Introduction to Robotics

Lecture 7

Zhaopeng Chen, Shuang Li, Jianwei Zhang

zhaopeng.chen@uni-hamburg.de, [sli, zhang]@informatik.uni-hamburg.de

University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences
Department of Informatics
Technical Aspects of Multimodal Systems

$$
\text { June 05, } 2020
$$

Outline

Introduction

Spatial Description and Transformations
Forward Kinematics
Robot Description
Inverse Kinematics for Manipulators
Instantaneous Kinematics
Trajectory Generation 1
Trajectory Generation 2
Dynamics
Forward and inverse Dynamics
Dynamics of Manipulators
Newton-Euler-Equation
Langrangian Equations
General dynamic equations
Robot Control

Outline (cont.)

Task-Level planning and Motion planning
Task-Level planning and Motion planning
Architectures of Sensor-based Intelligent Systems
Summary
Conclusion and Outlook

- A multibody system is a mechanical system of single bodies
- connected by joints,
- influenced by forces
- The term dynamics describes the behavior of bodies influenced by forces
- Typical forces: weight, friction, centrifugal, magnetic, spring, ...
- kinematics just models the motion of bodies (without considering forces), therefore it can be seen as a subset of dynamics

Forward and inverse Dynamics

We consider a force F and its effect on a body:

$$
F=m \cdot a=m \cdot \dot{v}
$$

In order to solve this equation, two of the variables need to be known.

If the force F and the mass of the body m is known:

$$
a=\dot{v}=\frac{F}{m}
$$

Hence the following can be determined:

- velocity (by integration)
- coordinates of single bodies
- forward dynamics
- mechanical stress of bodies

Input

$\tau_{i}=$ torque at joint i that effects a trajectory Θ.
$i=1, \ldots, n$, where n is the number of joints.

Output
$\Theta_{i}=$ joint angle of i
$\dot{\Theta}_{i}=$ angular velocity of joint i
$\ddot{\Theta}_{i}=$ angular acceleration of joint i

If the time curves of the joint angles are known, it can be differentiated twice.
This way,

- internal forces
- and torques
can be obtained for each body and joint.
Problems of highly dynamic motions:
- models are not as complex as the real bodies
- differentiating twice (on sensor data) leads to high inaccuracy

Input
$\Theta_{i}=$ joint angle i
$\dot{\Theta}_{i}=$ angular velocity of joint i
$\ddot{\Theta}_{i}=$ angular acceleration of joint i
$i=1, \ldots, n$, where n is the number of joints.

Output

$\tau_{i}=$ required torque at joint i to produce trajectory Θ.

Dynamics of Manipulators

- Forward dynamics:
- Input: joint forces / torques;
- Output: kinematics;
- Application: Simulation of a robot model.
- Inverse Dynamics:
- Input: desired trajectory of a manipulator;
- Output: required joint forces / torques;
- Application: model-based control of a robot.

$$
\begin{aligned}
\tau(t) & \rightarrow \text { direct dynamics } \rightarrow \mathbf{q}(t),(\dot{\mathbf{q}}(t), \ddot{\mathbf{q}}(t)) \\
\mathbf{q}(t) & \rightarrow \text { inverse dynamics } \rightarrow \tau(t)
\end{aligned}
$$

Unlike kinematics, the inverse dynamics is easier to solve than forward dynamics

Two methods for calculation:

- Analytical methods
- based on Lagrangian equations
- Synthetic methods:
- based on the Newton-Euler equations

Computation time

Complexity of solving the Lagrange-Euler-model is $O\left(n^{4}\right)$ where n is the number of joints.
$n=6: 66,271$ multiplications and 51,548 additions.

The description of manipulator dynamics is directly based on the relations between the kinetic K and potential energy P of the manipulator joints.

Here:

- constraining forces are not considered
- deep knowledge of mechanics is necessary
- high effort of defining equations
- can be solved by software

The Lagrangian function L is defined as the difference between kinetic energy K and potential energy P of the system.

$$
L\left(q_{i}, \dot{q}_{i}\right)=K\left(q_{i}, \dot{q}_{i}\right)-P\left(q_{i}\right)
$$

- K: kinetic energy due to linear velocity of the link's center of mass and angular velocity of the link
- P : potential energy stored in the manipulator that is the sum of the potential energy in the individual links

The Lagrangian function L is defined as:

$$
L\left(q_{i}, \dot{q}_{i}\right)=K\left(q_{i}, \dot{q}_{i}\right)-P\left(q_{i}\right)
$$

Theorem

The motion equations of a mechanical system with coordinates $\mathbf{q} \in \Theta^{n}$ and the Lagrangian function L is defined by:

$$
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{i}}-\frac{\partial L}{\partial q_{i}}=F_{i}, \quad i=1, \ldots, n
$$

where
q_{i} : the coordinates, where the kinetic and potential energy is defined;
\dot{q}_{i} : the velocity;
F_{i} : the force or torque, depending on the type of joint (rotational or linear)

- Determine the kinematics from the fixed base to the TCP (relative kinematics)
- The resulting acceleration leads to forces towards rigid bodies
- The combination of constraining forces, payload forces, weight forces and working forces can be defined for every rigid body. All torques and momentums need to be in balance
- Solving this formula leads to the joint forces
- Especially suitable for serial kinematics of manipulator

Recursive Newton-Euler Method (cont.)

1. Newton's equation

$$
F=m \dot{v}_{c}
$$

where F is the force acting at the center of mass of a body, m is the total mass of the body, v_{c} is the acceleration.

2. Euler's equation

$$
\tau={ }^{C} \mathbf{l} \dot{\omega}+\omega \times{ }^{C} \mathbf{l} \omega
$$

- where ${ }^{C} \mathbf{I}$ is the inertia tensor of the body written in a frame C, whose origin is located at the center of the mass.

$$
C_{I}=\left[\begin{array}{ccc}
I_{x x} & -I_{x y} & -I_{x z} \\
-I_{x y} & I_{y y} & -I_{y z} \\
-I_{x z} & -I_{y z} & 1 z z
\end{array}\right]
$$

- τ is the torque
- $\omega, \dot{\omega}$ are the angular velocity and angular acceleration respectively
- Functional affordance
- trajectory and velocity of links
- load on a link
- Control quantity
- velocity and acceleration of joints
- forces and torques
- Robot-specific elements
- geometry
- mass distribution
- Determining joint forces and torques for one point of a trajectory $(\Theta, \dot{\Theta}, \ddot{\Theta})$
- Determining the motion of a link or the complete manipulator for given joint-forces and -torques (τ)
To achieve this the mathematical model is applied.

Formulation of robot dynamics

- Combining the different influence factors in the robot specific motion equation from kinematics $(\Theta, \dot{\Theta}, \ddot{\Theta})$
- Practically the Newton-, Euler- and motion-equation for each joint are combined
- Advantages: numerically efficient, applicable for complex geometry, can be modularized
- We can determine the forces with the Newton-equation
- The Euler-equation provides the torque
- The combination provides force and torque for each joint.

Example: A 2 DOF manipulator

Dynamics of a multibody system, example: a two joint manipulator.

Using Newton's second law, the forces at the center of mass at link 1 and 2 are:

$$
\mathbf{F}_{1}=m_{1} \ddot{\mathbf{r}}_{1}
$$

$$
\mathbf{F}_{2}=m_{2} \ddot{\mathbf{r}}_{2}
$$

where

$$
\begin{gathered}
\mathbf{r}_{1}=\frac{1}{2} l_{1}\left(\cos \theta_{1} \vec{i}+\sin \theta_{1} \vec{j}\right) \\
\mathbf{r}_{2}=2 \mathbf{r}_{1}+\frac{1}{2} l_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right) \vec{i}+\sin \left(\theta_{1}+\theta_{2}\right) \vec{j}\right]
\end{gathered}
$$

Euler equations:

$$
\begin{aligned}
& \tau_{1}=\mathbf{I}_{1} \dot{\omega}_{1}+\omega_{1} \times \mathbf{I}_{1} \omega_{1} \\
& \tau_{2}=\mathbf{I}_{2} \dot{\omega}_{2}+\omega_{2} \times \mathbf{I}_{2} \omega_{2}
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathbf{I}_{1}=\frac{m_{1} /_{1}^{2}}{12}+\frac{m_{1} R^{2}}{4} \\
& \mathbf{I}_{2}=\frac{m_{2} /_{2}^{2}}{12}+\frac{m_{2} R^{2}}{4}
\end{aligned}
$$

Newton-Euler-Equations for 2 DOF manipulator (cont.)

The angular velocities and angular accelerations are:

$$
\begin{gathered}
\omega_{1}=\dot{\theta}_{1} \\
\omega_{2}=\dot{\theta}_{1}+\dot{\theta}_{2} \\
\dot{\omega}_{1}=\ddot{\theta}_{1} \\
\dot{\omega}_{2}=\ddot{\theta}_{1}+\ddot{\theta}_{2}
\end{gathered}
$$

As $\omega_{i} \times \mathbf{I}_{i} \omega_{i}=0$, the torques at the center of mass of links 1 and 2 are:

$$
\begin{gathered}
\tau_{1}=\mathbf{l}_{1} \ddot{\theta}_{1} \\
\tau_{2}=\mathbf{I}_{2}\left(\ddot{\theta}_{1}+\ddot{\theta}_{2}\right)
\end{gathered}
$$

$\mathbf{F}_{1}, \mathbf{F}_{2}, \tau_{1}, \tau_{2}$ are used for force and torque balance and are solved for joint 1 and 2.

Example: A two joint manipulator

The kinetic energy of mass m_{1} is:

$$
K_{1}=\frac{1}{2} m_{1} d_{1}^{2}{\dot{\theta_{1}}}^{2}
$$

The potential energy is:

$$
P_{1}=-m_{1} g d_{1} \cos \left(\theta_{1}\right)
$$

The cartesian positions are:

$$
\begin{gathered}
x_{2}=d_{1} \sin \left(\theta_{1}\right)+d_{2} \sin \left(\theta_{1}+\theta_{2}\right) \\
y_{2}=-d_{1} \cos \left(\theta_{1}\right)-d_{2} \cos \left(\theta_{1}+\theta_{2}\right)
\end{gathered}
$$

The cartesian components of velocity are:

$$
\begin{aligned}
& \dot{x}_{2}=d_{1} \cos \left(\theta_{1}\right) \dot{\theta}_{1}+d_{2} \cos \left(\theta_{1}+\theta_{2}\right)\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right) \\
& \dot{y}_{2}=d_{1} \sin \left(\theta_{1}\right) \dot{\theta}_{1}+d_{2} \sin \left(\theta_{1}+\theta_{2}\right)\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right)
\end{aligned}
$$

The square of velocity is:

$$
v_{2}^{2}={\dot{x_{2}}}^{2}+{\dot{y_{2}}}^{2}
$$

The kinetic energy of link 2 is:

$$
K_{2}=\frac{1}{2} m_{2} v_{2}^{2}
$$

The potential energy of link 2 is:

$$
P_{2}=-m_{2} g d_{1} \cos \left(\theta_{1}\right)-m_{2} g d_{2} \cos \left(\theta_{1}+\theta_{2}\right)
$$

The Lagrangian function is:

$$
L=\left(K_{1}+K_{2}\right)-\left(P_{1}+P_{2}\right)
$$

The force/torque to joint 1 and 2 are:

$$
\begin{aligned}
& \tau_{1}=\frac{d}{d t} \frac{\partial L}{\partial \dot{\theta}_{1}}-\frac{\partial L}{\partial \theta_{1}} \\
& \tau_{2}=\frac{d}{d t} \frac{\partial L}{\partial \dot{\theta}_{2}}-\frac{\partial L}{\partial \theta_{2}}
\end{aligned}
$$

Langragian Method for two joint manipulator (cont.)

τ_{1} and τ_{2} are expressed as follows:

$$
\begin{aligned}
\tau_{1}= & D_{11} \ddot{\theta}_{1}+D_{12} \ddot{\theta}_{2}+D_{111} \dot{\theta}_{1}^{2}+D_{122} \dot{\theta}_{2}^{2} \\
& +D_{112} \dot{\theta}_{1} \dot{\theta}_{2}+D_{121} \dot{\theta}_{2} \dot{\theta}_{1}+D_{1} \\
\tau_{2}= & D_{21} \ddot{\theta}_{1}+D_{22} \ddot{\theta}_{2}+D_{211} \dot{\theta}_{1}^{2}+D_{222} \dot{\theta}_{2}^{2} \\
& +D_{212} \dot{\theta}_{1} \dot{\theta}_{2}+D_{221} \dot{\theta}_{2} \dot{\theta}_{1}+D_{2}
\end{aligned}
$$

where
$D_{i i}$: the inertia to joint i;
$D_{i j}$: the coupling of inertia between joint i and j;
$D_{i j j}$: the coefficients of the centripetal force to joint i because of the velocity of joint j;
$D_{i i k}\left(D_{i k i}\right)$: the coefficients of the Coriolis force to joint i effected by the velocities of joint i and k;
D_{i} : the gravity of joint i.

General dynamic equations of a manipulator

$$
\tau=M(\Theta) \ddot{\Theta}+V(\Theta, \dot{\Theta})+G(\Theta)
$$

$M(\Theta)$: the position dependent $n \times n$-mass matrix of a manipulator For the example given above:

$$
M(\Theta)=\left[\begin{array}{ll}
D_{11} & D_{12} \\
D_{21} & D_{22}
\end{array}\right]
$$

$V(\Theta, \dot{\Theta})$: an $n \times 1$-vector of centripetal and coriolis coefficients For the example given above:

$$
V(\Theta, \dot{\Theta})=\left[\begin{array}{l}
D_{111} \dot{\theta}_{1}^{2}+D_{122} \dot{\theta}_{2}^{2}+D_{112} \dot{\theta}_{1} \dot{\theta}_{2}+D_{121} \dot{\theta}_{2} \dot{\theta}_{1} \\
D_{211} \dot{\theta}_{1}^{2}+D_{222} \dot{\theta}_{2}^{2}+D_{212} \dot{\theta}_{1} \dot{\theta}_{2}+D_{221} \dot{\theta}_{2} \dot{\theta}_{1}
\end{array}\right]
$$

- a term such as $D_{111} \dot{\theta}_{1}^{2}$ is caused by coriolis force;
- a term such as $D_{112} \dot{\theta}_{1} \dot{\theta}_{2}$ is caused by coriolis force and depends on the (math.) product of the two velocities.
- $G(\Theta)$: a term of velocity, depends on Θ.
- for the example given above

$$
G(\Theta)=\left[\begin{array}{l}
D_{1} \\
D_{2}
\end{array}\right]
$$

Robot dynamics with flexible joint model

$$
\begin{aligned}
M(q) \ddot{q}+C(q, \dot{q}) \dot{q}+g(q) & =\tau+D K^{-1} \dot{\tau}+\tau_{e x t} \\
B \ddot{\theta}+\tau+D K^{-1} \dot{\tau} & =\tau_{m}-\tau_{f} \\
\tau & =K(\theta-q)
\end{aligned}
$$

- flexible joint as a two-mass model

Applications of robot dynamics

KUKA LWR's model-based control

- shortening the motion time without generating overshoots
- giving large reduction of the tracking error

Applications of robot dynamics (cont.)

KUKA iiwa's hand teaching

- Free movement by hand with dynamics compensation on each joint

Bibliography

[1] G.-Z. Yang, R. J. Full, N. Jacobstein, P. Fischer, J. Bellingham, H. Choset, H. Christensen, P. Dario, B. J. Nelson, and R. Taylor, "Ten robotics technologies of the year," 2019.
[2] J. K. Yim, E. K. Wang, and R. S. Fearing, "Drift-free roll and pitch estimation for high-acceleration hopping," in 2019 International Conference on Robotics and Automation (ICRA), pp. 8986-8992, IEEE, 2019.
[3] J. F. Engelberger, Robotics in service. MIT Press, 1989.
[4] K. Fu, R. González, and C. Lee, Robotics: Control, Sensing, Vision, and Intelligence. McGraw-Hill series in CAD/CAM robotics and computer vision, McGraw-Hill, 1987.
[5] R. Paul, Robot Manipulators: Mathematics, Programming, and Control: the Computer Control of Robot Manipulators.
Artificial Intelligence Series, MIT Press, 1981.
[6] J. Craig, Introduction to Robotics: Pearson New International Edition: Mechanics and Control.
Always learning, Pearson Education, Limited, 2013.

Bibliography (cont.)
[7] T. Flash and N. Hogan, "The coordination of arm movements: an experimentally confirmed mathematical model," Journal of neuroscience, vol. 5, no. 7, pp. 1688-1703, 1985.
[8] T. Kröger and F. M. Wahl, "Online trajectory generation: Basic concepts for instantaneous reactions to unforeseen events," IEEE Transactions on Robotics, vol. 26, no. 1, pp. 94-111, 2009.
[9] W. Böhm, G. Farin, and J. Kahmann, "A Survey of Curve and Surface Methods in CAGD," Comput. Aided Geom. Des., vol. 1, pp. 1-60, July 1984.
[10] J. Zhang and A. Knoll, "Constructing Fuzzy Controllers with B-spline Models - Principles and Applications," International Journal of Intelligent Systems, vol. 13, no. 2-3, pp. 257-285, 1998.
[11] M. Eck and H. Hoppe, "Automatic Reconstruction of B-spline Surfaces of Arbitrary Topological Type," in Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH '96, (New York, NY, USA), pp. 325-334, ACM, 1996.

Bibliography (cont.)

[12] T. Brogårdh, "Robot control overview: An industrial perspective," Modeling, Identification and Control, vol. 30, no. 3, p. 167, 2009.
[13] M. C. Ferch, Lernen von Montagestrategien in einer verteilten Multiroboterumgebung. PhD thesis, Bielefeld University, 2001.
[14] J. H. Reif, "Complexity of the Mover's Problem and Generalizations - Extended Abstract," Proceedings of the 20th Annual IEEE Conference on Foundations of Computer Science, pp. 421-427, 1979.
[15] J. T. Schwartz and M. Sharir, "A Survey of Motion Planning and Related Geometric Algorithms," Artificial Intelligence, vol. 37, no. 1, pp. 157-169, 1988.
[16] J. Canny, The Complexity of Robot Motion Planning. MIT press, 1988.
[17] T. Lozano-Pérez, J. L. Jones, P. A. O'Donnell, and E. Mazer, Handey: A Robot Task Planner.
Cambridge, MA, USA: MIT Press, 1992.
[18] O. Khatib, "The Potential Field Approach and Operational Space Formulation in Robot Control," in Adaptive and Learning Systems, pp. 367-377, Springer, 1986.
[19] J. Barraquand, L. Kavraki, R. Motwani, J.-C. Latombe, T.-Y. Li, and P. Raghavan, "A Random Sampling Scheme for Path Planning," in Robotics Research (G. Giralt and G. Hirzinger, eds.), pp. 249-264, Springer London, 1996.
[20] R. Geraerts and M. H. Overmars, "A Comparative Study of Probabilistic Roadmap Planners," in Algorithmic Foundations of Robotics V, pp. 43-57, Springer, 2004.
[21] K. Nishiwaki, J. Kuffner, S. Kagami, M. Inaba, and H. Inoue, "The Experimental Humanoid Robot H7: A Research Platform for Autonomous Behaviour," Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 365, no. 1850, pp. 79-107, 2007.
[22] R. Brooks, "A robust layered control system for a mobile robot," Robotics and Automation, IEEE Journal of, vol. 2, pp. 14-23, Mar 1986.
[23] M. J. Mataric, "Interaction and intelligent behavior.," tech. rep., DTIC Document, 1994.

Bibliography (cont.)

[24] M. P. Georgeff and A. L. Lansky, "Reactive reasoning and planning.," in AAAI, vol. 87, pp. 677-682, 1987.
[25] J. Zhang and A. Knoll, Integrating Deliberative and Reactive Strategies via Fuzzy Modular Control, pp. 367-385.
Heidelberg: Physica-Verlag HD, 2001.
[26] J. S. Albus, "The nist real-time control system (rcs): an approach to intelligent systems research," Journal of Experimental \& Theoretical Artificial Intelligence, vol. 9, no. 2-3, pp. 157-174, 1997.
[27] A. Meystel, "Nested hierarchical control," 1993.
[28] G. Saridis, "Machine-intelligent robots: A hierarchical control approach," in Machine Intelligence and Knowledge Engineering for Robotic Applications (A. Wong and A. Pugh, eds.), vol. 33 of NATO ASI Series, pp. 221-234, Springer Berlin Heidelberg, 1987.
[29] T. Fukuda and T. Shibata, "Hierarchical intelligent control for robotic motion by using fuzzy, artificial intelligence, and neural network," in Neural Networks, 1992. IJCNN., International Joint Conference on, vol. 1, pp. 269-274 vol.1, Jun 1992.
[30] R. C. Arkin and T. Balch, "Aura: principles and practice in review," Journal of Experimental \& Theoretical Artificial Intelligence, vol. 9, no. 2-3, pp. 175-189, 1997.
[31] E. Gat, "Integrating reaction and planning in a heterogeneous asynchronous architecture for mobile robot navigation," ACM SIGART Bulletin, vol. 2, no. 4, pp. 70-74, 1991.
[32] L. Einig, Hierarchical Plan Generation and Selection for Shortest Plans based on Experienced Execution Duration.
Master thesis, Universität Hamburg, 2015.
[33] J. Craig, Introduction to Robotics: Mechanics \& Control. Solutions Manual. Addison-Wesley Pub. Co., 1986.
[34] H. Siegert and S. Bocionek, Robotik: Programmierung intelligenter Roboter: Programmierung intelligenter Roboter. Springer-Lehrbuch, Springer Berlin Heidelberg, 2013.
[35] R. Schilling, Fundamentals of robotics: analysis and control. Prentice Hall, 1990.

Bibliography (cont.)
[36] T. Yoshikawa, Foundations of Robotics: Analysis and Control. Cambridge, MA, USA: MIT Press, 1990.
[37] M. Spong, Robot Dynamics And Control. Wiley India Pvt. Limited, 2008.

