Introduction to Robotics

Lecture 2

Shuang Li, Jianwei Zhang

[sli, zhang]@informatik.uni-hamburg.de

$\underset{M}{T} \mid \mathbf{A}$
University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems

May 01, 2020

Outline

Introduction

Spatial Description and Transformations

Forward Kinematics

More on presentation of a rigid body
Denavit-Hartenberg convention
Definition of joint coordinate systems
Example DH-Parameter of a single joint
Example DH-Parameter for a manipulator
Example featuring Mitsubishi PA10-7C
Robot Description
Inverse Kinematics for Manipulators
Differential motion with homogeneous transformations
Jacobian
Trajectory planning
Trajectory generation

Outline (cont.)

Dynamics
Robot Control
Task-Level Programming and Trajectory Generation
Task-level Programming and Path Planning
Task-level Programming and Path Planning
Architectures of Sensor-based Intelligent Systems
Summary
Conclusion and Outlook

- Degree of freedom
- The number of variables to determine position of a control system in space.
- Robot classification
- mechanical structure
- Rotation matrix
- ${ }^{A} R_{B}^{-1}={ }^{B} R_{A}={ }^{B} R_{A}^{T}$ and ${ }^{A} R_{B}{ }^{B} R_{A}=I$
- Homogeneous transformation matrix
- $T=\left[\begin{array}{ll}R & \vec{p} \\ 0 & 1\end{array}\right]$
- Transformation equation

Transformation equation

In order to find the desired end effector pose:

$$
Z T_{6} E=B G
$$

In order to find the manipulator transformation T_{6} :

$$
T_{6}=Z^{-1} B G E^{-1}
$$

In order to determine the pose of the object B :

$$
B=Z T_{6} E G^{-1}
$$

A vector $\overrightarrow{A P}$ is rotated about \hat{Y} by 30 degrees and is subsequently rotated about \hat{X} by 45 degrees. Give the rotation matrix that accomplishes these rotations in the given order.

$$
\begin{aligned}
R & =R_{x, 45} R_{y, 30} \\
& =\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos 45 & -\sin 45 \\
0 & \sin 45 & \cos 45
\end{array}\right]\left[\begin{array}{ccc}
\cos 30 & 0 & \sin 30 \\
0 & 1 & 0 \\
-\sin 30 & 0 & \cos 30
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0.866 & 0 & 0.5 \\
0.353 & 0.707 & -0.612 \\
-0.353 & 0.707 & 0.612
\end{array}\right]
\end{aligned}
$$

More on presentation of orientation: Euler angles

- Euler angles φ, θ, ψ

More on presentation of orientation: Euler angles (cont.)

- Euler-angles φ, θ, ψ

More on presentation of orientation: Euler angles (cont.)

- Euler-angles φ, θ, ψ

More on presentation of orientation: Euler angles (cont.)

- Euler-angles φ, θ, ψ

More on presentation of orientation: Euler angles (cont.)

- Euler-angles φ, θ, ψ

- Euler-angles φ, θ, ψ
- rotations are performed successively around the axes, e. g. $Z Y X$ or $Z X Z$ (12 possibilities!)
- order depends on reference coordinates
- Intrinsic rotations
- Extrinsic (fix angle) rotations
- Roll-Pitch-Yaw

- X-Y-Z fixed angles
- used in aviation and maritime

$$
\begin{aligned}
& R_{x, \varphi}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & C \varphi & -S \varphi \\
0 & S \varphi & C \varphi
\end{array}\right] \\
& R_{y, \theta}=\left[\begin{array}{ccc}
C \theta & 0 & S \theta \\
0 & 1 & 0 \\
-S \theta & 0 & C \theta
\end{array}\right] \\
& R_{z, \psi}=\left[\begin{array}{ccc}
C \psi & -S \psi & 0 \\
S \psi & C \psi & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

More on presentation of orientation

- Rotation matrix
- implicit, easy to use linear algebra to perform computation
- Euler angles
- Gimbal lock!
- When two gimbals rotate around the same axis, the system loses one degree of freedom.

17

- Rotation matrix
- implicit, easy to use linear algebra to perform computation, singularity-free
- Euler angles φ, θ, ψ
- explicit, but gimbal lock/singularity happens
- Equivalent angle-axis representation $R_{k, \theta}$
- the angle for a rotation about an axis vector
- Quaternion $[x, y, z, w]$
- 4D vectors that represent 3D rigid body orientations
- Unit quaternion: $x^{2}+y^{2}+z^{2}+w^{2}=1$

Tools

python: Numpy, pyquaternion
c++: Eigen

[^0]

- A manipulator is considered as set of links connected by joints
- serial robots (vs.parallel robots)
- Types of joints
- revolute joints
- prismatic joints

Forward kinematics

- Movement depiction of the mechanical systems as fixed body chains
- Translate a series of joint parameters \Longrightarrow cartesian pose of the end effector

Purpose

Absolute determination of the position of the end effector (TCP) in the cartesian coordinate system

Using a vector \vec{p}, the TCP position is depicted.
Three unit vectors:

- $\vec{a}:$ (approach vector),
- \vec{o} : (orientation vector),
- \vec{n} : (normal vector)
specify the orientation of the TCP.

Thus, the transformation T consists of the following elements:

$$
T=\left[\begin{array}{cccc}
\vec{n} & \vec{o} & \vec{a} & \vec{p} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- Transformation regulation, which describes the relation between joint coordinates of a robot \mathbf{q} and the environment coordinates of the end effector \mathbf{x}
- Solely determined by the geometry of the robot
- Base frame
- Relation of frames to one another
\Longrightarrow Formation of a recursive chain
- Joint coordinates:

$$
q_{i}=\left\{\begin{array}{l}
\theta_{i}: \text { rotational joint } \\
d_{i}: \text { translation joint }
\end{array}\right.
$$

- In each link, a coordinate frame is attached
- A homogeneous matrix ${ }^{i-1} T_{i}$ depicts the relative translation and rotation between two consecutive joints
- joint transition
- For a manipulator consisting of six joints:
- ${ }^{0} T_{1}$: depicts position and orientation of the first link with respect to the base
- ${ }^{5} T_{6}$: depicts position and orientation of the 6th link in regard to link 5

The resulting product is defined as:

$$
T_{6}={ }^{0} T_{1}{ }^{1} T_{2}{ }^{2} T_{3}{ }^{3} T_{4}{ }^{4} T_{5}{ }^{5} T_{6}
$$

- Calculation of $T_{6}=\prod_{i=1}^{n} T_{i}, T_{i}$ short for ${ }^{i-1} T_{i}$
- T_{6} defines, how n joint transitions describe 6 cartesian DOF
- Definition of one coordinate system (CS) per segment i
- generally arbitrary definition
- Determination of one transformation T_{i} per segment $i=1$..n
- generally 6 parameters (3 rotational +3 translational) required
- different sets of parameters and transformation orders possible

Solution

Denavit-Hartenberg (DH) convention

- first published by Denavit and Hartenberg in 1955
- established principle
- determination of a transformation matrix T_{i} using four parameters
- link length, link twist, link offset and joint angle $\left(a_{i}, \alpha_{i}, d_{i}, \theta_{i}\right)$

Parameters for description of two arbitrary links

Two parameters for the description of the link structure i

- link length a_{i}
- link twist α_{i}

Two parameters for the description of the link structure i

- link length a_{i} : shortest distance between the axis $i-1$ and the axis i
- link twist α_{i} : rotation angle from axis $i-1$ to axis i in the right-hand sense about a_{i}
a_{i} and α_{i} are constant values due to construction

Parameters for describing two arbitrary links (cont.)

Two for relative distance and angle of adjacent links

Two for relative distance and angle of adjacent links

- link offset d_{i} : the distance along the common axis $i-1$ from link $i-1$ to the link i
- joint angle θ_{i} : the amount of rotation about the common axis $i-1$ between the link $i-1$ and the link i
θ_{i} and d_{i} are variable
- rotational: θ_{i} variable, d_{i} fixed
- translational: d_{i} variable, θ_{i} fixed

Four DH parameters:
link length, link twist, link offset and joint angle
$\left(a_{i}, \alpha_{i}, d_{i}, \theta_{i}\right)$

- 3 fixed link parameters
- one joint variable
- revolute: θ_{i} variable
- prismatic: d_{i} variable
- a_{i}, α_{i} : describe the link i
- d_{i}, θ_{i} : describe the link's connection

Configuration 1

Configuration 3

Definition of joint coordinate systems (classic)

- axis z_{i-1} is set along the axis of motion of the $i^{t h}$ joint
- axis x_{i} is parallel to the common normal of z_{i-1} and $z_{i}\left(x_{i} \|\left(z_{i-1} \times z_{i}\right)\right)$.
- axis y_{i} concludes a right-handed coordinate system
- $C S_{0}$ is the stationary origin at the base of the manipulator

DH Parameters

- link length a_{i} : distance from z_{i-1}-axis to z_{i}-axis measured along x_{i}-axis
- link twist α_{i} : angle from z_{i-1}-axis to z_{i}-axis measured around x_{i}-axis
- link offset d_{i} : distance from x_{i-1} to x_{i} measured along z_{i-1}-axis
- joint angle θ_{i} : joint angle from x_{i-1} to x_{i} measured around z_{i-1}-axis

Classic Parameters

Transformation order

$$
T_{i}=R_{z_{i-1}}\left(\theta_{i}\right) \cdot T_{z_{i}-1}\left(d_{i}\right) \cdot T_{x_{i}}\left(a_{i}\right) \cdot R_{x_{i}}\left(\alpha_{i}\right) \rightarrow C S_{i}
$$

Creation of the relation between frame i and frame ($i-1$) through the following rotations and translations:

- Rotate around z_{i-1} by angle θ_{i}
- Translate along z_{i-1} by d_{i}
- Translate along x_{i} by a_{i}
- Rotate around x_{i} by angle α_{i}

Using the product of four homogeneous transformations, which transform the coordinate frame $i-1$ into the coordinate frame i, the matrix A_{i} can be calculated as follows:

$$
T_{i}=R_{z_{i-1}}\left(\theta_{i}\right) \cdot T_{z_{i-1}}\left(d_{i}\right) \cdot T_{x_{i}}\left(a_{i}\right) \cdot R_{x_{i}}\left(\alpha_{i}\right) \rightarrow C S_{i}
$$

$$
\begin{aligned}
T_{i}= & {\left[\begin{array}{cccc}
C \theta_{i} & -S \theta_{i} & 0 & 0 \\
S \theta_{i} & C \theta_{i} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cc}
\cdots & 0 \\
\ldots & 0 \\
\ldots & d_{i} \\
\ldots & 1
\end{array}\right]\left[\begin{array}{cc}
\cdots & a_{i} \\
\cdots & 0 \\
\cdots & 0 \\
\cdots & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & C \alpha_{i} & -S \alpha_{i} & 0 \\
0 & S \alpha_{i} & C \alpha_{i} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] } \\
& =\left[\begin{array}{cccc}
C \theta_{i} & -S \theta_{i} C \alpha_{i} & S \theta_{i} S \alpha_{i} & a_{i} C \theta_{i} \\
S \theta_{i} & C \theta_{i} C \alpha_{i} & -C \theta_{i} S \alpha_{i} & a_{i} S \theta_{i} \\
0 & S \alpha_{i} & C \alpha_{i} & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Transformation order

$$
T_{i}=R_{x_{i-1}}\left(\alpha_{i-1}\right) \cdot T_{x_{i-1}}\left(a_{i-1}\right) \cdot R_{z_{i}}\left(\theta_{i}\right) \cdot T_{z_{i}}\left(d_{i}\right) \rightarrow C S_{i}
$$

Definition of joint coordinate systems: Exceptions

Beware

The Denavit-Hartenberg convention is ambiguous!

- z_{i-1} is parallel to z_{i}
- arbitrary shortest normal
- usually $d_{i}=0$ is chosen
- z_{i-1} intersects z_{i}
- usually $a_{i}=0$ such that

CS lies in the intersection point

- orientation of CS_{n} ambigous, as no joint $n+1$ exists

- x_{n} must be a normal to z_{n-1}
- usually z_{n} is chosen to point in the direction of the approach vector \vec{a} of the tcp

Example DH-Parameter of a single joint

Determination of DH-Parameter (θ, d, a, α) for calculation of joint transformation: $T_{1}=R_{z}\left(\theta_{1}\right) T_{z}\left(d_{1}\right) T_{x}\left(a_{1}\right) R_{x}\left(\alpha_{1}\right)$
joint angle rotate by θ_{1} around z_{0}, such that x_{0} is parallel to x_{1}

$$
R_{z}\left(\theta_{1}\right)=\left[\begin{array}{cccc}
\cos \theta_{1} & -\sin \theta_{1} & 0 & 0 \\
\sin \theta_{1} & \cos \theta_{1} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

for the shown joint configuration $\theta_{1}=0^{\circ}$

link offset translate by d_{1} along z_{0} until the intersection of z_{0} and x_{1}

$$
T_{z}\left(d_{1}\right)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d_{1} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

link length translate by a_{1} along x_{1} such that the origins of both CS are congruent

$$
T_{\times}\left(a_{1}\right)=\left[\begin{array}{cccc}
1 & 0 & 0 & a_{1} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

link twist rotate z_{0} by α_{1} around x_{1}, such that z_{0} lines up with z_{1}

$$
R_{x\left(\alpha_{1}\right)}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \left(\alpha_{1}\right) & -\sin \left(\alpha_{1}\right) & 0 \\
0 & \sin \left(\alpha_{1}\right) & \cos \left(\alpha_{1}\right) & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

for the shown joint configuration, $\alpha_{1}=-90^{\circ}$ due to construction

- total transformation of $C S_{0}$ to $C S_{1}$ (general case)

$$
\begin{aligned}
{ }^{0} T_{1} & =R_{z}\left(\theta_{1}\right) \cdot T_{z}\left(d_{1}\right) \cdot T_{x}\left(a_{1}\right) \cdot R_{x}\left(\alpha_{1}\right) \\
& =\left[\begin{array}{cccc}
\cos \theta_{1} & -\sin \theta_{1} \cos \alpha_{1} & \sin \theta_{1} \sin \alpha_{1} & a_{1} \cos \theta_{1} \\
\sin \theta_{1} & \cos \theta_{1} \cos \alpha_{1} & -\cos \theta_{1} \sin \alpha_{1} & a_{1} \sin \theta_{1} \\
0 & \sin \alpha_{1} & \cos \alpha_{1} & d_{1} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

- rotary case: variable θ_{1} and fixed d_{1}, a_{1} und $\left(\alpha_{1}=-90^{\circ}\right)$

$$
\begin{aligned}
{ }^{0} T_{1} & =R_{z}\left(\theta_{1}\right) \cdot T_{z}\left(d_{1}\right) \cdot T_{x}\left(a_{1}\right) \cdot R_{x}\left(-90^{\circ}\right) \\
& =\left[\begin{array}{cccc}
\cos \theta_{1} & 0 & -\sin \theta_{1} & a_{1} \cos \theta_{1} \\
\sin \theta_{1} & 0 & \cos \theta_{1} & a_{1} \sin \theta_{1} \\
0 & -1 & 0 & d_{1} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

- Fixed origin: $C S_{0}$ is the fixed frame at the base of the manipulator
- Determination of axes and consecutive numbering from 1 to n
- Positioning O_{i} on rotation- or shear-axis i, z_{i} points aways from z_{i-1}
- Determination of normal between the axes; setting x_{i} (in direction to the normal)
- Determination of y_{i} (right-hand system)
- Read off Denavit-Hartenberg parameters
- Calculation of overall transformation

Example DH-Parameter for Quickshot

- Definition of CS corresponding to DH convention
- Determination of DH-Parameter

$$
\begin{aligned}
& T_{6}=T_{1} \cdot T_{2} \cdot T_{3} \cdot T_{4} \\
& =\left[\begin{array}{cccc}
\cos \theta_{1} & 0 & -\sin \theta_{1} & 20 \cos \theta_{1} \\
\sin \theta_{1} & 0 & \cos \theta_{1} & 20 \sin \theta_{1} \\
0 & -1 & 0 & 100 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
\cos \theta_{2} & -\sin \theta_{2} & 0 & 160 \cos \theta_{2} \\
\sin \theta_{2} & \cos \theta_{2} & 0 & 160 \sin \theta_{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& {\left[\begin{array}{cccc}
\cos \theta_{3} & 0 & \sin \theta_{3} & 0 \\
\sin \theta_{3} & 0 & -\cos \theta_{3} & 0 \\
0 & 1 & 0 & 28 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
\cos \theta_{4} & -\sin \theta_{4} & 0 & 0 \\
\sin \theta_{4} & \cos \theta_{4} & 0 & 0 \\
0 & 0 & 1 & 250 \\
0 & 0 & 0 & 1
\end{array}\right]} \\
& =\left[\begin{array}{cccc}
\cos \theta_{1} \cos \theta_{4}\left(\cos \theta_{2} \cos \theta_{3}-\sin \theta_{2} \sin \theta_{3}\right)-\sin \theta_{1} \sin \theta_{4} & \ldots & \ldots & \ldots \\
\sin \theta_{1} \cos \theta_{4}\left(\sin \theta_{2} \cos \theta_{3}+\cos \theta_{2} \sin \theta_{3}\right)+\cos \theta_{1} \sin \theta_{4} & \ldots & \ldots & \ldots \\
-\cos \theta_{4}\left(\sin \theta_{2} \cos \theta_{3}+\cos \theta_{2} \sin \theta_{3}\right) & \ldots & \ldots & \ldots \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Sum-of-Angle formula

$C_{23}=C_{2} C_{3}-S_{2} S_{3}$,
$S_{23}=C_{2} S_{3}+S_{2} C_{3}$

Mitsubishi PA10-7C

Robotic arm kinematic GUI from MRPT

Download link

18
${ }^{18}$ Mobile Robot Programming Toolkit, https://www.mrpt.org/MRPT_in_GNU/Linux_repositories

Write your own FK function!

- Robotics toolbox in Matlab
- the implementation of book "Robotics, Vision \& Control" by Peter Corke
- PythonRobotics
- Python code collection of robotics algorithms, especially for autonomous navigation
- Robotics library
- C++ framework for robot kinematics, dynamics, motion planning, control
- pybotics
- provides a simple and clear interface to simulate and evaluate common robot concepts

Bibliography

[1] G.-Z. Yang, R. J. Full, N. Jacobstein, P. Fischer, J. Bellingham, H. Choset, H. Christensen, P. Dario, B. J. Nelson, and R. Taylor, "Ten robotics technologies of the year," 2019.
[2] J. K. Yim, E. K. Wang, and R. S. Fearing, "Drift-free roll and pitch estimation for high-acceleration hopping," in 2019 International Conference on Robotics and Automation (ICRA), pp. 8986-8992, IEEE, 2019.
[3] J. F. Engelberger, Robotics in service. MIT Press, 1989.
[4] K. Fu, R. González, and C. Lee, Robotics: Control, Sensing, Vision, and Intelligence. McGraw-Hill series in CAD/CAM robotics and computer vision, McGraw-Hill, 1987.
[5] R. Paul, Robot Manipulators: Mathematics, Programming, and Control: the Computer Control of Robot Manipulators.
Artificial Intelligence Series, MIT Press, 1981.
[6] J. Craig, Introduction to Robotics: Pearson New International Edition: Mechanics and Control.
Always learning, Pearson Education, Limited, 2013.
[7] W. Böhm, G. Farin, and J. Kahmann, "A Survey of Curve and Surface Methods in CAGD," Comput. Aided Geom. Des., vol. 1, pp. 1-60, July 1984.
[8] J. Zhang and A. Knoll, "Constructing Fuzzy Controllers with B-spline Models - Principles and Applications," International Journal of Intelligent Systems, vol. 13, no. 2-3, pp. 257-285, 1998.
[9] M. Eck and H. Hoppe, "Automatic Reconstruction of B-spline Surfaces of Arbitrary Topological Type," in Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH '96, (New York, NY, USA), pp. 325-334, ACM, 1996.
[10] M. C. Ferch, Lernen von Montagestrategien in einer verteilten Multiroboterumgebung. PhD thesis, Bielefeld University, 2001.
[11] J. H. Reif, "Complexity of the Mover's Problem and Generalizations - Extended Abstract," Proceedings of the 20th Annual IEEE Conference on Foundations of Computer Science, pp. 421-427, 1979.
[12] J. T. Schwartz and M. Sharir, "A Survey of Motion Planning and Related Geometric Algorithms," Artificial Intelligence, vol. 37, no. 1, pp. 157-169, 1988.
[13] J. Canny, The Complexity of Robot Motion Planning. MIT press, 1988.
[14] T. Lozano-Pérez, J. L. Jones, P. A. O’Donnell, and E. Mazer, Handey: A Robot Task Planner.
Cambridge, MA, USA: MIT Press, 1992.
[15] O. Khatib, "The Potential Field Approach and Operational Space Formulation in Robot Control," in Adaptive and Learning Systems, pp. 367-377, Springer, 1986.
[16] J. Barraquand, L. Kavraki, R. Motwani, J.-C. Latombe, T.-Y. Li, and P. Raghavan, "A Random Sampling Scheme for Path Planning," in Robotics Research (G. Giralt and G. Hirzinger, eds.), pp. 249-264, Springer London, 1996.
[17] R. Geraerts and M. H. Overmars, "A Comparative Study of Probabilistic Roadmap Planners," in Algorithmic Foundations of Robotics V, pp. 43-57, Springer, 2004.
[18] K. Nishiwaki, J. Kuffner, S. Kagami, M. Inaba, and H. Inoue, "The Experimental Humanoid Robot H7: A Research Platform for Autonomous Behaviour," Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 365, no. 1850, pp. 79-107, 2007.
[19] R. Brooks, "A robust layered control system for a mobile robot," Robotics and Automation, IEEE Journal of, vol. 2, pp. 14-23, Mar 1986.
[20] M. J. Mataric, "Interaction and intelligent behavior.," tech. rep., DTIC Document, 1994.
[21] M. P. Georgeff and A. L. Lansky, "Reactive reasoning and planning.," in AAAI, vol. 87, pp. 677-682, 1987.
[22] J. Zhang and A. Knoll, Integrating Deliberative and Reactive Strategies via Fuzzy Modular Control, pp. 367-385.
Heidelberg: Physica-Verlag HD, 2001.
[23] J. S. Albus, "The nist real-time control system (rcs): an approach to intelligent systems research," Journal of Experimental \& Theoretical Artificial Intelligence, vol. 9, no. 2-3, pp. 157-174, 1997.
[24] A. Meystel, "Nested hierarchical control," 1993.
[25] G. Saridis, "Machine-intelligent robots: A hierarchical control approach," in Machine Intelligence and Knowledge Engineering for Robotic Applications (A. Wong and A. Pugh, eds.), vol. 33 of NATO ASI Series, pp. 221-234, Springer Berlin Heidelberg, 1987.
[26] T. Fukuda and T. Shibata, "Hierarchical intelligent control for robotic motion by using fuzzy, artificial intelligence, and neural network," in Neural Networks, 1992. IJCNN., International Joint Conference on, vol. 1, pp. 269-274 vol.1, Jun 1992.
[27] R. C. Arkin and T. Balch, "Aura: principles and practice in review," Journal of Experimental \& Theoretical Artificial Intelligence, vol. 9, no. 2-3, pp. 175-189, 1997.
[28] E. Gat, "Integrating reaction and planning in a heterogeneous asynchronous architecture for mobile robot navigation," ACM SIGART Bulletin, vol. 2, no. 4, pp. 70-74, 1991.
[29] L. Einig, Hierarchical Plan Generation and Selection for Shortest Plans based on Experienced Execution Duration.
Master thesis, Universität Hamburg, 2015.
[30] J. Craig, Introduction to Robotics: Mechanics \& Control. Solutions Manual. Addison-Wesley Pub. Co., 1986.
[31] H. Siegert and S. Bocionek, Robotik: Programmierung intelligenter Roboter: Programmierung intelligenter Roboter. Springer-Lehrbuch, Springer Berlin Heidelberg, 2013.
[32] R. Schilling, Fundamentals of robotics: analysis and control. Prentice Hall, 1990.
[33] T. Yoshikawa, Foundations of Robotics: Analysis and Control. Cambridge, MA, USA: MIT Press, 1990.
[34] M. Spong, Robot Dynamics And Control.
Wiley India Pvt. Limited, 2008.

[^0]: ${ }^{17}$ https://en.wikipedia.org/wiki/Gimbal_lock

