Introduction to Robotics

Lecture 4

Shuang Li, Jianwei Zhang

[sli, zhang]@informatik.uni-hamburg.de

$\underset{M}{T} \mid \mathbf{A}$
University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems

May 15, 2020

IK Review

- Workspace
- reachable workspace
- dexterous workspace
- closed solutions:
- algebraic solution
- geometrical solution

The closed solution exists if specific constraints (sufficient constraints) for the arm geometry are satisfied:

If 3 sequent axes intersect in a given point
or if 3 sequent axes are parallel to each other

- numerical solutions

Exercise

Assume we have derived the forward kinematics as:

$$
{ }^{0} T_{3}=\left[\begin{array}{cccc}
C_{1} C_{23} & -C_{1} S_{23} & S_{1} & C_{1}\left(C_{2} I_{2}+I_{1}\right) \\
S_{1} C_{23} & -S_{1} S_{23} & -C_{1} & S_{1}\left(C_{2} I_{2}+I_{1}\right) \\
S_{23} & C_{23} & 0 & S_{2} I_{2} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

And we know:

$$
{ }^{0} T_{3}=\left[\begin{array}{cccc}
r_{11} & r_{12} & r_{13} & p_{x} \\
r_{21} & r_{22} & r_{23} & p_{y} \\
r_{31} & r_{32} & r_{33} & p_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Question: How to solve the inverse kinematics?

$$
{ }^{0} T_{3}=\left[\begin{array}{cccc}
C_{1} C_{23} & -C_{1} S_{23} & S_{1} & C_{1}\left(C_{2} l_{2}+I_{1}\right) \\
S_{1} C_{23} & -S_{1} S_{23} & -C_{1} & S_{1}\left(C_{2} l_{2}+I_{1}\right) \\
S_{23} & C_{23} & 0 & S_{2} l_{2} \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
r_{11} & r_{12} & r_{13} & p_{x} \\
r_{21} & r_{22} & r_{23} & p_{y} \\
r_{31} & r_{32} & r_{33} & p_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\begin{align*}
& S_{1}=r_{13} \tag{18}\\
& C_{1}=-r_{23} \tag{19}
\end{align*}
$$

Using the two-argument arctangent to solve for θ_{1},

$$
\theta_{1}=
$$

Exercise

$$
\begin{align*}
C_{1}\left(C_{2} I_{2}+l_{1}\right) & =p_{x} \tag{20}\\
S_{1}\left(C_{2} I_{2}+l_{1}\right) & =p_{y} \tag{21}\\
S_{2} I_{2} & =p_{z} \tag{22}
\end{align*}
$$

solve θ_{2} from (20-22),

Exercise

$$
\begin{align*}
& S_{23}=r_{31} \tag{23}\\
& C_{23}=r_{32} \tag{24}
\end{align*}
$$

solve θ_{3} from (20-22),

Outline

Introduction

Spatial Description and Transformations
Forward Kinematics
Robot Description
Inverse Kinematics for Manipulators
Instantaneous Kinematics
Velocity of rigid body
Velocity Propagation between Links
Jacobian of a Manipulator
Singular Configurations
Trajectory Generation 1
Trajectory Generation 2
Dynamics
Robot Control

Outline (cont.)

Task-Level planning and Motion planning
Task-Level planning and Motion planning
Architectures of Sensor-based Intelligent Systems
Summary
Conclusion and Outlook

Differential motion

- Forward kinematics: $\theta \longrightarrow x$
- Inverse kinematics: $x \longrightarrow \theta$
- instantaneous kinematics: $\theta+\delta \theta \longrightarrow x+\delta x$
- Relationship $\delta \theta \leftrightarrow \delta x$

$$
\begin{gathered}
\dot{\theta} \leftrightarrow \dot{x} \\
\text { Joint velocities } \leftrightarrow \text { end-effector velocities }
\end{gathered}
$$

- Linear velocity
- Angular velocity

$$
\begin{equation*}
{ }^{A} V_{P}=\frac{d}{d t}\left({ }^{A} P\right)=\lim _{\Delta t \rightarrow 0} \frac{\Delta \boldsymbol{P}(t)}{\Delta t}=\lim _{\Delta t \rightarrow 0} \frac{\boldsymbol{P}(t+\Delta t)-\boldsymbol{P}(t)}{\Delta t} \tag{25}
\end{equation*}
$$

- \boldsymbol{P} is a time-varying position vector w.r.t. $\{A\}$.
- ${ }^{A} V_{P}$ is the linear velocity of the point \boldsymbol{P} in space

Representing ${ }^{A} V_{P}$ in another frame $\{B\}$, then we get

$$
{ }^{B}\left({ }^{A} V_{P}\right)={ }^{B}\left(\frac{d}{d t}\left({ }^{A} P\right)\right)=\frac{d}{d t}\left({ }^{B} R_{A}\left({ }^{A} P\right)\right)={ }^{B} R_{A} \frac{d}{d t}\left({ }^{A} P\right)={ }^{B} R_{A} \cdot{ }^{A} V_{P}
$$

Note, as ${ }^{A} R_{B}$ remains invariant during the motion.

Notation

- if \boldsymbol{P} is the origin of a frame $\{\mathrm{C}\}$, which is moving, we typically use $v_{c}={ }^{U} V_{C}$ to denote the linear velocity of the origin of $\{c\}$ w.r.t. the reference frame $\{U\}$
- ${ }^{A} v_{c}$ means the linear velocity of the origin of $\{C\}$ w.r.t. $\{U\}$ expressed in $\{A\}$

Angular velocity describes rotational motion of a frame.

Notation

- ${ }^{A} \Omega_{B}$ denotes the angular velocity of $\{B\}$ w.r.t. $\{A\}$
- $\omega_{c}={ }^{U} \Omega_{C}$ denotes the angular velocity of $\{c\}$ w.r.t. $\{U\}$

- the direction of ${ }^{A} \Omega_{B}$ indicates the instantaneous axis of rotation
- the magnitude of ${ }^{A} \Omega_{B}$ indicates the speed of rotation

Linear velocity of rigid body

Assume that there is only a linear motion of $\{B\}$ w.r.t. $\{A\}$

$$
{ }^{A} P={ }^{A} P_{B}+{ }^{A} R_{B} \cdot{ }^{B} P
$$

Differentiating the above equation

$$
\begin{aligned}
{ }^{A} V_{P} & ={ }^{A} V_{B}+\frac{d}{d t}\left({ }^{A} R_{B} \cdot{ }^{B} P\right) \\
& ={ }^{A} V_{B}+{ }^{A} R_{B} \frac{d}{d t}\left({ }^{B} P\right) \\
& ={ }^{A} V_{B}+{ }^{A} R_{B} \cdot{ }^{B} V_{P}
\end{aligned}
$$

Note, as ${ }^{A} R_{B}$ remains invariant during the motion.

Assume that:

1. No linear velocity of $\{B\}$ w.r.t. $\{A\}$
2. There is a rotational velocity of $\{B\}$ w.r.t. $\{\mathrm{A}\},{ }^{A} R_{B}$ is time-varying.
3. Point P is fixed in $\{B\}$

${ }^{A} V_{P}$ is proportional to:

- $\left\|{ }^{A} \Omega_{B}\right\|$
- $\left\|^{A} P \sin \theta\right\|$
and
. ${ }^{A} V_{P} \perp{ }^{A} \Omega_{B}$
- ${ }^{A} V_{P} \perp{ }^{A} P$

$$
{ }^{A} V_{P}={ }^{A} \Omega_{B} \times{ }^{A} P
$$

Cross Product Operator

$$
a=\left[\begin{array}{l}
a_{x} \\
a_{y} \\
a_{z}
\end{array}\right], b=\left[\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z}
\end{array}\right] \longrightarrow c=a \times b \Longrightarrow c=\hat{a} b
$$

$a \times \Longrightarrow \hat{a}:$ a skew-symmetric matrix vectors \Longrightarrow matrices

$$
c=\hat{a} b=\left[\begin{array}{ccc}
0 & -a_{z} & a_{y} \\
a_{z} & 0 & -a_{x} \\
-a_{y} & a_{x} & 0
\end{array}\right]\left[\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z}
\end{array}\right]
$$

$$
\begin{gathered}
{ }^{A} V_{P}={ }^{A} \Omega_{B} \times{ }^{A} P={ }^{A} \hat{\Omega}_{B}{ }^{A} P \\
{ }^{A} \Omega_{B}=\left[\begin{array}{l}
\Omega_{x} \\
\Omega_{y} \\
\Omega_{z}
\end{array}\right],{ }^{A} P=\left[\begin{array}{l}
A \\
A_{x} \\
{ }^{A} P_{y} \\
{ }^{A} P_{z}
\end{array}\right] \\
{ }^{A} V_{P}={ }^{A} \hat{\Omega}_{B}{ }^{A} P=\left[\begin{array}{ccc}
0 & -\Omega_{z} & \Omega_{y} \\
\Omega_{z} & 0 & -\Omega_{x} \\
-\Omega_{y} & \Omega_{x} & 0
\end{array}\right]\left[\begin{array}{l}
A \\
{ }^{A} P_{x} \\
{ }^{A} P_{y} \\
{ }^{A} P_{z}
\end{array}\right]
\end{gathered}
$$

Assume that:

1. No linear velocity of $\{B\}$ w.r.t. $\{A\}$
2. There is a rotational velocity of $\{B\}$ w.r.t. $\{A\},{ }^{B} R_{A}$ is time-varying.
3. Point P is fixed in $\{B\}$

$$
\begin{gathered}
{ }^{A} V_{P}={ }^{A} \Omega_{B} \times{ }^{A} P \\
\Downarrow{ }^{B} V_{P} \\
{ }^{A} V_{P}={ }^{A} R_{B}{ }^{B} V_{P}+{ }^{A} \Omega_{B} \times{ }^{A} P \\
={ }^{A} R_{B}{ }^{B} V_{P}+{ }^{A} \Omega_{B} \times{ }^{A} R_{B}{ }^{B} P
\end{gathered}
$$

Assume that:

1. No linear velocity of $\{B\}$ w.r.t. $\{A\}$
2. There is a rotational velocity of $\{B\}$ w.r.t. $\{A\},{ }^{B} R_{A}$ is time-varying.
3. Point Q is fixed in $\{B\}$

$$
\begin{gathered}
{ }^{A} V_{P}={ }^{A} R_{B}{ }^{B} V_{P}+{ }^{A} \Omega_{B} \times{ }^{A} R_{B}{ }^{B} P \\
\Downarrow{ }^{A} V_{B} \\
{ }^{A} V_{P}={ }^{A} V_{B}+{ }^{A} R_{B}{ }^{B} V_{P}+{ }^{A} \Omega_{B} \times{ }^{A} R_{B}{ }^{B} P
\end{gathered}
$$

- Linear motion

$$
{ }^{A} V_{P}={ }^{A} V_{B}+{ }^{A} R_{B}{ }^{B} V_{P}
$$

- Rotational motion

$$
{ }^{A} V_{P}={ }^{A} R_{B}{ }^{B} V_{P}+{ }^{A} \Omega_{B} \times{ }^{A} R_{B}{ }^{B} P
$$

- General

$$
{ }^{A} V_{P}={ }^{A} V_{B}+{ }^{A} R_{B}{ }^{B} V_{P}+{ }^{A} \Omega_{B} \times{ }^{A} R_{B}{ }^{B} P
$$

Velocity propagation

Motion of the links of a manipulator.

- v: linear velocity
- ω : angular velocity

For a revolute joint i, the angular velocity ${ }^{i-1} \omega_{i-1}$ of the link i is:
$\dot{\theta}_{i}{ }^{i} Z_{i-1}$

- $\dot{\theta}_{i}$ is a scalar, the velocity of the joint i
${ }^{i} Z_{i-1}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
- scalar multiplication

Angular velocity ${ }^{i-1} \omega_{i}$ of the link $i+1$ is influenced by:

- the angular velocity ${ }^{i-1} \omega_{i-1}$ of the link i
- if joint $i+1$ is a revolute joint, the joint velocity along the z-axis Z_{i} of the link

$$
\begin{aligned}
& { }^{i-1} \omega_{i}={ }^{i-1} \omega_{i-1}+{ }^{i-1} R_{i} \dot{\theta}_{i+1}{ }^{i} Z_{i} \\
& { }^{i} \omega_{i}={ }^{i} R_{i-1}{ }^{i-1} \omega_{i-1}+\dot{\theta}_{i+1}{ }^{i} Z_{i}
\end{aligned}
$$

For a prismatic joint i, the linear velocity ${ }^{i-1} v_{i-1}$ of the link i is:
$\dot{d}_{i}{ }^{i} Z_{i-1}$

- \dot{d}_{i} is a scalar, the velocity of the link i
- ${ }^{i} Z_{i-1}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$

Linear velocity ${ }^{i-1} v_{i}$ of the link $i+1$ is influenced by:

- the linear velocity ${ }^{i-1} v_{i-1}$ of the joint i
- if joint i is a revolute joint, the linear velocity of the origin of frame $\{i+1\}$
- if joint $i+1$ is a prismatic joint, the joint velocity along the z-axis Z_{i} of the joint
${ }^{i-1} v_{i}={ }^{i-1} v_{i-1}+{ }^{i-1} \omega_{i-1} \times{ }^{i-1} P_{i}+\dot{d}_{i+1}{ }^{i} Z_{i}$
${ }^{i} v_{i}={ }^{i} R_{i-1}\left({ }^{i-1} v_{i-1}+{ }^{i-1} \omega_{i-1} \times{ }^{i-1} P_{i}\right)+\dot{d}_{i+1}{ }^{i} Z_{i}$

Velocity propagation summary

- Prismatic joint
${ }^{i} v_{i}={ }^{i} R_{i-1}\left({ }^{i-1} v_{i-1}+{ }^{i-1} \omega_{i-1} \times{ }^{i-1} P_{i}\right)+\dot{d}_{i+1}{ }^{i} Z_{i}$
${ }^{i} \omega_{i}={ }^{i} R_{i-1}{ }^{i-1} \omega_{i-1}$
- Revolute joint

$$
\begin{aligned}
& { }^{i} v_{i}={ }^{i} R_{i-1}\left({ }^{i-1} v_{i-1}+{ }^{i-1} \omega_{i-1} \times{ }^{i-1} P_{i}\right) \\
& { }^{i} \omega_{i}={ }^{i} R_{i-1}{ }^{i-1} \omega_{i-1}+\dot{\theta}_{i+1}{ }^{i} Z_{i}
\end{aligned}
$$

$$
\left[\begin{array}{c}
{ }^{0} v_{n} \\
{ }^{0} \omega_{n}
\end{array}\right]=\left[\begin{array}{cc}
{ }^{0} R_{n} & 0 \\
0 & { }^{0} R_{n}
\end{array}\right]\left[\begin{array}{l}
{ }^{n} v_{n} \\
{ }^{n} \omega_{n}
\end{array}\right]
$$

Example

Given the 2 dof planar robot, find the velocity of the origin of $\{2\}$ w.r.t. $\{2\}$ and $\{0\}$.
${ }^{0} \omega_{0}=\quad,{ }^{0} v_{0}=$
${ }^{1} \omega_{1}=$
${ }^{1} v_{1}=$

Example

Velocity propagation

How to simplify the calculation of end-effector velocity?

Joint velocities \Leftrightarrow End-effector velocities
\Downarrow
\section*{Jacobian}

Definition

In the field of robotics, we generally use Jacobians to relate joint velocities to Cartesian velocities of the end-effecter.

$$
x=f(q),\left[\begin{array}{c}
x_{1} \tag{26}\\
x_{2} \\
\ldots \\
x_{m}
\end{array}\right]=\left[\begin{array}{c}
f_{1}(q) \\
f_{2}(q) \\
\ldots \\
f_{n}(q)
\end{array}\right]
$$

- x is the Cartesian location of the end-effector
- m is number of degree of freedom in the Cartesian space
- Define $q=\left[q_{1}, q_{2}, . . q_{n}\right]^{T}, q_{1}, q_{2}, . . q_{n}$ are joint variables of an n-link manipulator

Jacobian of a manipulator (cont.)
By the chain rule of differentiation:

$$
\begin{gather*}
\delta x_{1}=\frac{\partial f_{1}}{\partial q_{1}} \delta q_{1}+\ldots+\frac{\partial f_{1}}{\partial q_{n}} \delta q_{n} \\
\vdots \\
\delta x_{m}=\frac{\partial f_{m}}{\partial q_{1}} \delta q_{1}+\ldots+\frac{\partial f_{m}}{\partial q_{n}} \delta q_{n} \tag{27}\\
\delta x=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial q_{1}} & \ldots & \frac{\partial f_{1}}{\partial q_{n}} \\
\vdots & \ldots & \vdots \\
\frac{\partial f_{m}}{\partial q_{1}} & \ldots & \frac{\partial f_{m}}{\partial q_{n}}
\end{array}\right] \cdot \delta q \tag{28}\\
\delta x_{(m \times 1)}=J_{(m \times n)} \delta q_{(n \times 1)} \quad \text { where } \quad J_{i j}(q)=\frac{\partial}{\partial q_{j}} f_{i}(q)
\end{gather*}
$$

$$
\begin{aligned}
\partial x_{(m \times 1)} & =J_{(m \times n)} \partial q_{(n \times 1)} \\
\dot{x}_{(m \times 1)} & =J_{(m \times n)} \dot{q}_{(n \times 1)}
\end{aligned}
$$

- A Jacobian-matrix is a multidimensional representation of partial derivatives.
- If we divide both sides with the differential time element, we can think of the Jacobian as mapping velocities in q to those in x .
- Jacobians are time-varying linear transformations.
- ${ }^{0} \omega_{n}$ to be the angular velocity of the end effector
- ${ }^{0} v_{n}$ is the linear velocity of the end effector
- The Jacobian matrix consists of two components, that solve the following equations:

$$
{ }^{0} v_{n}={ }^{0} J_{v} \dot{q} \quad \text { and } \quad{ }^{0} \omega_{n}={ }^{0} J_{w} \dot{q}
$$

The manipulator Jacobian

$$
J=\left[\begin{array}{c}
J_{v} \tag{29}\\
J_{w}
\end{array}\right], \quad\left[\begin{array}{l}
0 \\
v_{n} \\
{ }^{0} \omega_{n}
\end{array}\right]=\left[\begin{array}{c}
J_{v} \\
J_{w}
\end{array}\right] \dot{q}
$$

Angular velocity ${ }^{i-1} \omega_{i}$ is:

$$
{ }^{i-1} \omega_{i}={ }^{i-1} \omega_{i-1}+{ }^{i-1} R_{i} \dot{\theta}_{i+1}{ }^{i} Z_{i}
$$

We get:

$$
\begin{aligned}
{ }^{0} \omega_{n} & =p_{1} \dot{q}_{1}^{0} Z_{0}+p_{2} \dot{q}_{2}^{0} R_{1}^{1} Z_{1}+\ldots+p_{n} \dot{q}_{n}^{0} R_{n-1}^{n-1} Z_{n-1} \\
& =p_{1} \dot{q}_{1}^{0} Z_{0}+p_{2} \dot{q}_{2}^{0} Z_{1}+\ldots+p_{n} \dot{q}_{n}^{0} Z_{n-1}
\end{aligned}
$$

where:

$$
p_{i}= \begin{cases}0 & \text { if joint } \mathrm{i} \text { is prismatic } \tag{30}\\ 1 & \text { if joint } \mathrm{i} \text { is revolute }\end{cases}
$$

The Angular Velocity Jacobian

$$
J_{w}=\left[\begin{array}{llll}
p_{1}{ }^{0} Z_{0} & p_{2}{ }^{0} Z_{1} & \ldots & p_{n}{ }^{0} Z_{n-1} \tag{31}
\end{array}\right]
$$

(Hint: J_{w} is a $3 \times n$ matrix.)

The linear velocity of the end effector is: ${ }^{0} v_{n}={ }^{0} \dot{x}_{n}=\left[\begin{array}{c}\dot{x} \\ \dot{y} \\ \dot{z}\end{array}\right]$
By the chain rule of differentiation:

$$
{ }^{0} \dot{x}_{n}=\frac{\partial^{0} x_{n}}{\partial q_{1}} \dot{q}_{1}+\frac{\partial^{0} x_{n}}{\partial q_{2}} \dot{q}_{2}+\ldots+\frac{\partial^{0} x_{n}}{\partial q_{n}} \dot{q}_{n}
$$

therefore the linear part of the Jacobian is:

$$
J_{v}=\left[\begin{array}{lll}
\frac{\partial^{0} x_{n}}{\partial q_{1}} & \frac{\partial^{0} x_{n}}{\partial q_{2}} & \cdots \tag{32}
\end{array} \frac{\partial^{0} x_{n}}{\partial q_{n}}\right]
$$

Computing the final Jacobian

Two approaches:

1. derive v, ω for each link until the end-effector
2. use the explicit form

Computing the final Jacobian

- get ${ }^{0} J_{V}$

$$
{ }^{0} T_{6}=\left[\begin{array}{cc}
{ }^{0} R_{N} & { }^{0} P_{N} \\
0 & 1
\end{array}\right]{ }^{0} x \quad \longrightarrow{ }^{0} v_{n} \quad \longrightarrow \quad{ }^{0} J_{v}
$$

- get ${ }^{0} J_{\omega}$

$$
J_{w}=\left[\begin{array}{llll}
p_{1}^{0} Z_{0} & p_{2}^{0} Z_{1} & \ldots & p_{n}^{0} Z_{n-1}
\end{array}\right]
$$

- ${ }^{0} x_{i}$ is equal to the first three elements of the 4 th column of matrix ${ }^{0} T_{i}$
$-{ }^{0} Z_{i}$ is equal to the first three elements of the 3 rd column of matrix ${ }^{0} T_{i}$
${ }^{0} T_{i}$ has to be computed for every joint.

Example1

$$
\begin{aligned}
& { }^{0} \omega_{2}={ }^{0} R_{2}{ }^{2} \omega_{2}=\left[\begin{array}{c}
0 \\
0 \\
\dot{\theta_{1}}+\dot{\theta_{2}}
\end{array}\right] \\
& { }^{0} v_{2}={ }^{0} R_{2}{ }^{2} v_{2}=\left[\begin{array}{c}
-l_{1} s_{1} \dot{\theta_{1}}-l_{2} s_{12}\left(\dot{\theta_{1}}+\dot{\theta_{2}}\right) \\
l_{1} c_{1} \dot{\theta_{1}}+l_{2} c_{12}\left(\dot{\theta_{1}}+\dot{\theta}_{2}\right) \\
0
\end{array}\right]
\end{aligned}
$$

Give the ${ }^{0} J$ Jacobian matrix.

Example2

For a 3-DOF robot, given the following transformation matrices, find the Jacobian ${ }^{0} \mathrm{~J}$.
${ }^{0} T_{1}=\left[\begin{array}{cccc}c_{1} & -s_{1} & 0 & 0 \\ s_{1} & c_{1} & 0 & 0 \\ 0 & 0 & 1 & h \\ 0 & 0 & 0 & 1\end{array}\right],{ }^{1} T_{2}=\left[\begin{array}{cccc}c_{2} & -s_{2} & 0 & 0 \\ 0 & 0 & -1 & 0 \\ s_{2} & c_{2} & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right],{ }^{2} T_{3}=\left[\begin{array}{cccc}c_{3} & -s_{3} & 0 & e \\ s_{3} & c_{3} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right],{ }^{3} T_{4}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & f \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 \\ 0 & 0 & 1\end{array}\right]$
where h, e, f are the length of the $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ link, respectively.

$$
{ }^{0} T_{4}=\left[\begin{array}{cccc}
c_{1} c_{23} & -c_{1} s_{23} & s_{1} & e c_{1} c_{2}+f c_{1} c_{23} \\
s_{1} c_{23} & -s_{1} c_{23} & -c_{1} & e s_{1} c_{2}+f s_{1} c_{23} \\
s_{23} & c_{23} & 0 & h+e s_{2}+f s_{23} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Example2

Calculate ${ }^{0} T_{1},{ }^{0} T_{2},{ }^{0} T_{3},{ }^{0} T_{4}$:

$$
\begin{gathered}
{ }^{0} T_{1}=\left[\begin{array}{cccc}
c_{1} & -s_{1} & 0 & 0 \\
s_{1} & c_{1} & 0 & 0 \\
0 & 0 & 1 & h \\
0 & 0 & 0 & 1
\end{array}\right],{ }^{0} T_{2}={ }^{0} T_{1}{ }^{1} T_{2}=\left[\begin{array}{cccc}
c_{1} c_{2} & -s_{2} c_{1} & s_{1} & 0 \\
s_{1} c_{2} & -s_{1} s_{2} & -c_{1} & 0 \\
s_{2} & c_{2} & 0 & h \\
0 & 0 & 0 & 1
\end{array}\right] \\
{ }^{0} T_{3}={ }^{0} T_{2}{ }^{2} T_{3}=\left[\begin{array}{ccccc}
-s_{2} s_{3} c_{1}+c_{1} c_{2} c_{3} & -s_{2} c_{1} c_{3}-s_{3} c_{1} c_{2} & s_{1} & e c_{1} c_{2} \\
-s_{1} s_{2} s_{3}+s_{1} c_{2} c_{3} & -s_{1} s_{2} c_{3}-s_{1} s_{3} c_{2} & -c_{1} & e s_{1} c_{2} \\
s_{2} c_{3}+s_{3} c_{2} & -s_{2} s_{3}+c_{2} c_{3} & 0 & e s_{2}+h \\
0 & 0 & 1
\end{array}\right] \\
0
\end{gathered} \begin{array}{ccccc}
{ }^{0} T_{4} & =\left[\begin{array}{cccc}
c_{1} c_{23} & -c_{1} s_{23} & s_{1} & e c_{1} c_{2}+f c_{1} c_{23} \\
s_{1} c_{23} & -s_{1} c_{23} & -c_{1} & e s_{1} c_{2}+f s_{1} c_{23} \\
s_{23} & c_{23} & 0 & h+e s_{2}+f s_{23} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{array}
$$

$$
0 J=\left[\begin{array}{l}
J_{v} \\
J_{w}
\end{array}\right]=\left[\begin{array}{ccc}
-e s_{1} c_{2}-f s_{1} c_{23} & -e c_{1} s_{2}-f c_{1} s_{23} & -f c_{1} s_{23} \\
e c_{1} c_{2}+f c_{1} c_{23} & -e s_{1} s_{2}-f s_{1} s_{23} & -f s_{1} s_{23} \\
0 & e c_{2}+f c_{23} & f c_{23} \\
0 & s_{1} & s_{1} \\
0 & -c_{1} & -c_{1} \\
1 & 0 & 0
\end{array}\right]
$$

Changing a Jacobian's frame of reference

Given a Jacobian written in frame $\{B\}$,

$$
\left[\begin{array}{l}
{ }^{B} v_{n} \\
B^{B} \omega_{n}
\end{array}\right]=\left[\begin{array}{l}
B \\
J_{v} \\
B \\
{ }^{\prime}
\end{array}\right] \dot{q}
$$

$A 6 \times 1$ Cartesian velocity vector given in $\{B\}$ is described relative to $\{A\}$ by the transformation

$$
\left[\begin{array}{l}
{ }^{A} v_{n} \\
{ }^{A} \omega_{n}
\end{array}\right]=\left[\begin{array}{cc}
{ }^{A} R_{B} & 0 \\
0 & { }^{A} R_{B}
\end{array}\right]\left[\begin{array}{l}
{ }^{B} v_{n} \\
{ }^{B} \omega_{n}
\end{array}\right]
$$

Hence, we can get

$$
\left[\begin{array}{c}
{ }^{A} v_{n} \tag{33}\\
{ }^{A} \omega_{n}
\end{array}\right]=\left[\begin{array}{cc}
{ }^{A} R_{B} & 0 \\
0 & { }^{A} R_{B}
\end{array}\right]\left[\begin{array}{cc}
{ }^{B} J_{v} \\
{ }^{B} J_{w}
\end{array}\right] \dot{q}
$$

Question

Is the Jacobian invertible?
If it is, then:

$$
\dot{\mathbf{q}}=J^{-1}(\mathbf{q}) \dot{\mathrm{x}}
$$

\Longrightarrow to move the the end effector of the robot in Cartesian Space with a certain velocity.

For most manipulators there exist values of \mathbf{q} where the Jacobian gets singular.

Singularity

$$
\operatorname{det} J=0 \Longrightarrow J \text { is not invertible }
$$

Such configurations are called singularities of the manipulator.

From the Task Space perspective:

- reduce the degree of freedom in velocity domain in task space

From the Joint Space perspective:

- Infinite solutions to the inverse kinematics problem may exist
- Near the singularity, small velocities in operational space may cause large velocities in the joint space.

Two Main types of Singularities:

- Workspace boundary singularities occur when the manipulator is fully stretched out or folded back on itself in such a way that the end-effector is at or very near the boundary of the workspace.
- Workspace internal singularities occur away from the workspace boundary; they generally are caused by a lining up of two or more joint axes
$N=6$ For fully actuated robots, the Jacobian (6×6) is invertible

$$
\delta x_{(m \times 1)}=J_{(m \times n)} \delta q_{(n \times 1)} \quad \text { where } \quad J_{i j}(q)=\frac{\partial}{\partial q_{j}} f_{i}(q)
$$

- m is number of degree of freedom of the manipulator in the Cartesian space
- n is the number of joint variables of the manipulator
$N=6$ For fully actuated robots, the Jacobian (6×6) is invertible $N<6$ Under actuated robots $(6 \times N)$ \Longrightarrow remove some spatial degrees of freedom, get a square Jacobian matrix. Example:

$$
\left[\begin{array}{l}
T_{6} d_{x} \\
{ }^{6} d_{y}
\end{array}\right]=J_{2 \times 2}\left[\begin{array}{l}
d q_{1} \\
d q_{2}
\end{array}\right]
$$

for a 2-joint planar manipulator
$N=6$ For fully actuated robots, the Jacobians (6×6) are invertible $N<6$ Under actuated robots $(6 \times N)$
\Longrightarrow remove some spatial degrees of freedom
$N>6$ Over actuated robots $(6 \times N)$

- have spare joints
- use the pseudoinverse of J

$$
\begin{align*}
\dot{q} & =J(q)^{+} v \tag{34}\\
J^{+} & =\left(J^{T} J\right)^{-1} J^{T} \tag{35}
\end{align*}
$$

UR5 example

${ }^{23}$ https://www.youtube.com/watch?v=6Wmw4IUHIX8

Bibliography

[1] G.-Z. Yang, R. J. Full, N. Jacobstein, P. Fischer, J. Bellingham, H. Choset, H. Christensen, P. Dario, B. J. Nelson, and R. Taylor, "Ten robotics technologies of the year," 2019.
[2] J. K. Yim, E. K. Wang, and R. S. Fearing, "Drift-free roll and pitch estimation for high-acceleration hopping," in 2019 International Conference on Robotics and Automation (ICRA), pp. 8986-8992, IEEE, 2019.
[3] J. F. Engelberger, Robotics in service. MIT Press, 1989.
[4] K. Fu, R. González, and C. Lee, Robotics: Control, Sensing, Vision, and Intelligence. McGraw-Hill series in CAD/CAM robotics and computer vision, McGraw-Hill, 1987.
[5] R. Paul, Robot Manipulators: Mathematics, Programming, and Control: the Computer Control of Robot Manipulators.
Artificial Intelligence Series, MIT Press, 1981.
[6] J. Craig, Introduction to Robotics: Pearson New International Edition: Mechanics and Control.
Always learning, Pearson Education, Limited, 2013.
[7] W. Böhm, G. Farin, and J. Kahmann, "A Survey of Curve and Surface Methods in CAGD," Comput. Aided Geom. Des., vol. 1, pp. 1-60, July 1984.
[8] J. Zhang and A. Knoll, "Constructing Fuzzy Controllers with B-spline Models - Principles and Applications," International Journal of Intelligent Systems, vol. 13, no. 2-3, pp. 257-285, 1998.
[9] M. Eck and H. Hoppe, "Automatic Reconstruction of B-spline Surfaces of Arbitrary Topological Type," in Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH '96, (New York, NY, USA), pp. 325-334, ACM, 1996.
[10] M. C. Ferch, Lernen von Montagestrategien in einer verteilten Multiroboterumgebung. PhD thesis, Bielefeld University, 2001.
[11] J. H. Reif, "Complexity of the Mover's Problem and Generalizations - Extended Abstract," Proceedings of the 20th Annual IEEE Conference on Foundations of Computer Science, pp. 421-427, 1979.
[12] J. T. Schwartz and M. Sharir, "A Survey of Motion Planning and Related Geometric Algorithms," Artificial Intelligence, vol. 37, no. 1, pp. 157-169, 1988.
[13] J. Canny, The Complexity of Robot Motion Planning. MIT press, 1988.
[14] T. Lozano-Pérez, J. L. Jones, P. A. O’Donnell, and E. Mazer, Handey: A Robot Task Planner.
Cambridge, MA, USA: MIT Press, 1992.
[15] O. Khatib, "The Potential Field Approach and Operational Space Formulation in Robot Control," in Adaptive and Learning Systems, pp. 367-377, Springer, 1986.
[16] J. Barraquand, L. Kavraki, R. Motwani, J.-C. Latombe, T.-Y. Li, and P. Raghavan, "A Random Sampling Scheme for Path Planning," in Robotics Research (G. Giralt and G. Hirzinger, eds.), pp. 249-264, Springer London, 1996.
[17] R. Geraerts and M. H. Overmars, "A Comparative Study of Probabilistic Roadmap Planners," in Algorithmic Foundations of Robotics V, pp. 43-57, Springer, 2004.
[18] K. Nishiwaki, J. Kuffner, S. Kagami, M. Inaba, and H. Inoue, "The Experimental Humanoid Robot H7: A Research Platform for Autonomous Behaviour," Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 365, no. 1850, pp. 79-107, 2007.
[19] R. Brooks, "A robust layered control system for a mobile robot," Robotics and Automation, IEEE Journal of, vol. 2, pp. 14-23, Mar 1986.
[20] M. J. Mataric, "Interaction and intelligent behavior.," tech. rep., DTIC Document, 1994.
[21] M. P. Georgeff and A. L. Lansky, "Reactive reasoning and planning.," in AAAI, vol. 87, pp. 677-682, 1987.
[22] J. Zhang and A. Knoll, Integrating Deliberative and Reactive Strategies via Fuzzy Modular Control, pp. 367-385.
Heidelberg: Physica-Verlag HD, 2001.
[23] J. S. Albus, "The nist real-time control system (rcs): an approach to intelligent systems research," Journal of Experimental \& Theoretical Artificial Intelligence, vol. 9, no. 2-3, pp. 157-174, 1997.
[24] A. Meystel, "Nested hierarchical control," 1993.
[25] G. Saridis, "Machine-intelligent robots: A hierarchical control approach," in Machine Intelligence and Knowledge Engineering for Robotic Applications (A. Wong and A. Pugh, eds.), vol. 33 of NATO ASI Series, pp. 221-234, Springer Berlin Heidelberg, 1987.
[26] T. Fukuda and T. Shibata, "Hierarchical intelligent control for robotic motion by using fuzzy, artificial intelligence, and neural network," in Neural Networks, 1992. IJCNN., International Joint Conference on, vol. 1, pp. 269-274 vol.1, Jun 1992.
[27] R. C. Arkin and T. Balch, "Aura: principles and practice in review," Journal of Experimental \& Theoretical Artificial Intelligence, vol. 9, no. 2-3, pp. 175-189, 1997.
[28] E. Gat, "Integrating reaction and planning in a heterogeneous asynchronous architecture for mobile robot navigation," ACM SIGART Bulletin, vol. 2, no. 4, pp. 70-74, 1991.
[29] L. Einig, Hierarchical Plan Generation and Selection for Shortest Plans based on Experienced Execution Duration.
Master thesis, Universität Hamburg, 2015.
[30] J. Craig, Introduction to Robotics: Mechanics \& Control. Solutions Manual. Addison-Wesley Pub. Co., 1986.
[31] H. Siegert and S. Bocionek, Robotik: Programmierung intelligenter Roboter: Programmierung intelligenter Roboter. Springer-Lehrbuch, Springer Berlin Heidelberg, 2013.
[32] R. Schilling, Fundamentals of robotics: analysis and control. Prentice Hall, 1990.
[33] T. Yoshikawa, Foundations of Robotics: Analysis and Control. Cambridge, MA, USA: MIT Press, 1990.
[34] M. Spong, Robot Dynamics And Control.
Wiley India Pvt. Limited, 2008.

