Introduction to Robotics

Lecture 6

Shuang Li, Jianwei Zhang

[sli, zhang]@informatik.uni-hamburg.de

$\underset{\mathrm{M}}{\mathbf{T} \mid A} \mathbf{A}$
University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems

May 29, 2020

Outline

Introduction

Spatial Description and Transformations

Forward Kinematics

Robot Description
Inverse Kinematics for Manipulators
Instantaneous Kinematics
Trajectory Generation 1
Trajectory Generation 2
Recapitulation
Approximation and Interpolation
Interpolation methods
Bernstein-Polynomials
B-Splines
Dynamics
Robot Control

Outline (cont.)

Task-Level planning and Motion planning
Task-Level planning and Motion planning
Architectures of Sensor-based Intelligent Systems
Summary
Conclusion and Outlook

The trajectory of a robot with n degrees of freedom (DoF) is a vector of n parametric functions with a common parameter:

Time

$$
q(t)=\left[q^{1}(t), q^{2}(t), \ldots, q^{n}(t)\right]^{T}
$$

- Deriving a trajectory yields
- velocity \dot{q}
- acceleration \ddot{q}
- jerk \dddot{q}
- Jerk represents the change of acceleration over time, allowing for non-constant accelerations.
- A trajectory is C^{k}-continuous, if the first k derivatives of its path exist and are continuous.
- A trajectory is defined as smooth if it is at least C^{2}-continuous.

Trajectory generation

- Cartesian space
- closer to the problem
- better suited for collision avoidance
- Joint space
- trajectories are immediately executable
- limited to direct kinematics
- allows accounting for joint angle limitations
- Linear interpolation
- respect the minimum velocity constraint
- Trapezoidal interpolation
- normalization
- Polynomial interpolation.
- differentiable acceleration
- cubic polynomials
- Approximation of the relation between x and y (curve, plane, hyperplane) with a different function, given a limited number n of data points $D=\left\{\mathbf{x}_{i}, y_{i}\right\}$

Approximation

Definition

An approximation is a non-exact representation of something that is difficult to determine precisely (e.g. functions).

Necessary if

- equations are hard to solve
- mathematically too difficult or computationally too expensive

Advantages are

- simple to derive
- simple to integrate
- simple to compute

Stone-Weierstrass theorem (1937)

Theorem

- Every non-periodic continuous function on a closed interval can be approximated as closely as desired using algebraic polynomials.
- Every periodic continuous function can be approximated as closely as desired using trigonometric polynomials.
- A special case of approximation is interpolation, where the model exactly matches all data points.
If many points are given or measurement data is affected by noise, approximation should preferably be used.

Definition

Interpolation is the process of constructing new data points within the range of a discrete set of known data points.

- Interpolation is a kind of approximation.
- A function is designed to match the known data points exactly, while estimating the unknown data in between in an useful way.
- In robotics, interpolation is common for computing trajectories and motion/-controllers.
- Approximation: Fitting a curve to given data points.
- Online tool: https://mycurvefit.com/
- Interpolation: Defining a curve exactly through all given data points
- In the case of many, especially noisy, data points, approximation is often better suited than interpolation

Overfitting example

Complete the sequence: $1,3,5,7$, ?

Interpolation without Overfitting

- Base
- subset of a vector space
- able to represent arbitrary vectors in space
- finite linear combination
- Uniqueness
- $n^{\text {th }}$-degree polynomials only have n zero-points
- resulting system of equations is unique
- Oscillation
- high-degree polynomials may oscillate due to many extrema
- workaround: composition of sub-polynomials

Whatever the degree n of the polynomial is, there's $n-1$ turning points.

Interpolation methods

Generation of robot-trajectories in joint-space over multiple stopovers requires appropriate interpolation methods.

Some interpolation methods using polynomials:

- Bernstein-polynomials (Bézier curves)
- Basis-Splines (B-Splines)
- Lagrange-polynomials
- Newton-polynomials

Examples of polynomials interpolation:

- http://polynomialregression.drque.net/online.php
- https://arachnoid.com/polysolve/
- http://www.hvks.com/Numerical/webinterpolation.html

Bernstein-polynomials (named after Sergei Natanovich Bernstein) are real polynomials with integer coefficients.

Definition

Bernstein basis polynomials of degree k are defined as:

$$
B_{i, k}(t)=\binom{k}{i}(1-t)^{k-i} t^{i}, \quad i=0,1, \ldots, k
$$

where $\binom{k}{i}$ is the binomial coefficients, $\binom{k}{i}=\frac{i!}{k!(i-k)!}$ and $k \geqslant i \geqslant 0$.

$$
B_{i, k}(t)=\binom{k}{i}(1-t)^{k-i} t^{i}, \quad i=0,1, \ldots, k
$$

Bernstein Polynomials:

$$
\mathbf{y}=\mathbf{b}_{0} B_{0, k}(t)+\mathbf{b}_{1} B_{1, k}(t)+\cdots+\mathbf{b}_{k} B_{k, k}(t)
$$

where \mathbf{b}_{k} is Bernstein coefficients.

Wid Polynomial of degree 15

Properties

Properties of Bernstein basis polynomials:

- base property: the Bernstein basis polynomials [$B_{i, k}: 0 \leq i \leq k$] are linearly independent and form a base of the space of polynomials of degree $\leq k$,
- positivity $B_{i, k}(t) \geq 0$ for $t \in[0,1]$,
- decomposition of one: $\sum_{i=0}^{k} B_{i, k}(t) \equiv \sum_{i=0}^{k}\binom{k}{i} t^{i}(1-t)^{k-i} \equiv 1$,
- recursivity: $B_{i, k-1}(t)=\frac{k-i}{k} B_{i, k}(t)+\frac{i+1}{k} B_{i+1, k}(t)$

Bernstein Polynomials:

$$
\mathbf{y}=\mathbf{b}_{0} B_{0, k}(t)+\mathbf{b}_{1} B_{1, k}(t)+\cdots+\mathbf{b}_{k} B_{k, k}(t)
$$

where \mathbf{b}_{k} is Bernstein coefficients.

If \mathbf{b}_{k} is a set of control points P_{0}, \cdots, P_{n}, where n is called its order of the Bézier curve ($\mathrm{n}=1$ for linear, 2 for quadratic, etc.).

Animation of Bézier curves

- Cubic polynomials ($3^{r d}$-degree) most used
- derivatives exist
- velocity
- acceleration
- jerk
- provides smooth trajectory

B-spline curves and basis functions

- A B-spline or basis spline is a polynomial function that has minimal support with respect to a given degree, smoothness, and domain partition
- A B-spline curve of order k is composed of linear combinations of B-Splines (piecewise) of degree $k-1$ in a set of control points

B-spline curves and basis functions (cont.)

B-spline curves and basis functions (cont.)

Linear splines correspond to piecewise linear functions
Advantages:

- splines are more flexible than polynomials due to their piecewise definition
- still, they are relatively simple and smooth
- prevent strong oscillation
- Generally, $2^{\text {nd }}$ derivatives are continuous at intersections
- also applicable for representing surfaces (CAD modeling)
- the domain of B-splines are subdivided by

$$
\mathbf{t}=\left(t_{0}, t_{1}, t_{2}, \ldots, t_{m}, t_{m+1}, \ldots, t_{m+k}\right)
$$

where

- t : is the knot vector, has $m+k$ non-decreasing parameters
- m-th knot span is the half-open inteval $\left[t_{m}, t_{m+1}\right.$)
- m : is the number of control points to be interpolated
- k : is the order of the B-spline curve

Definition of B-splines

B-splines $N_{i, k}$ of order k :

- for $k=1$, the degree is $p=k-1=0$:

$$
N_{i, 1}(t)=\left\{\begin{array}{lll}
1 & : & \text { for } t_{i} \leq t<t_{i+1} \\
0 & : & \text { else }
\end{array}\right.
$$

- a recursive definition for $k>1$

$$
N_{i, k}(t)=\frac{t-t_{i}}{t_{i+k-1}-t_{i}} N_{i, k-1}(t)+\frac{t_{i+k}-t}{t_{i+k}-t_{i+1}} N_{i+1, k-1}(t)
$$

with $i=0, \ldots, m$.

- the above is referred to as the Cox-de Boor recursion formula

The recursive definition of a B-spline basis function $N_{i, k}(t)$:

Examples of B-splines

Examples of B-splines

Overlapping

There are $k=p+1$ overlapping B-splines within an interval.

Uniform B-splines

- Distance between uniform B-splines' control points is constant
- Weight-functions of uniform B-splines are periodic
- All functions have the same form
- Easy to compute

$$
B_{m, k}=B_{m+1, k}=B_{m+2, k}
$$

Non-uniform B-spline of order 3

- Partition of unity: $\sum_{i=0}^{k} N_{i, k}(t)=1$.
- Positivity: $N_{i, k}(t) \geq 0$.
- Local support: $N_{i, k}(t)=0$ for $t \notin\left[t_{i}, t_{i+k}\right]$.
- C^{k-2} continuity:

If the knots $\left\{t_{i}\right\}$ are pairwise different from each other, then

$$
N_{i, k}(t) \in C^{k-2}
$$

i.e. $N_{i, k}(t)$ is $(k-2)$ times continuously differentiable.

A B-spline curve can be composed by combining pre-defined control-points with B-spline basis functions:

$$
\mathbf{r}(t)=\sum_{j=0}^{m} \mathbf{v}_{j} \cdot N_{j, k}(t)
$$

where t is the time, $\mathbf{r}(t)$ is a point on this B -spline curve and \mathbf{v}_{j} are called its control points (de-Boor points).
$\mathbf{r}(t)$ is a C^{k-2} continuous curve if the range of t is $\left[t_{k-1}, t_{m+1}\right]$.

B-Spline curves

- A series of de-Boor points forms a convex hull for the interpolating curve
- Path always constrained to de-Boor point's convex hull
- De-Boor points are of same dimensionality as B-spline curve
- B-spline curves have locality properties
- control point P_{i} influences the curve only within the interval $\left[\tau_{i}, \tau_{i+p}\right]$

The influence of different control points

The influence of different control points (cont.)

The influence of different control points (cont.)

Question

Given a set of m data points and a degree p, find a B-spline curve of degree p defined by m control points that passes all data points in the given order.

Two methods:

- by solving the following system of equations [9]

$$
\mathbf{q}_{j}(t)=\sum_{j=0}^{m} \mathbf{v}_{j} \cdot N_{j, k}(t) \Longrightarrow Q=N \cdot V
$$

where \mathbf{q}_{j} are the data points to be interpolated, $j=0, \cdots, m$;
N is a $m \times m$ matrix;
V and Q is a $m \times s$ matrices, s is the space dimension.

- by learning, based on gradient-descend.[10]

Surface reconstruction with B-Splines

- Surface reconstruction from laser scan data using B-splines [11]

Pointcloud (16,585 points)

35 patches, 1.36% max. error

285 patches, 0.41% max. error

Surface reconstruction with B-Splines (cont.)

Pointcloud (20,021 points)

Pointcloud (37,974 points)

29 patches, 1.20% max. error

15 patches, 3.00% max. error

156 patches, 0.27% max. error

94 patches, 0.69\% max. error

Surface reconstruction with B-Splines (cont.)

- Surface approximation from mesh data (reduced to 30,000 faces)

Mesh (69,473 faces)

72 patches, 4.64% max. error

153 patches, 1.44% max. error

To match $I+1$ data points $\left(x_{i}, y_{i}\right)(i=0,1, \ldots, I)$ with a polynomial of degree I, the following approach of Lagrange can be used:

$$
p_{l}(x)=\sum_{i=0}^{l} y_{i} L_{i}(x)
$$

The interpolation polynomial in the Lagrange form is defined as follows:

$$
\begin{gathered}
L_{i}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{i-1}\right)\left(x-x_{i+1}\right) \cdots\left(x-x_{l}\right)}{\left(x_{i}-x_{0}\right)\left(x_{i}-x_{1}\right) \cdots\left(x_{i}-x_{i-1}\right)\left(x_{i}-x_{i+1}\right) \cdots\left(x_{i}-x_{l}\right)} \\
L_{i}\left(x_{k}\right)=\left\{\begin{array}{l}
1 \text { if } i=k \\
0 \text { if } i \neq k
\end{array}\right.
\end{gathered}
$$

Bibliography

[1] G.-Z. Yang, R. J. Full, N. Jacobstein, P. Fischer, J. Bellingham, H. Choset, H. Christensen, P. Dario, B. J. Nelson, and R. Taylor, "Ten robotics technologies of the year," 2019.
[2] J. K. Yim, E. K. Wang, and R. S. Fearing, "Drift-free roll and pitch estimation for high-acceleration hopping," in 2019 International Conference on Robotics and Automation (ICRA), pp. 8986-8992, IEEE, 2019.
[3] J. F. Engelberger, Robotics in service. MIT Press, 1989.
[4] K. Fu, R. González, and C. Lee, Robotics: Control, Sensing, Vision, and Intelligence. McGraw-Hill series in CAD/CAM robotics and computer vision, McGraw-Hill, 1987.
[5] R. Paul, Robot Manipulators: Mathematics, Programming, and Control: the Computer Control of Robot Manipulators.
Artificial Intelligence Series, MIT Press, 1981.
[6] J. Craig, Introduction to Robotics: Pearson New International Edition: Mechanics and Control.
Always learning, Pearson Education, Limited, 2013.

Bibliography (cont.)
[7] T. Flash and N. Hogan, "The coordination of arm movements: an experimentally confirmed mathematical model," Journal of neuroscience, vol. 5, no. 7, pp. 1688-1703, 1985.
[8] T. Kröger and F. M. Wahl, "Online trajectory generation: Basic concepts for instantaneous reactions to unforeseen events," IEEE Transactions on Robotics, vol. 26, no. 1, pp. 94-111, 2009.
[9] W. Böhm, G. Farin, and J. Kahmann, "A Survey of Curve and Surface Methods in CAGD," Comput. Aided Geom. Des., vol. 1, pp. 1-60, July 1984.
[10] J. Zhang and A. Knoll, "Constructing Fuzzy Controllers with B-spline Models - Principles and Applications," International Journal of Intelligent Systems, vol. 13, no. 2-3, pp. 257-285, 1998.
[11] M. Eck and H. Hoppe, "Automatic Reconstruction of B-spline Surfaces of Arbitrary Topological Type," in Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH '96, (New York, NY, USA), pp. 325-334, ACM, 1996.
[12] M. C. Ferch, Lernen von Montagestrategien in einer verteilten Multiroboterumgebung. PhD thesis, Bielefeld University, 2001.
[13] J. H. Reif, "Complexity of the Mover's Problem and Generalizations - Extended Abstract," Proceedings of the 20th Annual IEEE Conference on Foundations of Computer Science, pp. 421-427, 1979.
[14] J. T. Schwartz and M. Sharir, "A Survey of Motion Planning and Related Geometric Algorithms," Artificial Intelligence, vol. 37, no. 1, pp. 157-169, 1988.
[15] J. Canny, The Complexity of Robot Motion Planning. MIT press, 1988.
[16] T. Lozano-Pérez, J. L. Jones, P. A. O’Donnell, and E. Mazer, Handey: A Robot Task Planner.
Cambridge, MA, USA: MIT Press, 1992.
[17] O. Khatib, "The Potential Field Approach and Operational Space Formulation in Robot Control," in Adaptive and Learning Systems, pp. 367-377, Springer, 1986.
[18] J. Barraquand, L. Kavraki, R. Motwani, J.-C. Latombe, T.-Y. Li, and P. Raghavan, "A Random Sampling Scheme for Path Planning," in Robotics Research (G. Giralt and G. Hirzinger, eds.), pp. 249-264, Springer London, 1996.
[19] R. Geraerts and M. H. Overmars, "A Comparative Study of Probabilistic Roadmap Planners," in Algorithmic Foundations of Robotics V, pp. 43-57, Springer, 2004.
[20] K. Nishiwaki, J. Kuffner, S. Kagami, M. Inaba, and H. Inoue, "The Experimental Humanoid Robot H7: A Research Platform for Autonomous Behaviour," Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 365, no. 1850, pp. 79-107, 2007.
[21] R. Brooks, "A robust layered control system for a mobile robot," Robotics and Automation, IEEE Journal of, vol. 2, pp. 14-23, Mar 1986.
[22] M. J. Mataric, "Interaction and intelligent behavior.," tech. rep., DTIC Document, 1994.
[23] M. P. Georgeff and A. L. Lansky, "Reactive reasoning and planning.," in AAAI, vol. 87, pp. 677-682, 1987.
[24] J. Zhang and A. Knoll, Integrating Deliberative and Reactive Strategies via Fuzzy Modular Control, pp. 367-385.
Heidelberg: Physica-Verlag HD, 2001.
[25] J. S. Albus, "The nist real-time control system (rcs): an approach to intelligent systems research," Journal of Experimental \& Theoretical Artificial Intelligence, vol. 9, no. 2-3, pp. 157-174, 1997.
[26] A. Meystel, "Nested hierarchical control," 1993.
[27] G. Saridis, "Machine-intelligent robots: A hierarchical control approach," in Machine Intelligence and Knowledge Engineering for Robotic Applications (A. Wong and A. Pugh, eds.), vol. 33 of NATO ASI Series, pp. 221-234, Springer Berlin Heidelberg, 1987.
[28] T. Fukuda and T. Shibata, "Hierarchical intelligent control for robotic motion by using fuzzy, artificial intelligence, and neural network," in Neural Networks, 1992. IJCNN., International Joint Conference on, vol. 1, pp. 269-274 vol.1, Jun 1992.
[29] R. C. Arkin and T. Balch, "Aura: principles and practice in review," Journal of Experimental \& Theoretical Artificial Intelligence, vol. 9, no. 2-3, pp. 175-189, 1997.
[30] E. Gat, "Integrating reaction and planning in a heterogeneous asynchronous architecture for mobile robot navigation," ACM SIGART Bulletin, vol. 2, no. 4, pp. 70-74, 1991.
[31] L. Einig, Hierarchical Plan Generation and Selection for Shortest Plans based on Experienced Execution Duration.
Master thesis, Universität Hamburg, 2015.
[32] J. Craig, Introduction to Robotics: Mechanics \& Control. Solutions Manual. Addison-Wesley Pub. Co., 1986.
[33] H. Siegert and S. Bocionek, Robotik: Programmierung intelligenter Roboter: Programmierung intelligenter Roboter.
Springer-Lehrbuch, Springer Berlin Heidelberg, 2013.
[34] R. Schilling, Fundamentals of robotics: analysis and control. Prentice Hall, 1990.
[35] T. Yoshikawa, Foundations of Robotics: Analysis and Control. Cambridge, MA, USA: MIT Press, 1990.

Bibliography (cont.)
[36] M. Spong, Robot Dynamics And Control. Wiley India Pvt. Limited, 2008.

