_{\text {init }}\right\} ; E \leftarrow \emptyset\);
2 for \(i=1, \ldots, n\) do
\(3 \quad x_{\text {rand }} \leftarrow\) SampleFree \({ }_{i}\);
\(4 \quad x_{\text {nearest }} \leftarrow \operatorname{Nearest}\left(G=(V, E), x_{\text {rand }}\right)\);
\(5 \quad x_{\text {new }} \leftarrow \operatorname{Steer}\left(x_{\text {nearest }}, x_{\text {rand }}\right)\);
\(6 \quad\) if ObtacleFree \(\left(x_{\text {nearest }}, x_{\text {new }}\right)\) then
\(7 \quad\left\lfloor V \leftarrow V \cup\left\{x_{\text {new }}\right\} ; E \leftarrow E \cup\left\{\left(x_{\text {nearest }}, x_{\text {new }}\right)\right\}\right.\);
8 return \(G=(V, E)\);
```

Steer (x, y) - Compute new state x^{\prime}

- Move from x towards $y:\left\|y-x^{\prime}\right\|<\|y-x\|$
- $\left\|x-x^{\prime}\right\|<\eta$ to limit step size
- Alternatively compute closest $x^{\prime} \in \mathcal{X}_{\text {free }}$ reachable via straight motion SampleFree - sample states from $\mathcal{X}_{\text {free }}$
- Traditionally: uniform sampling

Example

Bi-Directional Search

In robotics, start and goal are often in constraint areas of $\mathcal{X}_{\text {free }}$, e.g., close to obstacles.
The transition phase between these states is often quite flexible.

Instead of growing a single tree towards the goal

- Grow two trees from start and goal each.
- Attempt to connect them at each step.

In practice, this speeds up planning to the first solution significantly.

Bi-directional search trees [19]

RRT-Connect - Example

PRM and RRT sample random configurations from $\mathcal{X}_{\text {free }}$.
Thus they also sample in areas which are already well-represented by milestones.

Definition

The density around a state x can be represented by the cardinality of its neighborhood within a distance $d:\left|N_{d}(x)\right|$.

Ideas

- Sample next expansion step weighted by inverse density $w(x)=\frac{1}{\left|N_{d}(x)\right|}$
- Stochastically reject samples in high-density areas

Algorithm expansion

1. Pick a node x from V with probability $1 / w(x)$.
2. Sample K points from $N_{d}(x)=\left\{q \in \mathcal{C} \mid \operatorname{dist}_{c}(q, x)<d\right\}$, where dist $_{c}$ is some distance metric of \mathcal{C}. (K and d are parameters.)
3. for each configuration y that has been picked do
4. calculate $w(y)$ and retain y with probability $1 / w(y)$.
5. if y is retained, clearance $(y)>0$ and $\operatorname{link}(x, y)$ returns YES
6. then put y in V and place an edge between x and y.

- Expand from an existing node instead of global samples from \mathcal{X}
- Samples rejected in 4. are never collision checked!
- Original formulation is bidirectional

(Bi)EST - Example

(Bi-directional) EST for an example

The resulting paths are not smooth and often contain unnecessary motions.
Traditional post-processing includes:

- Path Shortcutting
- Repeatedly pick two non-consecutive waypoints and attempt to connect them
- Perturbation of individual waypoints
- Optional
- Can reduce solution costs
- Computationally expensive
- For differentiable costs: exploit gradient
- Fit smooth splines through waypoints

All modifications need to be collision checked.

Redundant robots generate multiple joint solutions per pose.

Each Cartesian goal region adds a number of disjoint C-space goal regions.

Most tree-based planners naturally extend to Multi-Goal Planning, implicitly building multiple goal trees.

Multiple IK solutions for one target pose © Hendrich

Optimal Planning

Definition

An Optimal Path Planning Problem is defined by a path planning problem
$\mathcal{P}=\left\langle\mathcal{X}_{\text {free }}, x_{\text {init }}, \mathcal{X}_{\text {goal }}\right\rangle$ and a cost function $c(\tau): R \geq 0$. It requires to find a feasible path τ^{*} such that $\tau^{*}=\operatorname{argmin}_{\tau}\{c(\tau) \mid \tau$ is feasible for $\mathcal{P}\}$

In practice:

- Two-step process:
- Find feasible path(s)
- Optimize path(s)
- Planners are asymptotically optimal
- Convergence might take long
- Non-trivial to detect ε-optimal solution
- What cost function should be used?
- C-space path length
- Accumulated clearance (distance to obstacles)
- Cartesian end-effector path length
- Physical work

Method

Instead of stopping at the first trajectory, continue sampling to improve solution.

Karaman and Frazzoli 2011 [15] introduced PRM* and RRT*.
Both are efficient, asymptotically optimal versions of the basic algorithms.

PRM is asymptotically optimal as-is.

- Eventually all points on the optimal path will be added to the roadmap.

Ensure minimal required graph connectivity of $O(n \cdot \log (n))$.

- Reduce the neighborhood radius r with sample size n :

$$
r(n)=\gamma_{P R M} \cdot\left(\frac{\log (n)}{n}\right)^{\frac{1}{d}}
$$

where $\gamma_{P R M}$ depends on the planning space, d is the dimensionality of \mathcal{X}

Method

Update tree whenever new samples yield cheaper paths to root.

- Instead of connecting the new states to closest node, connect to the cheapest node in neighborhood
- Change parent of neighboring states to new state if new path is cheaper

```
Algorithm 6: RRT*
    \(V \leftarrow\left\{x_{\text {init }}\right\} ; E \leftarrow \emptyset ;\)
    for \(i=1, \ldots, n\) do
    \(x_{\text {rand }} \leftarrow\) SampleFree \({ }_{i}\);
    \(x_{\text {nearest }} \leftarrow \operatorname{Nearest}\left(G=(V, E), x_{\text {rand }}\right)\);
    \(x_{\text {new }} \leftarrow \operatorname{Steer}\left(x_{\text {nearest }}, x_{\text {rand }}\right)\);
        if ObtacleFree \(\left(x_{\text {nearest }}, x_{\text {new }}\right)\) then
            \(X_{\text {near }} \leftarrow \operatorname{Near}\left(G=(V, E), x_{\text {new }}, \min \left\{\gamma_{\mathbf{R R T}^{*}}(\log (\operatorname{card}(V)) / \operatorname{card}(V))^{1 / d}, \eta\right\}\right) ;\)
            \(V \leftarrow V \cup\left\{x_{\text {new }}\right\}\);
            \(x_{\text {min }} \leftarrow x_{\text {nearest }} ; c_{\text {min }} \leftarrow \operatorname{Cost}\left(x_{\text {nearest }}\right)+c\left(\right.\) Line \(\left.\left(x_{\text {nearest }}, x_{\text {new }}\right)\right) ;\)
            foreach \(x_{\text {near }} \in X_{\text {near }}\) do // Connect along a minimum-cost path
                if CollisionFree \(\left(x_{\text {near }}, x_{\text {new }}\right) \wedge \operatorname{Cost}\left(x_{\text {near }}\right)+c\left(\right.\) Line \(\left.\left(x_{\text {near }}, x_{\text {new }}\right)\right)<c_{\text {min }}\) then
                    \(x_{\text {min }} \leftarrow x_{\text {near }} ; c_{\text {min }} \leftarrow \operatorname{Cost}\left(x_{\text {near }}\right)+c\left(\right.\) Line \(\left.\left(x_{\text {near }}, x_{\text {new }}\right)\right)\)
            \(E \leftarrow E \cup\left\{\left(x_{\min }, x_{\text {new }}\right)\right\} ;\)
            foreach \(x_{\text {near }} \in X_{\text {near }}\) do // Rewire the tree
                if CollisionFree \(\left(x_{\text {new }}, x_{\text {near }}\right) \wedge \operatorname{Cost}\left(x_{\text {new }}\right)+c\left(\operatorname{Line}\left(x_{\text {new }}, x_{\text {near }}\right)\right)<\operatorname{Cost}\left(x_{\text {near }}\right)\)
                then \(x_{\text {parent }} \leftarrow \operatorname{Parent}\left(x_{\text {near }}\right)\);
                \(E \leftarrow\left(E \backslash\left\{\left(x_{\text {parent }}, x_{\text {near }}\right)\right\}\right) \cup\left\{\left(x_{\text {new }}, x_{\text {near }}\right)\right\}\)
    return \(G=(V, E)\);
```

RRT* - Example

RRT^{*} for an example

- Represent $\mathcal{X}_{\text {free }}$ probabilistically through samples
- Relies heavily on binary collision checking
- Post-processing solutions is essential
- Various (dozens) of algorithms with varying performance
- Straight-forward extensions for asymptotically optimal planning

MPNet

TrajOpt

Fast deep-learning system learning from planners [21]

Sequential convex optimizer solving trajectories [22]

Outline

Introduction

Spatial Description and Transformations
Forward Kinematics
Robot Description
Inverse Kinematics for Manipulators
Instantaneous Kinematics
Trajectory Generation 1
Trajectory Generation 2
Dynamics
Robot Control
Path Planning
Task/Manipulation Planning
Grasp Detection
Task Planning

Outline (cont.)

Multi-Modal Planning
Telerobotics
Architectures of Sensor-based Intelligent Systems
Summary
Conclusion and Outlook

Robotic manipulation consists of more than waypoint-to-waypoint planning.

Even with a perfect path planner,

- Where should you go?
- Grasp Planning
- In what order should you go there?
- Task Planning
- Different planning steps usually operate in different \mathcal{X} or $\mathcal{X}_{\text {free }}$
- Multi-Modal Planning

The field is extremely spread out and only a few ideas are mentioned here.

If you know where your object is, you can annotate fixed grasps.

To pick up the object, move to Cartesian pose relative to object.

Shortcoming

Pose must be reachable and collision-free.

Single Grasp for a bottle mesh

For complex manipulators, the grasp has many parameters.

Approach

Simulate force interaction to generate reachable, stable grasps.

Shortcomings

- Computationally expensive
- Grasps without natural interpretation/use intention

Grasplt: Grasp stability simulator [23]

For unknown or unmodelled objects, neither method is usable.

Approach

Learn to estimate good grasps from vision.

- Predict success rate for candidate grasps
- Or directly predict grasp parameters
- Often restricted to <6 degrees of freedom (2 or 3)

Grasp candidates for a two-finger parallel gripper grasping a can

Definition

Task Planning refers to the process of finding a feasible sequence of actions and their parameters to achieve a specified goal.

Requires well-defined action descriptions and goal specifications, e.g. pickup(a).

HTN plan for cleaning a through a washer and storing it away [25]

In robotics, task planning and motion planning are often entwined.

To pickup A, C has to be moved away.
Action preconditions include reachability constraints solved through Path Planning.

In practice these constraints are often implicit.

TMP framework implementing a traditional blocks-world task [26]

Manipulation actions can be split up in motion phases with different concerns.

- Transit phase
- Move towards object
- Approach phase
- Move in contact with object
- Stabilization phase
- Acquire sufficient grasp
- Lift phase
- Retract grasped object from surface

Motion Phases

These different motions...

- Require different controllers
- Position control, effort control, impedance control
- Have different motion characteristics
- Restricted approach direction or variable free-space motion
- Have different validity concerns
- Transit must not collide, approach will collide with object
- Actuate different joint sets
- Gripper, arm, mobile base

Movelt Task Constructor

Approach

- Split up manipulation action along custom motion phases
- Allow custom path solvers for each phase
- Exchange interface states between the solvers

Combined manipulation plan to pick, pour from and place a bottle [28]

Idea

Manipulation plans can be interpreted as connected paths on multiple intersecting manifolds in \mathcal{X}.

Picking up an object might consist of

- Moving to a pose from which grasping is possible
- Moving grasped object to target location

Approach

Sample from each manifold and each intersection in turn.

Sketch of two intersecting planning manifolds [29]

Introduction to Robotics

Lecture 11

Shuang Li, Jianwei Zhang

[sli, zhang]@informatik.uni-hamburg.de

University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems
July 11, 2020

Outline

Introduction

Spatial Description and Transformations
Forward Kinematics
Robot Description
Inverse Kinematics for Manipulators
Instantaneous Kinematics
Trajectory Generation 1
Trajectory Generation 2
Dynamics
Robot Control
Path Planning
Task/Manipulation Planning
Telerobotics
Introduction

Outline (cont.)

Telerobotics
Teleoperation classification by input devices
Bilateral control and force feedback
Go beyond teleoperation
Architectures of Sensor-based Intelligent Systems
Summary
Conclusion and Outlook

Motivation

- Human-in-the-loop
- Handle unknown and hazardous environments
- Take fast decisions and dealing with corner cases

Telerobotics is perhaps one of the earliest aspects and manifestations of robotics.[30]

Operator-site

Remote-site

Kinesthetic-tactile
Sensors/actuators

- Telerobotics
- Teleoperation
- task-level operations
- Telemanipulation
- object-level manipulation
- Master-slave systems
- Telepresence
- an ultimate goal of master-slave systems and telerobotics in general
- Bilateral telemanipulation

Control architectures in Telerobotics

- Direct control/manual control
- the user is controlling the motion of the robot directly
- supervisory control
- the users only provide high-level commands
- allow more autonomy and intelligence to shift to the robot system
- is advantageous to the telerobotic systems with large time delays
- shared control
- combine the basic reliability and sense of presence achievable by direct control with the smarts and possible safety guarantees of autonomous

Swab sampling robot - shared control

Automatic swab robot

Automatic swab robot

Telerobotic applications

- Robots in hazardous/unstructured workplaces
- Nuclear robots - where telerobotics starts
- Space robots
- Rescue robots

Raymond C. Goertz

ROTEX
the first teleoerated space robot

- Medical robots - Da vinci robots

Medical robots

- ICRA2020 Plenary Panel - COVID-19 : How Roboticist Can Help?

Applications by Categories

Public Safety, Public Works, Public Health	Clinical Care	Continuity of Work and Education
Quarantine enforcement	Healthcare telepresence	Sanitation work/school
Disinfecting public spaces	Disinfecting point of care	Telepresence
Identification of infected	Prescription/ meal dispensing	Warehouse
Public service announcements	 visitors	Construction
Monitoring traffic flow	Patient and family socializing	Security

Laboratory and Supply Chain Automation	Quality of Life	Non-Hospital Care
Delivery medical	Delivery food	Delivery to quarantined
Infectious mat. handling	Delivery non- food purchases	Quarantine socializing
Manufacture or Decon PPE	Interpersonal socializing	Off-Site Testing
Laboratory automation	Attend public social events	Testing, care in nursing homes
	Other personal activities	

[^6]- Surgical robots
- Incorporate haptic feedback
- Multisensory (image (endoscopy), haptic, IMU) fusion
- most are shared control

Telerobotics in mobile robots

- Shared control
- Obstacle avoidance

26

[^7]
Teleoperation in a dexterous robotic hand

- Direct control
- An end- to-end fashion

Human hand demonstration

27
${ }^{27}$ Li, et al. TeachNet: Vision-based Teleoperation for Shadow Hand. ICRA2019

- joint mapping
- fingertip mapping
- pose mapping
- Time delay
- Force feedback
- Teleoperation between dissimilar kinematic structures
- Multilateral Telerobotics
- Contact devices
- Joystick
- Apriltags
- wearable gloves/suits/glass
- Data glove
- Optical markers
- IMU (Inertial and magnetic measurement unit)
- EMG (Electromyography)
- VR/AR device
- Haptic devices
- Contactless devices
- Depth camera(s)
- Ultraleap

Dataglove

- Cyberglove or wired glove
- Intuitive Hand Teleoperation
- a low-dimensional and continuous teleoperation subspace
- mapping between different hand pose spaces

1

[^8]
Markers-based teleoperation

- Multi-camera motion capture systems, such as PhaseSpace, OptiTrack
- accurate point tracking solutions
- suits must be customized and easily obstruct natural joint motions
- the correspondence problem between markers on the fingers and cameras

EMG-based teleoperation

- Commercial devices, such as Myo Armband
- EMG-controlled hand teleoperation
- extracted force information from skeletal muscles through surface EMG
- mapping forearm EMG into a subspace relevant to teleoperation

12

[^9]
IMU-based teleoperation

- Commercial devices, such as PerceptionNeuron
- Sensitive to magnetic/metal environments
- Convert the orientation, angular velocity and acceleration information of human into the control instruction flow of the robotic hand-arm

PerceptionNeuron

Cie-dataglove

Advantages:

- Inexpensive
- Easy to setup and use

Disadvantages:

- Provide less versatility and dexterity
- Necessary calibration before start to use it
- More suitable for robotic arms

28
${ }^{28}$ Krupke, et al. Comparison of Multimodal Heading and Pointing Gestures for Co-Located Mixed Reality Human-Robot Interaction. IROS2018

DexPilot: Vision Based Teleoperation of Dexterous Robotic Hand-Arm System

29

[^10]
A Mobile Robot Hand-Arm Teleoperation System by Vision and IMU

30
${ }^{30}$ Li, et al. A Mobile Robot Hand-Arm Teleoperation System by Vision and IMU. IROS2020

Advantages:

- Inexpensive
- Easy to setup and use
- Allow natural, unrestricted limb motions and be less invasive

Disadvantages:

- Highly based on human cognitive
- Open-loop control

Future research:

- Real-time hand tracking to achieve an unlimited workspace for the novice
- Closed-loop control (slip detection and force estimation)
- Provide both forward and feedback pathways from the user to the environment and back
- Explicit force feedback
- the slave's controller forces, which include forces associated with the spring-damper and slave inertia
- the external forces acting between the slave and the environment
- Also can use alternate displays, such as audio or tactile devices
- The master sub-system setup has two Omega. 3 haptic devices
- The slave robot is a DLR-HIT II Hand.

31

[^11]- CyberTouch (http://www.cyberglovesystems.com/cybertouch)
- HaptX gloves (https://haptx.com/technology)
- Ultraleap (https://www.ultraleap.com/haptics)

Cyber Touch

HaptX Gloves

Ultraleap

Imitation learning
Given demonstrations or demonstrator
Goal train a policy to mimic demonstrations

Telerobotics
demonstrations or demonstrator repeat/copy demonstrations

Research goals

1. Learn suitable representations for understanding object interaction and enabling robotic imitation of a human
2. One-shot/few-shot learning
3.

Time-Contrastive Networks (TCN)[31]

- learn robotic behaviors from unlabeled videos recorded from multiple viewpoints
- Anchor, positive, negative

Label-free pose imitation by TCN

Label-free pose imitation by TCN

Learning Rope Manipulation Policies

- Dense depth object descriptors
- Learn from video demonstrations
- Trained on synthetic depth Data

32

[^12]- quickly learn a new task from a small amount of demonstrations
- Model-Agnostic Meta-Learning (MAML)[32]

Introduction to Robotics

Lecture 12

Shuang Li, Jianwei Zhang

[sli, zhang]@informatik.uni-hamburg.de

University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems
July 11, 2020

Outline

Introduction
Spatial Description and Transformations
Forward Kinematics
Robot Description
Inverse Kinematics for Manipulators
Instantaneous Kinematics
Trajectory Generation 1
Trajectory Generation 2
Dynamics
Robot Control
Path Planning
Task/Manipulation Planning
Telerobotics
Architectures of Sensor-based Intelligent Systems

Outline (cont.)

The CMAC-Model
The Subsumption-Architecture
Control Architecture of a Fish
Procedural Reasoning System
Hierarchy
Architectures for Learning Robots
Summary
Conclusion and Outlook

Overview

- Basic behavior
- Behavior fusion
- Subsumption
- Hierarchical architectures
- Interactive architectures

CMAC: Cerebellar Model Articulation Controller
S sensory input vectors (firing cell patterns)
A association vector (cell pattern combination)
P response output vector ($\mathbf{A} \cdot W$)
W weight matrix
The CMAC model can be viewed as two mappings:

$$
\begin{aligned}
& f: \mathbf{S} \longrightarrow \mathbf{A} \\
& g: \mathbf{A} \xrightarrow{w} \mathbf{P}
\end{aligned}
$$

CMAC-Model (cont.)

Artificial Neural Network

Artificial neural networks (ANN) or connectionist systems are computing systems vaguely inspired by the biological neural networks that constitute animal brains.

- hierarchical structure of behavior
- higher level behaviors subsumpe lower level behaviors

Foraging and Flocking

- multi-robot architecture
- basic behaviors are sequentially executed
flocking $=$ wandering + aggregation + dispersion surrounding=wandering+following+aggregation
herding $=$ wandering + surrounding + flocking

SENSORS

BEHAVIORS

Control and information flow in artificial fish

Perception sensors, focuser, filter
Behaviors behavior routines
Brain/mind habits, intention generator
Learning optimization
Motor motor controllers, actuators/muscles

Procedural Reasoning System

Real-Time Control System (RCS)

- RCS reference model is an architecture for intelligent systems.
- Processing modes are organized such that the BG (Behavior Generation) modules form a command tree.
- Information in the knowledge database is shared between WM (World Model) modules in nodes within the same subtree.

Examples of functional characteristics of the BG and WM modules:

Architectures of Sensor-based Intelligent Systems - Hierarchy

An Architecture for Learning Robots

RACE

Robustness by Autonomous Competence Enhancement

Introduction to Robotics

Summary

Shuang Li, Jianwei Zhang
[sli, zhang]@informatik.uni-hamburg.de
University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences
Department of Informatics
Technical Aspects of Multimodal Systems

July 11, 2020

Outline

Introduction
Spatial Description and Transformations
Forward Kinematics
Robot Description
Inverse Kinematics for Manipulators
Instantaneous Kinematics
Trajectory Generation 1
Trajectory Generation 2
Dynamics
Robot Control
Path Planning
Task/Manipulation Planning
Telerobotics
Architectures of Sensor-based Intelligent Systems

Outline (cont.)

Summary
Conclusion and Outlook

Introduction

+ Definition;
+ Basic components;
+ DOF;
- Classification

Spatial Description and Transformations

+ Specification of position and orientation;
+ Rotation matrices, their inverse and their operations;
+ Homogeneous transformations;
+ Transformation equations [5, 39, 6, 4];
+ More on presentation of orientation
Forward Kinematics and Robot Description
+ DH-conventions and their applications (classic or modified);
+ Universal Robot Description Format (URDF)

Inverse Kinematics

+ Difference and problems of forward and inverse kinematics;
- Algebraic and geometric solution of inverse kinematics;

Jacobian

+ Differential motion and velocity;
- velocity propagation;
+ Jacobian-matrices;
+ Singularities [5, 39, 6, 4]
Trajectory Generation
+ Tasks and constraints;
+ Trajectory generation methods;
- Polynomial solutions between two and four points;
+ Linear motion in cartesian space and problems;
- Factors of an optimal motion;
+ Concepts and properties of B-Spline interpolation;
- B-Spline basis functions [39, 6, 4, B-Spline Literature]

Dynamics

+ Problems;
+ Newton-Euler equations and Lagrangian Equations;
- Solution for arms with 1 or 2 joints, multiple joints as excercise;
+ Structure of a dynamical equation [39, 6, 4]
Control
- Control systems of a PUMA robot;
- Linear and model-based control;
+ PID controller;
+ Control concepts in Cartesian space [39, 6, 4]

Sensors

- Classification;
+ Intrinsic sensors, principle and application in control;
- extrinsic sensors [39, 6, 4]

Path planning

+ Configuration space;
- Object representation;
- Discretized Space Planning;
+ Potential field method;
+ Probabilistic approaches;
+ Rapidly-exploring Random Trees;
- Task and Manipulation Planning

Control architectures

- Subsumption;
- CMAC;
- Hierarchical

Additional references: [40, 41, 42, 43]

- Industrial Robots:
- position control with PID controllers
- featuring gravity compensation
- Research:
- model-based control
- hybrid force-position control
- under-actuated control
- backwards controllable (direct drive, artificial muscle) structure
- external-sensor based control
\rightarrow Intelligent Robots/Applied Sensor Technology

Summary - Mechanical Structures of Robots

Things we talked about

- Open chain of rotational joints
- Hybrid joints for rotational and translational motion (SCARA)
- Mobile robots, running machines

Things we did not talk about

- Closed chain, including Steward Mechanism [39, p. 279]
- Drive without motors (micro- and biomimetic-robots)
- Tool plate mounted to base plate with six translational joints (usually hydraulic) called leg
- Legs are connected to the plates with universal joints
- Mathematically 6-DOF configuration space without singularities
- Parallel mechanism provides high payload
- Sequential manipulator applies forces and torques unequally

The Stewart-Platform (cont.)

Summary - Algorithms

- Transformations
- Forward and inverse kinematics
- Trajectory generation (e.g. linear Cartesian trajectory)
- Approximated representation of robot joints and objects
- Search algorithms
- Further path planning algorithms
- Sensor fusion
- Vision
- detection (static, dynamic)
- reconstruction of position and orientation
- Action planning
- Sensor guided motion

Outline

Introduction
Spatial Description and Transformations
Forward Kinematics
Robot Description
Inverse Kinematics for Manipulators
Instantaneous Kinematics
Trajectory Generation 1
Trajectory Generation 2
Dynamics
Robot Control
Path Planning
Task/Manipulation Planning
Telerobotics
Architectures of Sensor-based Intelligent Systems

Outline (cont.)

Summary
Conclusion and Outlook

Intelligent Robots

Underlying robot-technique as described, additionally:

External Recognition

Reliable measurements of the environment;
Scene interpretation
Knowledge base
About environment;
Its own state;
Everyday knowledge comparable to a human
Autonomous planning
Action;
Coarse motion; Grasping;
Sensor data acquisition

Human friendly interface
Understanding of naturally spoken commands; Generation of robot actions;
Solving of disambiguity in context-aware situations

Adaptive Control

Evolution instead of programming; Ability to learn

Autonomous Planning Systems

Action Planning
Task-Specification;
State representation;
Task-decomposition;
Action-sequence generation
Motion Planning
Representation of the robot and the environment; Calculation and representation of configuration space; Search algorithms

Planning of Sensing
Which sensors; Which time intervals; Where to measure; Internal and external parameters of the sensor

Goal
Intelligent Control including the ability to adapt to different situations and to react to uncertainties

Control Architecture
Integration of perception, planning and actions
Tasks of sensor data processing
Position detection;
Proximity detection;
Slip detection;
Success confirmation;
Error detection;
Inspection

Applied sensors
Tactile sensors;
Vision systems;
Force-torque measurement systems;
Distance sensors
Strategies
calibrated based on absolute reference values; uncalibrated based on relative information

Types of perception
passive based on a certain sensor-actor configuration;
active depending on the plan for sensing

Future Commercial Robots

will be:

- dexterous
- smaller
- faster
- lightweight
- powerful
- intelligent
- easier to operate
- cheaper

Challenges in the Field of Robotics

Methods

Symbolical understanding of the environment;
Integrated sensor-motor-coupling;
Self-learning
Systems
Synergetic multi-sensor;
Agile mobility;
Dexterous manipulation capabilities
Technical
Sensor complexity similar to a human;
New drive types;
Nano-robots;
Multifinger hand;
Anthropomorphic robots;
Flying robots

Continuing Education at University of Hamburg

Intelligent Robots Project
Build a complex robotic system from the available hardware at TAMS. Current Hardware includes PR2, TASER, 2 KUKA lightweight arms, 2 Mitsubishi PA10-6C, UR5 Arm, 4 Turtlebots, Shadow Hand C6, Shadow Hand C5, Robotiq adaptive gripper, SCHUNK gripper, 2 Barret Hands. . .

Intelligent Robots/Applied Sensor Technology Lecture
Intrinsic and Extrinsic sensor technology and their application for intelligent robotic systems.

Machine Learning Lecture

Machine learning techniques allow robots to learn from observation and experience Neural Networks Lecture

Neural Networks allow robots to learn and offer new approaches to planning and control

Image Processing I\&II Lecture
Image processing is required for robots to observe the environment and recognize/classify/detect objects and humans

Knowledge Processing Lecture
The gained knowledge from observance and sensing has to be processed efficiently
Language Processing Lecture
How to extract knowledge and information from human speech
Real-Time Systems Lecture at TUHH
Robots have to process information and act in Real-Time environments
Fundamentals of Control Technology Lecture at TUHH
Control Technology is required for the technical control of robotic systems. Advanced Lecture with large prerequisites.

Bibliography

[1] G.-Z. Yang, R. J. Full, N. Jacobstein, P. Fischer, J. Bellingham, H. Choset, H. Christensen, P. Dario, B. J. Nelson, and R. Taylor, "Ten robotics technologies of the year," 2019.
[2] J. K. Yim, E. K. Wang, and R. S. Fearing, "Drift-free roll and pitch estimation for high-acceleration hopping," in 2019 International Conference on Robotics and Automation (ICRA), pp. 8986-8992, IEEE, 2019.
[3] J. F. Engelberger, Robotics in service. MIT Press, 1989.
[4] K. Fu, R. González, and C. Lee, Robotics: Control, Sensing, Vision, and Intelligence. McGraw-Hill series in CAD/CAM robotics and computer vision, McGraw-Hill, 1987.
[5] R. Paul, Robot Manipulators: Mathematics, Programming, and Control: the Computer Control of Robot Manipulators.
Artificial Intelligence Series, MIT Press, 1981.
[6] J. Craig, Introduction to Robotics: Pearson New International Edition: Mechanics and Control.
Always learning, Pearson Education, Limited, 2013.
[7] T. Flash and N. Hogan, "The coordination of arm movements: an experimentally confirmed mathematical model," Journal of neuroscience, vol. 5, no. 7, pp. 1688-1703, 1985.
[8] T. Kröger and F. M. Wahl, "Online trajectory generation: Basic concepts for instantaneous reactions to unforeseen events," IEEE Transactions on Robotics, vol. 26, no. 1, pp. 94-111, 2009.
[9] W. Böhm, G. Farin, and J. Kahmann, "A Survey of Curve and Surface Methods in CAGD," Comput. Aided Geom. Des., vol. 1, pp. 1-60, July 1984.
[10] J. Zhang and A. Knoll, "Constructing Fuzzy Controllers with B-spline Models - Principles and Applications," International Journal of Intelligent Systems, vol. 13, no. 2-3, pp. 257-285, 1998.
[11] M. Eck and H. Hoppe, "Automatic Reconstruction of B-spline Surfaces of Arbitrary Topological Type," in Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH '96, (New York, NY, USA), pp. 325-334, ACM, 1996.
[12] A. Cowley, W. Marshall, B. Cohen, and C. J. Taylor, "Depth space collision detection for motion planning," 2013.
[13] Hornung, Armin and Wurm, Kai M. and Bennewitz, Maren and Stachniss, Cyrill and Burgard, Wolfram, "OctoMap: an efficient probabilistic 3D mapping framework based on octrees," Autonomous Robots, vol. 34, pp. 189-206, 2013.
[14] D. Berenson, S. S. Srinivasa, D. Ferguson, and J. J. Kuffner, "Manipulation planning on constraint manifolds," in 2009 IEEE International Conference on Robotics and Automation, pp. 625-632, 2009.
[15] S. Karaman and E. Frazzoli, "Sampling-based algorithms for optimal motion planning," The International Journal of Robotics Research, vol. 30, no. 7, pp. 846-894, 2011.
[16] O. Khatib, "The Potential Field Approach and Operational Space Formulation in Robot Control," in Adaptive and Learning Systems, pp. 367-377, Springer, 1986.
[17] L. E. Kavraki, P. Svestka, J. Latombe, and M. H. Overmars, "Probabilistic roadmaps for path planning in high-dimensional configuration spaces," IEEE Transactions on Robotics and Automation, vol. 12, no. 4, pp. 566-580, 1996.

Bibliography (cont.)
[18] J. Kuffner and S. LaValle, "RRT-Connect: An Efficient Approach to Single-Query Path Planning.," vol. 2, pp. 995-1001, 012000.
[19] J. Starek, J. Gómez, E. Schmerling, L. Janson, L. Moreno, and M. Pavone, "An asymptotically-optimal sampling-based algorithm for bi-directional motion planning," Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2015, 072015.
[20] D. Hsu, J. . Latombe, and R. Motwani, "Path planning in expansive configuration spaces," in Proceedings of International Conference on Robotics and Automation, vol. 3, pp. 2719-2726 vol.3, 1997.
[21] A. H. Qureshi, A. Simeonov, M. J. Bency, and M. C. Yip, "Motion planning networks," in 2019 International Conference on Robotics and Automation (ICRA), pp. 2118-2124, IEEE, 2019.
[22] J. Schulman, J. Ho, A. Lee, I. Awwal, H. Bradlow, and P. Abbeel, "Finding locally optimal, collision-free trajectories with sequential convex optimization," in in Proc. Robotics: Science and Systems, 2013.

Bibliography (cont.)
[23] A. T. Miller and P. K. Allen, "Graspit! a versatile simulator for robotic grasping," IEEE Robotics Automation Magazine, vol. 11, no. 4, pp. 110-122, 2004.
[24] A. ten Pas, M. Gualtieri, K. Saenko, and R. Platt, "Grasp pose detection in point clouds," The International Journal of Robotics Research, vol. 36, no. 13-14, pp. 1455-1473, 2017.
[25] L. P. Kaelbling and T. Lozano-Pérez, "Hierarchical task and motion planning in the now," in 2011 IEEE International Conference on Robotics and Automation, pp. 1470-1477, 2011.
[26] N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. E. Kavraki, "Incremental task and motion planning: A constraint-based approach.," in Robotics: Science and Systems, pp. 1-6, 2016.
[27] J. Ferrer-Mestres, G. Francès, and H. Geffner, "Combined task and motion planning as classical ai planning," arXiv preprint arXiv:1706.06927, 2017.
[28] M. Görner, R. Haschke, H. Ritter, and J. Zhang, "Movelt! Task Constructor for Task-Level Motion Planning," in IEEE International Conference on Robotics and Automation (ICRA), 2019.
[29] K. Hauser and J.-C. Latombe, "Multi-modal motion planning in non-expansive spaces," The International Journal of Robotics Research, vol. 29, no. 7, pp. 897-915, 2010.
[30] B. Siciliano and O. Khatib, Springer handbook of robotics. Springer, 2016.
[31] P. Sermanet, C. Lynch, Y. Chebotar, J. Hsu, E. Jang, S. Schaal, S. Levine, and G. Brain, "Time-contrastive networks: Self-supervised learning from video," in 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1134-1141, IEEE, 2018.
[32] C. Finn, P. Abbeel, and S. Levine, "Model-agnostic meta-learning for fast adaptation of deep networks," arXiv preprint arXiv:1703.03400, 2017.
[33] R. Brooks, "A robust layered control system for a mobile robot," Robotics and Automation, IEEE Journal of, vol. 2, pp. 14-23, Mar 1986.
[34] M. J. Mataric, "Interaction and intelligent behavior.," tech. rep., DTIC Document, 1994.

Bibliography (cont.)
[35] M. P. Georgeff and A. L. Lansky, "Reactive reasoning and planning.," in AAAI, vol. 87, pp. 677-682, 1987.
[36] J. S. Albus, "The nist real-time control system (rcs): an approach to intelligent systems research," Journal of Experimental \& Theoretical Artificial Intelligence, vol. 9, no. 2-3, pp. 157-174, 1997.
[37] T. Fukuda and T. Shibata, "Hierarchical intelligent control for robotic motion by using fuzzy, artificial intelligence, and neural network," in Neural Networks, 1992. IJCNN., International Joint Conference on, vol. 1, pp. 269-274 vol.1, Jun 1992.
[38] L. Einig, Hierarchical Plan Generation and Selection for Shortest Plans based on Experienced Execution Duration.
Master thesis, Universität Hamburg, 2015.
[39] J. Craig, Introduction to Robotics: Mechanics \& Control. Solutions Manual. Addison-Wesley Pub. Co., 1986.
[40] H. Siegert and S. Bocionek, Robotik: Programmierung intelligenter Roboter: Programmierung intelligenter Roboter.
Springer-Lehrbuch, Springer Berlin Heidelberg, 2013.
[41] R. Schilling, Fundamentals of robotics: analysis and control. Prentice Hall, 1990.
[42] T. Yoshikawa, Foundations of Robotics: Analysis and Control. Cambridge, MA, USA: MIT Press, 1990.
[43] M. Spong, Robot Dynamics And Control. Wiley India Pvt. Limited, 2008.

[^0]: ${ }^{3}$ https: //www.youtube.com/watch?v=iZD6hkRwZKM

[^1]: ${ }^{9}$ https://studywolf.wordpress.com/2016/08/
 ${ }^{10}$ https://medium.com/its42/the-reality-of-the-state-of-affairs-in-robotics-fyi-apart-from-the-

[^2]: ${ }^{11}$ https://www.machinedesign.com/mechanical-motion-systems/article/21831692/the-difference-between-cartesian-sixaxis-and-scara-robots

[^3]: ${ }^{17}$ https://en.wikipedia.org/wiki/Gimbal_lock

[^4]: ${ }^{19}$ http://ros.org

[^5]: ${ }^{24}$ https://tams.informatik.uni-hamburg.de/publications/2017/MSc_Stephan_Rau.pdf
 ${ }^{25}$ https://tams.informatik.uni-hamburg.de/publications/2018/MSc_Jeremias_Hartz.pdf

[^6]: Inventory

[^7]: ${ }^{26}$ Luo et al. A Teleoperation Framework for Mobile Robots Based on Shared Control. IEEE Robotics and Automation Letters. 2020

[^8]: ${ }^{1}$ Meeker, et al. Intuitive Hand Teleoperation by Novice Operators Using a Continuous Teleoperation Subspace. ICRA2018

[^9]: ${ }^{1}$ Meeker, et al. EMG-Controlled Hand Teleoperation Using a Continuous Teleoperation Subspace. ICRA2019
 ${ }^{2}$ Wen, et al. Force-guided High-precision Grasping Control of Fragile and Deformable Objects using sEMG-based Force Prediction. ICRA2020

[^10]: ${ }^{29}$ Handa, et al. DexPilot: Vision Based Teleoperation of Dexterous Robotic Hand-Arm System. ICRA2020

[^11]: ${ }^{31}$ Salvietti, et al. Object-based Bilateral Telemanipulation Between Dissimilar Kinematic Structures. IROS2013

[^12]: ${ }^{32}$ Sundaresan, et al. Learning Rope Manipulation Policies Using Dense Object Descriptors Trained on Synthetic Depth Data. ICRA2020

