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Idea
- Probabilistic Planners Introduction to Robotics

I Planning on graphs of reasonable size is simple
I Operating on grids ignores continuous spaces in Xfree
I Instead rely on Probabilistic Sampling to represent the space

free space

milestone
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Idea
- Probabilistic Planners Introduction to Robotics

Key questions:

I How to generate the samples?

I How can the samples be connected to
form a planning graph?

I How many samples do you need to
describe the space?

free space

milestone

Abstract C-space with sampled valid states
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Probabilistic Road Maps
- Probabilistic Planners - Probabilistic Road Maps Introduction to Robotics

Proposed by Lydia E. Kavraki et.al. 1996 [1]

Two Step algorithm:

1. Construction Phase - Build Roadmap
2. Query Phase - Connect start and goal to graph and solve graph search

free space

milestone

qs

qg

Abstract C-space with sampled valid states
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Probabilistic Road Maps - Algorithm
- Probabilistic Planners - Probabilistic Road Maps Introduction to Robotics

Adapted from [2]
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Milestones and Roadmap - Construction
- Probabilistic Planners - Probabilistic Road Maps Introduction to Robotics

free space
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Milestones and Roadmap - Query
- Probabilistic Planners - Probabilistic Road Maps Introduction to Robotics
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Probabilistic Road Maps - Aspects
- Probabilistic Planners - Probabilistic Road Maps Introduction to Robotics
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Probabilistic Road Maps - Aspects
- Probabilistic Planners - Probabilistic Road Maps Introduction to Robotics

I SampleFree - Sample states from Xfree
I Near - Choose Distance metric and threshold
I CollisionFree(v,u) - Check motion between states for collisions
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Probabilistic Road Maps - Aspects
- Probabilistic Planners - Probabilistic Road Maps Introduction to Robotics

SampleFree – sample states from Xfree
I Traditionally: Rejection Sampling

Take samples uniformally, add sample if x ∈ Xfree
I Alternatives:

I Projective Sampling: Replace samples x ∈ Xobs by closest state x ′ ∈ Xfree
I Generative Sampling: For a sufficient parameterized space X ′

free ⊆ Xfree :
Sample from X ′

free via parameters
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Probabilistic Road Maps - Aspects
- Probabilistic Planners - Probabilistic Road Maps Introduction to Robotics

Near - choose distance metric and threshold
I Traditional C-space metric: L1 distance
I Obvious alternatives: weighted L1 distance, L2 distance

I Higher threshold: more negative collision checks
I Lower threshold: slower graph building
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Probabilistic Road Maps - Aspects
- Probabilistic Planners - Probabilistic Road Maps Introduction to Robotics

CollisionFree(v, u) - Local Planning
I Traditionally collision-checking tests one state
I Interpolate states between 〈v , u〉 and check those

I Fixed step size in C-space can imply huge motions in workspace!
I Continuous collision checking (CCD):

I Current systems rely on primitive motions
I Robot links move in complex splines
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Example
- Probabilistic Planners - Probabilistic Road Maps Introduction to Robotics

3dof planning problem
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Single and Multi-Query Planning
- Probabilistic Planners - Rapidly-exploring Random Trees Introduction to Robotics

Definition
If only a single path is requested in a potentially changing scene, this is called
single-query planning. If datastructures remain valid between motion requests, this is
called multi-query planning.

PRM solves a multi-query problem by building an undirected graph.

For single-shot planning, the graph search can be avoided altogether.
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Rapidly-exploring Random Trees (RRT) - Basic Idea
- Probabilistic Planners - Rapidly-exploring Random Trees Introduction to Robotics

Proposed by Kuffner and LaValle 2000 [3]

Instead of building a graph, grow a tree from the start state.

If for any leaf state x ∈ Xgoal , a solution is found.

RRT at multiple stages of extension
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Rapidly-exploring Random Trees (RRT) - Algorithm
- Probabilistic Planners - Rapidly-exploring Random Trees Introduction to Robotics

Adapted from [2]
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Rapidly-exploring Random Trees (RRT) - Algorithm
- Probabilistic Planners - Rapidly-exploring Random Trees Introduction to Robotics

Steer(x,y) - Compute new state x ′

I Move from x towards y : ‖y − x ′‖ < ‖y − x‖
I ‖x − x ′‖ < η to limit step size
I Alternatively compute closest x ′ ∈ Xfree reachable via straight motion

Adapted from [2]
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Rapidly-exploring Random Trees (RRT) - Algorithm
- Probabilistic Planners - Rapidly-exploring Random Trees Introduction to Robotics

SampleFree – sample states from Xfree
I Traditionally: uniform sampling
I To improve heuristically, a Goal Bias can be added

I Low fraction of samples are sampled from Xgoal
I Required if Xgoal is small in X

Adapted from [2]
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Example
- Probabilistic Planners - Rapidly-exploring Random Trees Introduction to Robotics

RRT graph of an example
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Bi-Directional Search
- Probabilistic Planners - Rapidly-exploring Random Trees Introduction to Robotics

In robotics, start and goal are often in constraint areas of Xfree , e.g., close to obstacles.

The transition phase between these states is often quite flexible.

Instead of growing a single tree towards the goal:
I Grow two trees from start and goal each.
I Attempt to connect them at each step.

In practice, this speeds up planning to the
first solution significantly.

Bi-directional search trees [4]
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RRT-Connect - Example
- Probabilistic Planners - Rapidly-exploring Random Trees Introduction to Robotics

RRT-Connect for an example
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Expansive Space Trees
- Probabilistic Planners - Expansive Space Trees Introduction to Robotics

PRM and RRT sample random configurations from Xfree .
Thus they also sample in areas which are already well-represented by milestones.

Definition
The density around a state x can be represented by
the cardinality of its neighborhood within a distance d : |Nd(x)|.

Ideas
I Sample next expansion step weighted by inverse density w(x) = 1

|Nd (x)|
I Stochastically reject samples in high-density areas

Hsu et.al. 1997 [5]
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Expansive Space Trees - Algorithm
- Probabilistic Planners - Expansive Space Trees Introduction to Robotics

I Expand from an existing node instead of global samples from X
I Samples rejected in 4. are never collision checked!
I Original formulation is bidirectional

Hsu et.al. 1997 [5]
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(Bi)EST - Example
- Probabilistic Planners - Expansive Space Trees Introduction to Robotics

(Bi-directional) EST for an example
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Path Postprocessing
- Probabilistic Planners - Auxiliary Techniques Introduction to Robotics

The resulting paths are not smooth and often contain unnecessary motions.

Traditional post-processing includes:
I Path Shortcutting

I Repeatedly pick two non-consecutive waypoints and attempt to connect them

I Perturbation of individual waypoints
I Optional
I Can reduce solution costs
I Computationally expensive
I For differentiable costs: exploit gradient

I Fit smooth splines through waypoints

All modifications need to be collision checked.
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Multiple IK Solutions
- Probabilistic Planners - Auxiliary Techniques Introduction to Robotics

Redundant robots generate multiple joint
solutions per pose.

Each Cartesian goal region adds a number
of disjoint C-space goal regions.

Most tree-based planners naturally extend
to Multi-Goal Planning, implicitly
building multiple goal trees.

Multiple IK solutions for one target pose © Hendrich
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Optimal Planning
- Optimal Planning - Planner∗ Introduction to Robotics

Definition
An Optimal Path Planning Problem is defined by a path planning problem
P = 〈Xfree , xinit ,Xgoal〉 and a cost function c(τ) : R ≥ 0. It requires to find a feasible
path τ∗ such that τ∗ = argminτ{c(τ) | τ is feasible for P }

In practice:
I Two-step process:

I Find feasible path(s)
I Optimize path(s)

I Planners are asymptotically optimal
I Convergence might take long
I Non-trivial to detect ε-optimal solution

I What cost function should be used?
I C-space path length
I Accumulated clearance (distance to obstacles)
I Cartesian end-effector path length
I Physical work
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Planner∗
- Optimal Planning - Planner∗ Introduction to Robotics

Method
Instead of stopping at the first trajectory, continue sampling to improve solution.

Karaman and Frazzoli 2011 [2] introduced PRM∗ and RRT∗.
Both are efficient, asymptotically optimal versions of the basic algorithms.
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PRM∗
- Optimal Planning - Planner∗ Introduction to Robotics

PRM is asymptotically optimal as-is.
I Eventually all points on the optimal path will be added to the roadmap.

Ensure minimal required graph connectivity of O(n · log(n)).
I Reduce the neighborhood radius r with sample size n:

r(n) = γPRM · (
log(n)

n )
1
d

where γPRM depends on the planning space, d is the dimensionality of X
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RRT∗
- Optimal Planning - Planner∗ Introduction to Robotics

Method
Update tree whenever new samples yield cheaper paths to root.

I Instead of connecting the new states to closest node,
connect to the cheapest node in neighborhood

I Change parent of neighboring states to new state if new path is cheaper
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RRT∗ - Algorithm
- Optimal Planning - Planner∗ Introduction to Robotics
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RRT∗ - Example
- Optimal Planning - Planner∗ Introduction to Robotics

RRT∗ for an example
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Summary - Sampling Based Planning
- Optimal Planning - Planner∗ Introduction to Robotics

I Represent Xfree probabilistically through samples
I Relies heavily on binary collision checking

I Post-processing solutions is essential

I Various (dozens) of algorithms with varying performance
I Straight-forward extensions for asymptotically optimal planning
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Interesting Further Reading
- Optimal Planning - Planner∗ Introduction to Robotics

MPNet

Fast deep-learning system learning from planners [6]

TrajOpt

Sequential convex optimizer solving trajectories [7]
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Outline
Task/Manipulation Planning Introduction to Robotics

Introduction
Spatial Description and Transformations
Forward Kinematics
Robot Description
Inverse Kinematics for Manipulators
Instantaneous Kinematics
Trajectory Generation 1
Trajectory Generation 2
Dynamics
Robot Control
Path Planning
Task/Manipulation Planning

Grasp Detection
Task Planning
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Outline (cont.)
Task/Manipulation Planning Introduction to Robotics

Multi-Modal Planning
Architectures of Sensor-based Intelligent Systems
Summary
Conclusion and Outlook
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Motivation
Task/Manipulation Planning Introduction to Robotics

Robotic manipulation consists of more than waypoint-to-waypoint planning.

Even with a perfect path planner,
I Where should you go?

I Grasp Planning
I In what order should you go there?

I Task Planning
I Different planning steps usually operate in different X or Xfree

I Multi-Modal Planning

The field is extremely spread out and only a few ideas are mentioned here.
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Motivation
Task/Manipulation Planning Introduction to Robotics

Robotic manipulation consists of more than waypoint-to-waypoint planning.

Even with a perfect path planner,
I Where should you go?

I Grasp Planning
I In what order should you go there?

I Task Planning
I Different planning steps usually operate in different X or Xfree

I Multi-Modal Planning

The field is extremely spread out and only a few ideas are mentioned here.

M. Görner, J. Zhang 488 / 620



Motivation
Task/Manipulation Planning Introduction to Robotics

Robotic manipulation consists of more than waypoint-to-waypoint planning.

Even with a perfect path planner,
I Where should you go?

I Grasp Planning
I In what order should you go there?

I Task Planning
I Different planning steps usually operate in different X or Xfree

I Multi-Modal Planning

The field is extremely spread out and only a few ideas are mentioned here.

M. Görner, J. Zhang 488 / 620



Motivation
Task/Manipulation Planning Introduction to Robotics

Robotic manipulation consists of more than waypoint-to-waypoint planning.

Even with a perfect path planner,
I Where should you go?

I Grasp Planning
I In what order should you go there?

I Task Planning
I Different planning steps usually operate in different X or Xfree

I Multi-Modal Planning

The field is extremely spread out and only a few ideas are mentioned here.

M. Görner, J. Zhang 488 / 620



Motivation
Task/Manipulation Planning Introduction to Robotics

Robotic manipulation consists of more than waypoint-to-waypoint planning.

Even with a perfect path planner,
I Where should you go?

I Grasp Planning
I In what order should you go there?

I Task Planning
I Different planning steps usually operate in different X or Xfree

I Multi-Modal Planning

The field is extremely spread out and only a few ideas are mentioned here.

M. Görner, J. Zhang 488 / 620



Identify Grasps
Task/Manipulation Planning - Grasp Detection Introduction to Robotics

If you know where your object is,
you can annotate fixed grasps.

To pick up the object, move to
Cartesian pose relative to object.

Single Grasp for a bottle mesh
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Identify Grasps
Task/Manipulation Planning - Grasp Detection Introduction to Robotics

If you know where your object is,
you can annotate fixed grasps.

To pick up the object, move to
Cartesian pose relative to object.

Shortcoming
Pose must be reachable and collision-free.

Candidate grasp in collision
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Identify Grasps - By Simulation
Task/Manipulation Planning - Grasp Detection Introduction to Robotics

For complex manipulators, the grasp has
many parameters.

Approach
Simulate force interaction to generate
reachable, stable grasps.

Shortcomings
I Computationally expensive
I Grasps without natural

interpretation/use intention GraspIt: Grasp stability simulator [8]
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Grasp Point Detection
Task/Manipulation Planning - Grasp Detection Introduction to Robotics

For unknown or unmodelled objects, neither method is usable.

Approach
Learn to estimate good grasps from vision.
I Predict success rate for candidate grasps
I Or directly predict grasp parameters
I Often restricted to < 6 degrees of freedom (2 or 3)

Grasp candidates for a two-finger parallel gripper grasping a can

ten Pas et.al. 2017 [9]
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Task Planning
Task/Manipulation Planning - Task Planning Introduction to Robotics

Definition
Task Planning refers to the process of finding a feasible sequence of actions
and their parameters to achieve a specified goal.

Requires well-defined action descriptions and goal specifications, e.g. pickup(a).

M. Görner, J. Zhang 492 / 620



Hierarchical Task Network
Task/Manipulation Planning - Task Planning Introduction to Robotics

HTN plan for cleaning a through a washer and storing it away [10]
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Task and Motion Planning (TMP)
Task/Manipulation Planning - Task Planning Introduction to Robotics

In robotics, task planning and motion
planning are often entwined.

To pickup A, C has to be moved away.

Action preconditions include reachability
constraints solved through Path Planning.

TMP framework implementing a traditional blocks-world task [11]
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Task and Motion Planning (TMP)
Task/Manipulation Planning - Task Planning Introduction to Robotics

In robotics, task planning and motion
planning are often entwined.

To pickup A, C has to be moved away.

Action preconditions include reachability
constraints solved through Path Planning.

In practice these constraints are often
implicit.

Sorting task: Move colored bottles to respective table [12]
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Motion Phases
Task/Manipulation Planning - Multi-Modal Planning Introduction to Robotics

Manipulation actions can be split up in motion phases with different concerns.

I Transit phase
I Move towards object

I Approach phase
I Move in contact with object

I Stabilization phase
I Acquire sufficient grasp

I Lift phase
I Retract grasped object from surface

I . . .

M. Görner, J. Zhang 495 / 620



Motion Phases
Task/Manipulation Planning - Multi-Modal Planning Introduction to Robotics

These different motions . . .

I Require different controllers
I Position control, effort control, impedance control

I Have different motion characteristics
I Restricted approach direction or variable free-space motion

I Have different validity concerns
I Transit must not collide, approach will collide with object

I Actuate different joint sets
I Gripper, arm, mobile base
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MoveIt Task Constructor
Task/Manipulation Planning - Multi-Modal Planning Introduction to Robotics

Approach
I Split up manipulation action along custom motion phases
I Allow custom path solvers for each phase
I Exchange interface states between the solvers

Combined manipulation plan to pick, pour from and place a bottle [13]
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Multi-Modal Planning Through Sampling
Task/Manipulation Planning - Multi-Modal Planning Introduction to Robotics

Idea
Manipulation plans can be interpreted as
connected paths on multiple intersecting
manifolds in X .

Picking up an object might consist of
I Moving to a pose from which grasping

is possible
I Moving grasped object to target

location

Approach
Sample from each manifold and each
intersection in turn.

Sketch of two intersecting planning manifolds [14]
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