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What robots can do
...
I Pick (Grasp)
I Place
I Move
I Push
I Interact with humans
I ...

Figure: Robot conducting Buddhist
funeral [Mat]

[SK16]
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... and toss
I Zheng et al. presented TossingBot in 2019

I End-to-end formalism for grasping and throwing

I Deployed to an UR5 robot

Figure: UR5 throws a banana [Zen19]
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Paper:
TossingBot: Learning to Throw Arbitrary Objects
with Residual Physics [Zen+19]
...

I Developed at Google AI and the Princeton University

I by Andy Zhang

I Other contributors from Columbia University and the MIT

I Best Systems Paper Award, Robotics Science and Systems
(2019)
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Characteristics:
I (Self-) supervised learning
I Trial and error learning
I Main components:

I Deep Neural Networks
I Physics controller

I Key aspects:
I Joint learning of grasping and throwing policies
I Residual learning of throw release velocities

– 6 / 29



Motivation (cont.)
Motivation Basics Methods Results Conclusion References Appendix

I Not the only tossing approach

...

Benefits
I Exploit dynamics to increase robot’s capabilities
I Extends the operation radius
I Increase the frequency for pick and place
I Can outperform humans
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Challenges
I Acquisition of reliable pre-throw conditions

I e.g grasp of the object

I Handling of object-centric properties
I e.g. mass distribution, friction and shape

I and dynamics
I e.g. aero-dynamics [Gra]

Figure: [Zen19]
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Self Supervised Learning
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I Supervised learning example: Support Vector Machines

I Efforts manual labeling

I (Too) many possibilities for an object to grasp

I Human notions are biased by semantics

I Datasets are restricted in quantity and quality
−→ overfitting

[PG16]
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I Self-supervised learning tends to limit human involvement

I Task is framed into special form to predict only subset of
information

I All information has been provided by the input

I Self-generating its labels

[PG16; Wen19]
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I Trial and error training obtains ground truth labels yi and δ̄i
I At each training step a visual input is fed into the network

I Grasping and throwing parameters are predicted
I Ground truth grasp success label yi generated either

I by gripper distance threshold or
I by throwing success (target hit)

Figure: Training circle
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Self Supervised Learning (cont.)
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I After throw the landing location is measured

I Landing location p and release velocity v is sampled

I Ground truth residual label δ̄i is obtained by ‖vx,y‖ − ‖v̂x,y‖p̄
I Training environment is independently reset by the robot

Figure: Reset training environment [Zen19]
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Joint Learning of Policies
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I DNN1 maps from visual observations to control parameters:
I Likelihood of grasping success
I Throwing release velocities

I Grasping directly supervised by throw accuracy

I Throws directly conditioned on specific grasps

I Stable grasps ⇐⇒ predictable throws and throwing velocities

Figure: DNN black box [Zen+19]

1Deep Neural Network
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Learning of release velocities
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I Physics controller predict throw velocities v̂

I Based on ideal ballistic motion

I Residual δ is (learned) corrective factor

I Final release velocity: v = v̂ + δ

Figure: Different projectile trajectories [Zen+19]
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Network
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I Neural Network: f(I, p) 2

I Output: Prediction of parameters φg and φt
I Parameters used by grasping and throwing motion primitives

I Objective: Optimize parameter prediction for a hit

Figure: DNN black box [Zen+19]

2I = visual observation, p = landing location
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Perception Module
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I Input: RGB-D heightmap I

I Output: Spatial feature representation µ

I Used by grasping and throwing module

Figure: Input to perception module [Zen+19]
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Grasping Module
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I Outputs a probability map Qg (grasping scores)

I Each pixel value represents probability of grasping success

I Input heightmap is rotated 16 x

I Pixel with highest probability determine φg
I Grasping primitive takes φg = (x, θ)

where x = pixel location, θ = rotation angle

Figure: Grasping module [Zen+19]
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Throwing Process
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I Predict release position r of throwing primitive

I Distance
√
r2

x + r2
y for point of release to base is fixed

I Predict release velocity v of throwing primitive
I Throw release angle θ constrained to 45◦

I Only ‖vx,y‖ is unknown

Figure: Throwing process [Zen+19]
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Physics-Based Controller
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I Physic based controller predicts ‖v̂x,y‖

I Assume a grasp on the center of mass of the object

I Analytically solves back for v̂ given p and r

Figure: Throwing process [Zen+19]
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Throwing Module
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I Output is an image Qt
I Each pixel holds prediction for residual value δi
I δi added on top of ‖v̂x,y‖

I Final release velocity: ‖vx,y‖ = ‖v̂x,y‖+ δ

I Throwing primitive takes φt = (r, v)

Figure: Throwing module [Zen+19]
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Conditioning
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I Release velocity v̂ is also feed in the grasping and throwing
network

I µ concatenated with k-channel image where each pixel holds
value of v̂

I Conditions the grasping and throwing predictions on v̂

I Supervising grasps by accuracy of throws leads to better grasps

Figure: Release velocity feed [Zen+19]
– 21 / 29
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I Self-supervision from trial and error

I Tracking ground truth landing position of thrown objects

I Not a single network that maps states to actions

I Four modules that provide intermediate (differentiable) results

I Output are factors that does not directly control the actuator

I Complex systems are hard to control

[Gla17]
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Full Network (cont.)
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Figure: Overview [Zen+19]
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Experimental Setup
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I Evaluation metrics
I Grasping success (% rate of succesfull grasps)
I Throwing success (% rate of target hits)

I 12 various objects are grasped and thrown

I Target are 12 boxes outside kinematic range

I Real world: UR5 robot with RG2 gripper

Figure: Workspace [Zen+19] Figure: RG2 gripper [Onr]
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Simulation
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I 8 different objects (4 seen, 4 unseen), 12 in total

I Varying center of mass (CoM)

I Simulated environment does not account for aerodynamics

I Real world experiments are conducted

Figure: [Zen+19]
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Real World
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I 15,000 steps training, 1,000 steps testing

I Average grasping and throwing success rates

Figure: [Zen+19]
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Performance
Motivation Basics Methods Results Conclusion References Appendix

I Residual physics outperforms by learning residual throwing
velocities

I Compensate for for grasping offsets from objects CoM

Figure: Throwing performance on hammers[Zen+19]
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Methods
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I 2 variants of grasp success label yi
I Grasping supervised by throwing yields best throwing results

I Supervised grasps are more restricted, resulting in more
dexterous throws

Figure: Histograms of succesfull grasps[Zen+19]
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Conclusion
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I Paper provides new perspectives on throwing
I Relationship of throwing to grasping
I Throwing correlates with grasp quality
I Learning by combining physics with trial and error
I Synergies between grasping and throwing is exploited

I Residual Physics leverage advantages of physic based
controllers while maintaining the capacity to account for
dynamics

I Generalization via analytic models

I Data-driven residual corrects the real world projectile velocity
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...
...

Thank you for your attention!

Questions?
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Video

Ballistics [Zen19]
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I Train networks to predict motions that account for fragile
objects

I Explore additional sensing modalities such as force-torque

I How should robots learn semantics of the visual world?

I Classic computer vision: predefined semantics using manually
constructed class categories

I Here: Implicitly learn object-level semantics from physical
interactions
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Video

[Zen19]
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I Loss function for network training:
I Binary cross-entropy error Lg from predictions of grasping success
I Huber-loss Lt from its regression of δi for throwing

(1) L = Lg + yiLt
(2) Lg = −(yi log qi + (1− yi) log(1− qi))

(3) Lt =
{

1
2(δi − δ̄i)2, for |δi − δ̄i| < 1,
|δi − δ̄i| − 1

2 , otherwise

where yi is the binary ground truth grasp success label,
qi and δ̄i are the predicted values and δ̄i is the ground truth
residual label
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Figure: [Zen+19]
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I Capture RGB-D image from fixed mount camera

I Project data onto 3D-point cloud

I Orthographical back-projection in gravity direction

I color and height-from-bottom channels

I normalization allows sharing of learned convolutional filters

Figure: Projection [Zen+19]
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I Top-down parallel yaw grasp centered at x = (xx, xy, xz)

I Oriented θ◦ around gravity direction

I Gripper approaches x until middle point of finger tips meets x

I Gripper closes and lifts upwards

I Planning by stable, collision-free IK-solver
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I Derive release position r from landing location p

I Assume: aerial trajectory is linear on xy-horizontal plane and in
the vx, vy direction

I Neglect orthogonal aerodynamic forces

I Parallel aerodynamic forces are compensated

I Making all release positions accessible by robot

I Constants: rz = 0.04 m and distance to base
√
r2
x + r2

y = 0.7
m in sim, 0.02m and 0.76 m in reality

I Constraint: (rx,y − px,y)xvx,y = 0
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I Physics based controller provides a closed form solution

I Generalizes well to new landing locations

I Serves as consistent approximation for v̂

I Simplified model

I Neglects aerodynamic drag

I Gripper release velocity does not directly determine projectile
velocity

I Centripetal forces

p = r + v̂t+ 1
2at

2 (1)
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I UR5 joint speed: 180◦

s ⇒ ω = π
s

I Length of lower arm: ≈ 0.49m

I Peripheral speed: v = pi
s · 0.49m ≈ 1.54ms

I Ballistic equation projectile range: x = v0 · cos θ · t

I Ballistic equation ToF3: t = 2·v0·sin θ
g

I Throwing angle θ = impact angle = 45◦

x = 2·(v0)2·sin (2·θ)
2·g = 2·(1.54 m

s
)2·sin 90

2·9.81 m
s2

≈ 0.24m

3Time-of-Flight
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Ballistic calculation:

I Ballistic equation projectile range: x = v̂ · cos θ · t

I Ballistic equation ToF4: t = 2·v0·sin θ
g

I Throwing angle θ = impact angle

v̂ =
√

x · g
sin (2 · θ) (2)

e.g.
√

0.24m·9.81 m
s2

sin (2·45) ≈ 1.53ms throwing velocity

[NAS]
4Time-of-Flight
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I fixed throwing release height rz
I fixed release distance from robot base origin cd
I release vel. angled 45◦ upwards

I landing location p = (px, py, pz)

I release position r is fixed at cd = 0.76m and rz at constant
height ch = 0.02m

I Release vel. magnitude ‖v‖
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Ballistic calculation:

θ = arctan(py
px

)

rx = cd sin θ

ry = cd cos θ

‖v‖ =
√√√√ a(p2

x + p2
y)

rz − pz −
√
p2
x + p2

y
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I Pinto and Gupta [PG16] emphasized benefits of large-scale
datasets

I Introduced large robot dataset

I Limit human involvement

I Execute trial and error grasps

I Image patch of grasp feed to CNN

I Output is the likelihood of the grasp

...

...

[PG16]
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I Trained model is used for next grasping stage

I Execute grasp along the predicted output

I Grasps are evaluated by gripper’s force sensor

I Correct grasp modalities are reinforced

...

...

...

[PG16]
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I better utilizing unlabelled data, while learning in a supervised
learning manner

I framing a supervised learning task in a special form to predict
only a subset of information using the rest

I all the information needed, both inputs and labels, has been
provided. This is known as self-supervised learning.

I self-generated labels

I To make use of this much larger amount of unlabeled data, one
way is to set the learning objectives properly so as to get
supervision from the data itself.

I The self-supervised task, also known as pretext task, guides us
to a supervised loss function.

[Wen19]
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Figure: Ideal ballistic equations [Zen+19]
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Figure: Ideal ballistic equations [NAS]
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Figure: Vector components [NAS]



Appendix (cont.)
Motivation Basics Methods Results Conclusion References Appendix

Figure: Denavit–Hartenberg parameters of UR robots [Uni18]
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Figure: UR5 Technical specifications [Uni16]
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Figure: PyBullet simulation [Zen+19]
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Video

[Zen19]
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Video

[Zen19]
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