

MIN Faculty Department of Informatics

Introduction to Robotics

Shuang Li, Jianwei Zhang [sli, zhang]@informatik.uni-hamburg.de

University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems

May 01, 2020

Forward Kinematics

Introduction

Spatial Description and Transformations

Forward Kinematics

More on presentation of a rigid body Denavit-Hartenberg convention Definition of joint coordinate systems Example DH-Parameter of a single joint Example DH-Parameter for a manipulator Example featuring Mitsubishi PA10-7C

Robot Description

Inverse Kinematics for Manipulators

Differential motion with homogeneous transformations Jacobian

Trajectory planning

Trajectory generation

Outline (cont.)

Forward Kinematics

Dynamics

Robot Control

Task-Level Programming and Trajectory Generation

Task-level Programming and Path Planning

Task-level Programming and Path Planning

Architectures of Sensor-based Intelligent Systems

Summary

Conclusion and Outlook

Review of last lecture

Forward Kinematics

- Degree of freedom
 - ▶ The number of variables to determine position of a control system in space.
- Robot classification
 - mechanical structure
- Rotation matrix

$$\blacktriangleright {}^{A}R_{B}^{-1} = {}^{B}R_{A} = {}^{B}R_{A}^{T} \text{ and } {}^{A}R_{B}{}^{B}R_{A} = I$$

Homogeneous transformation matrix

$$\bullet \quad T = \begin{bmatrix} R & \vec{p} \\ 0 & 1 \end{bmatrix}$$

Transformation equation

Forward Kinematics

In order to find the desired end effector pose:

 $ZT_6E = BG$

In order to find the manipulator transformation T_6 :

 $T_6 = Z^{-1}BGE^{-1}$

In order to determine the pose of the object B:

 $B = Z T_6 E G^{-1}$

Review of last lecture

Forward Kinematics

A vector $\stackrel{\vec{AP}}{P}$ is rotated about \hat{Y} by 30 degrees and is subsequently rotated about \hat{X} by 45 degrees. Give the rotation matrix that accomplishes these rotations in the given order.

$$R = R_{x,45}R_{y,30}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos 45 & -\sin 45 \\ 0 & \sin 45 & \cos 45 \end{bmatrix} \begin{bmatrix} \cos 30 & 0 & \sin 30 \\ 0 & 1 & 0 \\ -\sin 30 & 0 & \cos 30 \end{bmatrix}$$

$$= \begin{bmatrix} 0.866 & 0 & 0.5 \\ 0.353 & 0.707 & -0.612 \\ -0.353 & 0.707 & 0.612 \end{bmatrix}$$

Forward Kinematics - More on presentation of a rigid body

Introduction to Robotics

Forward Kinematics - More on presentation of a rigid body

Introduction to Robotics

Forward Kinematics - More on presentation of a rigid body

Introduction to Robotics

Forward Kinematics - More on presentation of a rigid body

Introduction to Robotics

Forward Kinematics - More on presentation of a rigid body

Introduction to Robotics

Forward Kinematics - More on presentation of a rigid body

Introduction to Robotics

- Euler-angles φ, θ, ψ
 - rotations are performed successively around the axes, e.g. ZYX or ZXZ (12 possibilities!)
 - order depends on reference coordinates
 - Intrinsic rotations
 - Extrinsic (fix angle) rotations
- Roll-Pitch-Yaw
 - X-Y-Z fixed angles
 - used in aviation and maritime

Converting Euler Angles to a Rotation Matrix

Forward Kinematics - More on presentation of a rigid body

 $R_{\mathbf{x},\varphi} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & C\varphi & -S\varphi \\ 0 & S\varphi & C\varphi \end{vmatrix}$ $R_{y,\theta} = \begin{bmatrix} C\theta & 0 & S\theta \\ 0 & 1 & 0 \\ -S\theta & 0 & C\theta \end{bmatrix}$ $R_{z,\psi} = \begin{bmatrix} C\psi & -S\psi & 0\\ S\psi & C\psi & 0\\ 0 & 0 & 1 \end{bmatrix}$

Introduction to Robotics

- Rotation matrix
 - implicit, easy to use linear algebra to perform computation
- Euler angles
 - Gimbal lock!
 - ▶ When two gimbals rotate around the same axis, the system loses one degree of freedom.

More on presentation of orientation (cont.)

- Rotation matrix
 - ▶ implicit, easy to use linear algebra to perform computation, singularity-free
- Euler angles φ, θ, ψ
 - explicit, but gimbal lock/singularity happens
- Equivalent angle-axis representation $R_{k,\theta}$
 - the angle for a rotation about an axis vector
- Quaternion [x, y, z, w]
 - ▶ 4D vectors that represent 3D rigid body orientations
 - Unit quaternion: $x^2 + y^2 + z^2 + w^2 = 1$

Tools

python: Numpy, pyquaternion c++: Eigen

¹⁷https://en.wikipedia.org/wiki/Gimbal_lock

- A manipulator is considered as set of links connected by joints
 - serial robots (vs.parallel robots)
- Types of joints
 - revolute joints
 - prismatic joints

Forward Kinematics - More on presentation of a rigid body

- Movement depiction of the mechanical systems as fixed body chains
- ▶ Translate a series of joint parameters ⇒ cartesian pose of the end effector

Purpose

Absolute determination of the position of the end effector (TCP) in the cartesian coordinate system

Forward Kinematics - More on presentation of a rigid body

Using a vector \vec{p} , the TCP position is depicted.

Three unit vectors:

- ▶ \vec{a} : (approach vector),
- ▶ *o*: (orientation vector),
- ▶ n: (normal vector)

specify the orientation of the TCP.

Tool Center Point (TCP) description (cont.)

Forward Kinematics - More on presentation of a rigid body

Introduction to Robotics

Thus, the transformation T consists of the following elements:

$$T = \begin{bmatrix} \vec{n} & \vec{o} & \vec{a} & \vec{p} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Kinematics

- Transformation regulation, which describes the relation between joint coordinates of a robot q and the environment coordinates of the end effector x
- Solely determined by the geometry of the robot
 - Base frame
 - Relation of frames to one another
 - \implies Formation of a recursive chain
 - Joint coordinates:

$$q_i = \left\{ egin{array}{c} heta_i \ : \ {
m rotational joint} \ d_i \ : \ {
m translation joint} \end{array}
ight.$$

- In each link, a coordinate frame is attached
- A homogeneous matrix ⁱ⁻¹T_i depicts the relative translation and rotation between two consecutive joints
 - joint transition
- For a manipulator consisting of six joints:
 - ${}^{0}T_{1}$: depicts position and orientation of the first link with respect to the base
- ▶ ${}^{5}T_{6}$: depicts position and orientation of the 6th link in regard to link 5 The resulting product is defined as:

$$T_6 = {}^0 T_1 {}^1 T_2 {}^2 T_3 {}^3 T_4 {}^4 T_5 {}^5 T_6$$

- Calculation of $T_6 = \prod_{i=1}^n T_i$, T_i short for ${}^{i-1}T_i$
 - T_6 defines, how *n* joint transitions describe 6 cartesian DOF
- Definition of one coordinate system (CS) per segment i
 - generally arbitrary definition
- Determination of one transformation T_i per segment i = 1..n
 - ▶ generally 6 parameters (3 rotational + 3 translational) required
 - different sets of parameters and transformation orders possible

Solution

Denavit-Hartenberg (DH) convention

Forward Kinematics - Denavit-Hartenberg convention

- first published by Denavit and Hartenberg in 1955
- established principle
- determination of a transformation matrix T_i using four parameters
 - link length, link twist, link offset and joint angle
 (a_i, α_i, d_i, θ_i)

Parameters for description of two arbitrary links

Forward Kinematics - Denavit-Hartenberg convention

Two parameters for the description of the link structure i

- ▶ link length *a_i*
- link twist α_i

Parameters for description of two arbitrary links

Forward Kinematics - Denavit-Hartenberg convention

Two parameters for the description of the link structure *i*

- ▶ link length a_i: shortest distance between the axis i − 1 and the axis i
- ► link twist \(\alphi_i\): rotation angle from axis \(i 1\) to axis \(i\) in the right-hand sense about \(a_i\)

 a_i and α_i are constant values due to construction

Parameters for describing two arbitrary links (cont.)

Forward Kinematics - Denavit-Hartenberg convention

Two for relative distance and angle of adjacent links

- ▶ link offset *d_i*
- joint angle θ_i

Parameters for describing two arbitrary links (cont.)

Forward Kinematics - Denavit-Hartenberg conventior

Two for relative distance and angle of adjacent links

- ▶ link offset d_i: the distance along the common axis i − 1 from link i − 1 to the link i
- ▶ joint angle θ_i: the amount of rotation about the common axis i − 1 between the link i − 1 and the link i
- θ_i and d_i are variable
 - rotational: θ_i variable, d_i fixed
 - translational: d_i variable, θ_i fixed

Four DH parameters:

link length, link twist, link offset and joint angle $(a_i, \alpha_i, d_i, \theta_i)$

- 3 fixed link parameters
- one joint variable
 - revolute: θ_i variable
 - prismatic: d_i variable
- a_i , α_i : describe the link i
- d_i , θ_i : describe the link's connection

Right-Handed Coordinate System

Definition of joint coordinate systems (classic)

Forward Kinematics - Definition of joint coordinate systems

- axis z_{i-1} is set along the axis of motion of the ith joint
- axis x_i is parallel to the common normal of z_{i-1} and z_i $(x_i \parallel (z_{i-1} \times z_i))$.
- axis y_i concludes a right-handed coordinate system
- CS_0 is the stationary origin at the base of the manipulator

- link length a_i: distance from z_{i-1}-axis to z_i-axis measured along x_i-axis
- link twist α_i: angle from z_{i-1}-axis to z_i-axis measured around x_i-axis
- link offset d_i: distance from x_{i-1} to x_i measured along z_{i-1}-axis
- joint angle θ_i: joint angle from x_{i-1} to x_i measured around z_{i-1}-axis

Transformation order

 $T_i = R_{z_{i-1}}(\theta_i) \cdot T_{z_{i-1}}(d_i) \cdot T_{x_i}(a_i) \cdot R_{x_i}(\alpha_i) \to CS_i$

Creation of the relation between frame i and frame (i - 1) through the following rotations and translations:

- ▶ Rotate around z_{i-1} by angle θ_i
- Translate along z_{i-1} by d_i
- Translate along x_i by a_i
- Rotate around x_i by angle α_i

Using the product of four homogeneous transformations, which transform the coordinate frame i - 1 into the coordinate frame i, the matrix A_i can be calculated as follows:

$$T_i = R_{z_{i-1}}(\theta_i) \cdot T_{z_{i-1}}(d_i) \cdot T_{x_i}(a_i) \cdot R_{x_i}(\alpha_i) \to CS_i$$

Frame transformation for two links (classic) (cont.)

Forward Kinematics - Definition of joint coordinate systems

 $T_{i} = \begin{bmatrix} C\theta_{i} & -S\theta_{i} & 0 & 0\\ S\theta_{i} & C\theta_{i} & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \dots & 0\\ \dots & 0\\ \dots & d_{i}\\ \dots & 1 \end{bmatrix} \begin{bmatrix} \dots & a_{i}\\ \dots & 0\\ \dots & 0\\ \dots & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & C\alpha_{i} & -S\alpha_{i} & 0\\ 0 & S\alpha_{i} & C\alpha_{i} & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$

$$= \begin{bmatrix} C\theta_i & -S\theta_i C\alpha_i & S\theta_i S\alpha_i & a_i C\theta_i \\ S\theta_i & C\theta_i C\alpha_i & -C\theta_i S\alpha_i & a_i S\theta_i \\ 0 & S\alpha_i & C\alpha_i & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Introduction to Robotics

Modified Parameters

Transformation order

$$T_i = R_{x_{i-1}}(\alpha_{i-1}) \cdot T_{x_{i-1}}(a_{i-1}) \cdot R_{z_i}(\theta_i) \cdot T_{z_i}(d_i) \to CS_i$$

Definition of joint coordinate systems: Exceptions

Forward Kinematics - Definition of joint coordinate systems

Beware

The Denavit-Hartenberg convention is ambiguous!

- \blacktriangleright z_{i-1} is parallel to z_i
 - arbitrary shortest normal
 - usually $d_i = 0$ is chosen
- \blacktriangleright z_{i-1} intersects z_i
 - usually a_i = 0 such that
 CS lies in the intersection point
- orientation of CS_n ambigous, as no joint n+1 exists
 - x_n must be a normal to z_{n-1}
 - usually z_n is chosen to point in the direction of the approach vector \vec{a} of the tcp

Determination of DH-Parameter (θ, d, a, α) for calculation of joint transformation: $T_1 = R_z(\theta_1)T_z(d_1)T_x(a_1)R_x(\alpha_1)$ joint angle rotate by θ_1 around z_0 , such that x_0 is parallel to x_1

$$R_{z}(\theta_{1}) = \begin{bmatrix} \cos \theta_{1} & -\sin \theta_{1} & 0 & 0\\ \sin \theta_{1} & \cos \theta_{1} & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

for the shown joint configuration $\theta_1 = 0^\circ$

Forward Kinematics - Example DH-Parameter of a single joint

Introduction to Robotics

link offset translate by d_1 along z_0 until the intersection of z_0 and x_1

$$T_z(d_1) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Forward Kinematics - Example DH-Parameter of a single joint

link length translate by a_1 along x_1 such that the origins of both CS are congruent

Forward Kinematics - Example DH-Parameter of a single joint

Gelenk 2

 x_i

Gelenk 1

link twist rotate z_0 by α_1 around x_1 , such that z_0 lines up with z_1

$$R_{x(\alpha_1)} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\alpha_1) & -\sin(\alpha_1) & 0 \\ 0 & \sin(\alpha_1) & \cos(\alpha_1) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

for the shown joint configuration, $\alpha_1 = -90^\circ$ due to construction

Yo.

• total transformation of CS_0 to CS_1 (general case)

$${}^{0}T_{1} = R_{z}(\theta_{1}) \cdot T_{z}(d_{1}) \cdot T_{x}(a_{1}) \cdot R_{x}(\alpha_{1})$$

$$= \begin{bmatrix} \cos\theta_{1} & -\sin\theta_{1}\cos\alpha_{1} & \sin\theta_{1}\sin\alpha_{1} & a_{1}\cos\theta_{1}\\ \sin\theta_{1} & \cos\theta_{1}\cos\alpha_{1} & -\cos\theta_{1}\sin\alpha_{1} & a_{1}\sin\theta_{1}\\ 0 & \sin\alpha_{1} & \cos\alpha_{1} & d_{1}\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

► rotary case: variable θ_1 and fixed d_1, a_1 und $(\alpha_1 = -90^\circ)$ ${}^0T_1 = R_z(\theta_1) \cdot T_z(d_1) \cdot T_x(a_1) \cdot R_x(-90^\circ)$ $= \begin{bmatrix} \cos\theta_1 & 0 & -\sin\theta_1 & a_1\cos\theta_1\\ \sin\theta_1 & 0 & \cos\theta_1 & a_1\sin\theta_1\\ 0 & -1 & 0 & d_1\\ 0 & 0 & 0 & 1 \end{bmatrix}$

Forward Kinematics - Example DH-Parameter of a single joint

- Fixed origin: CS_0 is the fixed frame at the base of the manipulator
- ▶ Determination of axes and consecutive numbering from 1 to *n*
- Positioning O_i on rotation- or shear-axis i, z_i points aways from z_{i-1}
- Determination of normal between the axes; setting x_i (in direction to the normal)
- Determination of y_i (right-hand system)
- Read off Denavit-Hartenberg parameters
- Calculation of overall transformation

Example DH-Parameter for Quickshot

Forward Kinematics - Example DH-Parameter for a manipulator

- Definition of CS corresponding to DH convention
- Determination of DH-Parameter

Example Transformation matrix T_6

Forward Kinematics - Example DH-Parameter for a manipulator

 $T_6 = T_1 \cdot T_2 \cdot T_3 \cdot T_4$ $\begin{bmatrix} \cos \theta_1 & 0 & -\sin \theta_1 & 20 \cos \theta_1 \end{bmatrix}$ $\begin{bmatrix} \cos \theta_2 & -\sin \theta_2 & 0 & 160 \cos \theta_2 \end{bmatrix}$ $= \begin{bmatrix} \sin \theta_1 & 0 & \cos \theta_1 & 20 \sin \theta_1 \\ 0 & -1 & 0 & 100 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \sin \theta_2 & \cos \theta_2 & 0 & 160 \sin \theta_2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ $\int \cos \theta_3 = 0 \quad \sin \theta_3$ 07 $\int \cos \theta_4$ $-\sin\theta_4$ 0 0 $\cos\theta_1\cos\theta_4(\cos\theta_2\cos\theta_3-\sin\theta_2\sin\theta_3)-\sin\theta_1\sin\theta_4\ldots\ldots\ldots$ $\sin\theta_1\cos\theta_4(\sin\theta_2\cos\theta_3+\cos\theta_2\sin\theta_3)+\cos\theta_1\sin\theta_4\ldots\ldots\ldots$ = $-\cos\theta_4(\sin\theta_2\cos\theta_3+\cos\theta_2\sin\theta_3)\qquad\ldots\qquad\ldots\qquad\ldots$ 0 0 1 0

Sum-of-Angle formula

$$C_{23} = C_2 C_3 - S_2 S_3,$$

$$S_{23} = C_2 S_3 + S_2 C_3$$

Mitsubishi PA10-7C

Forward Kinematics - Example featuring Mitsubishi PA10-7C

Introduction to Robotics

Robotic arm kinematic GUI from MRPT

Forward Kinematics - Example featuring Mitsubishi PA10-7C

Download link

¹⁸Mobile Robot Programming Toolkit, https://www.mrpt.org/MRPT_in_GNU/Linux_repositories

S. Li, J. Zhang

Forward Kinematics - Example featuring Mitsubishi PA10-7C

Write your own FK function!

- Robotics toolbox in Matlab
 - ▶ the implementation of book "Robotics, Vision & Control" by Peter Corke
- PythonRobotics
 - > Python code collection of robotics algorithms, especially for autonomous navigation
- Robotics library
 - ▶ C++ framework for robot kinematics, dynamics, motion planning, control
- pybotics
 - provides a simple and clear interface to simulate and evaluate common robot concepts

Bibliography

- G.-Z. Yang, R. J. Full, N. Jacobstein, P. Fischer, J. Bellingham, H. Choset, H. Christensen, P. Dario, B. J. Nelson, and R. Taylor, "Ten robotics technologies of the year," 2019.
- [2] J. K. Yim, E. K. Wang, and R. S. Fearing, "Drift-free roll and pitch estimation for high-acceleration hopping," in 2019 International Conference on Robotics and Automation (ICRA), pp. 8986–8992, IEEE, 2019.
- [3] J. F. Engelberger, *Robotics in service*. MIT Press, 1989.
- [4] K. Fu, R. González, and C. Lee, *Robotics: Control, Sensing, Vision, and Intelligence*. McGraw-Hill series in CAD/CAM robotics and computer vision, McGraw-Hill, 1987.
- R. Paul, Robot Manipulators: Mathematics, Programming, and Control: the Computer Control of Robot Manipulators. Artificial Intelligence Series, MIT Press, 1981.
- [6] J. Craig, Introduction to Robotics: Pearson New International Edition: Mechanics and Control.
 Always learning, Pearson Education, Limited, 2013.

- [7] W. Böhm, G. Farin, and J. Kahmann, "A Survey of Curve and Surface Methods in CAGD," *Comput. Aided Geom. Des.*, vol. 1, pp. 1–60, July 1984.
- [8] J. Zhang and A. Knoll, "Constructing Fuzzy Controllers with B-spline Models Principles and Applications," *International Journal of Intelligent Systems*, vol. 13, no. 2-3, pp. 257–285, 1998.
- [9] M. Eck and H. Hoppe, "Automatic Reconstruction of B-spline Surfaces of Arbitrary Topological Type," in *Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques*, SIGGRAPH '96, (New York, NY, USA), pp. 325–334, ACM, 1996.
- [10] M. C. Ferch, Lernen von Montagestrategien in einer verteilten Multiroboterumgebung. PhD thesis, Bielefeld University, 2001.
- [11] J. H. Reif, "Complexity of the Mover's Problem and Generalizations Extended Abstract," Proceedings of the 20th Annual IEEE Conference on Foundations of Computer Science, pp. 421–427, 1979.

- [12] J. T. Schwartz and M. Sharir, "A Survey of Motion Planning and Related Geometric Algorithms," *Artificial Intelligence*, vol. 37, no. 1, pp. 157–169, 1988.
- [13] J. Canny, *The Complexity of Robot Motion Planning*. MIT press, 1988.
- T. Lozano-Pérez, J. L. Jones, P. A. O'Donnell, and E. Mazer, *Handey: A Robot Task Planner*.
 Cambridge, MA, USA: MIT Press, 1992.
- [15] O. Khatib, "The Potential Field Approach and Operational Space Formulation in Robot Control," in *Adaptive and Learning Systems*, pp. 367–377, Springer, 1986.
- [16] J. Barraquand, L. Kavraki, R. Motwani, J.-C. Latombe, T.-Y. Li, and P. Raghavan, "A Random Sampling Scheme for Path Planning," in *Robotics Research* (G. Giralt and G. Hirzinger, eds.), pp. 249–264, Springer London, 1996.
- [17] R. Geraerts and M. H. Overmars, "A Comparative Study of Probabilistic Roadmap Planners," in *Algorithmic Foundations of Robotics V*, pp. 43–57, Springer, 2004.

- [18] K. Nishiwaki, J. Kuffner, S. Kagami, M. Inaba, and H. Inoue, "The Experimental Humanoid Robot H7: A Research Platform for Autonomous Behaviour," *Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences*, vol. 365, no. 1850, pp. 79–107, 2007.
- [19] R. Brooks, "A robust layered control system for a mobile robot," *Robotics and Automation, IEEE Journal of*, vol. 2, pp. 14–23, Mar 1986.
- [20] M. J. Mataric, "Interaction and intelligent behavior.," tech. rep., DTIC Document, 1994.
- [21] M. P. Georgeff and A. L. Lansky, "Reactive reasoning and planning.," in AAAI, vol. 87, pp. 677–682, 1987.
- J. Zhang and A. Knoll, Integrating Deliberative and Reactive Strategies via Fuzzy Modular Control, pp. 367–385.
 Heidelberg: Physica-Verlag HD, 2001.
- [23] J. S. Albus, "The nist real-time control system (rcs): an approach to intelligent systems research," *Journal of Experimental & Theoretical Artificial Intelligence*, vol. 9, no. 2-3, pp. 157–174, 1997.

- [24] A. Meystel, "Nested hierarchical control," 1993.
- [25] G. Saridis, "Machine-intelligent robots: A hierarchical control approach," in *Machine Intelligence and Knowledge Engineering for Robotic Applications* (A. Wong and A. Pugh, eds.), vol. 33 of *NATO ASI Series*, pp. 221–234, Springer Berlin Heidelberg, 1987.
- [26] T. Fukuda and T. Shibata, "Hierarchical intelligent control for robotic motion by using fuzzy, artificial intelligence, and neural network," in *Neural Networks, 1992. IJCNN.*, *International Joint Conference on*, vol. 1, pp. 269–274 vol.1, Jun 1992.
- [27] R. C. Arkin and T. Balch, "Aura: principles and practice in review," *Journal of Experimental & Theoretical Artificial Intelligence*, vol. 9, no. 2-3, pp. 175–189, 1997.
- [28] E. Gat, "Integrating reaction and planning in a heterogeneous asynchronous architecture for mobile robot navigation," ACM SIGART Bulletin, vol. 2, no. 4, pp. 70–74, 1991.
- [29] L. Einig, Hierarchical Plan Generation and Selection for Shortest Plans based on Experienced Execution Duration.
 Master thesis, Universität Hamburg, 2015.

- [30] J. Craig, Introduction to Robotics: Mechanics & Control. Solutions Manual. Addison-Wesley Pub. Co., 1986.
- [31] H. Siegert and S. Bocionek, *Robotik: Programmierung intelligenter Roboter: Programmierung intelligenter Roboter*. Springer-Lehrbuch, Springer Berlin Heidelberg, 2013.
- [32] R. Schilling, Fundamentals of robotics: analysis and control. Prentice Hall, 1990.
- [33] T. Yoshikawa, Foundations of Robotics: Analysis and Control. Cambridge, MA, USA: MIT Press, 1990.
- [34] M. Spong, *Robot Dynamics And Control.* Wiley India Pvt. Limited, 2008.