

MIN Faculty Department of Informatics

TossingBot: Learning to Throw Arbitrary Objects with Residual Physics

Nicolas Frick

University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems

May 28, 2020

Outline

Motivatio	n Basics	Methods	Results	Conclusion	References	Appendix	
1. M	otivation						
2. B	asics						
3. M	ethods						
4. R	esults						
5. C	onclusion						
6. A	ppendix						

Motivation

Motivation

Appendix

What robots can do

- Pick (Grasp)
- Place
- Move
- Push
- Interact with humans

• ..

Figure: Robot conducting Buddhist funeral [Mat]

Motivation

... and toss

- Zheng et al. presented TossingBot in 2019
- End-to-end formalism for grasping and throwing
- Deployed to an UR5 robot

Figure: UR5 throws a banana [Zen19]

References

Appendi

Paper:

TossingBot: Learning to Throw Arbitrary Objects with Residual Physics [Zen+19]

- Developed at Google AI and the Princeton University
- by Andy Zhang
- Other contributors from Columbia University and the MIT
- Best Systems Paper Award, Robotics Science and Systems (2019)

. Motivatior

.

Metho

sults

lusion

Referenc

Appendix

Characteristics:

- (Self-) supervised learning
- Trial and error learning
- Main components:
 - Deep Neural Networks
 - Physics controller
- Key aspects:
 - Joint learning of grasping and throwing policies
 - Residual learning of throw release velocities

Motivation Basics Methods Results Conclusion References Appendix

Not the only tossing approach

Benefits

- Exploit dynamics to increase robot's capabilities
- Extends the operation radius
- Increase the frequency for pick and place
- Can outperform humans

Ref

Appendix

Challenges

Acquisition of reliable pre-throw conditions

- e.g grasp of the object
- Handling of object-centric properties
 - e.g. mass distribution, friction and shape
- and dynamics
 - e.g. aero-dynamics

[Gra]

Basics

Self Supervised Learning

Referen

Appendix

- Supervised learning example: Support Vector Machines
- Efforts manual labeling
- (Too) many possibilities for an object to grasp
- Human notions are biased by semantics
- Datasets are restricted in quantity and quality
 —> overfitting

[PG16]

Self Supervised Learning (cont.)

- Self-supervised learning tends to limit human involvement
- Task is framed into special form to predict only subset of information
- All information has been provided by the input
- Self-generating its labels

[PG16; Wen19]

Self Supervised Learning (cont.)

- \blacktriangleright Trial and error training obtains ground truth labels $y_i \; and \; ar{\delta_i}$
- At each training step a visual input is fed into the network
- Grasping and throwing parameters are predicted
- Ground truth grasp success label y_i generated either
 - by gripper distance threshold or
 - by throwing success (target hit)

Self Supervised Learning (cont.)

- After throw the landing location is measured
- Landing location p and release velocity v is sampled
- Ground truth residual label $\bar{\delta}_i$ is obtained by $||v_{x,y}|| ||\hat{v}_{x,y}||_{\bar{p}}$
- Training environment is independently reset by the robot

Figure: Reset training environment [Zen19]

Joint Learning of Policies

Basic

- ▶ DNN¹ maps from visual observations to control parameters:
 - Likelihood of grasping success
 - Throwing release velocities
- Grasping directly supervised by throw accuracy
- Throws directly conditioned on specific grasps
- Stable grasps \iff predictable throws and throwing velocities

Figure: DNN black box [Zen+19]

¹Deep Neural Network

Learning of release velocities

sults

References

Appendix

- Physics controller predict throw velocities \hat{v}
- Based on ideal ballistic motion
- Residual δ is (learned) corrective factor
- Final release velocity: $v = \hat{v} + \delta$

Figure: Different projectile trajectories [Zen+19]

Methods

- ▶ Neural Network: f(I, p) ²
- Output: Prediction of parameters ϕ_g and ϕ_t
- Parameters used by grasping and throwing motion primitives
- Objective: Optimize parameter prediction for a hit

Figure: DNN black box [Zen+19]

 $^2\mathsf{I}=\mathsf{visual}$ observation, $\mathsf{p}=\mathsf{landing}$ location

Perception Module

Appendi>

- Input: RGB-D heightmap I
- Output: Spatial feature representation μ
- Used by grasping and throwing module

Figure: Input to perception module [Zen+19]

Grasping Module

lotivation

- Outputs a probability map Q_g (grasping scores)
- Each pixel value represents probability of grasping success
- Input heightmap is rotated 16 x
- Pixel with highest probability determine ϕ_g
- Grasping primitive takes φ_g = (x, θ) where x = pixel location, θ = rotation angle

Figure: Grasping module [Zen+19]

Throwing Process

Methods

Appendix

- Predict release position r of throwing primitive
 - \blacktriangleright Distance $\sqrt{r_x^2+r_y^2}$ for point of release to base is fixed
- Predict release velocity v of throwing primitive
 - Throw release angle θ constrained to 45°
 - Only $||v_{x,y}||$ is unknown

Figure: Throwing process [Zen+19]

- Physic based controller predicts $\|\hat{v}_{x,y}\|$
- Assume a grasp on the center of mass of the object
- Analytically solves back for \hat{v} given p and r

Figure: Throwing process [Zen+19]

Throwing Module

References

Appendix

- Output is an image Q_t
- Each pixel holds prediction for residual value δ_i
- δ_i added on top of $\|\hat{v}_{x,y}\|$
- ▶ Final release velocity: $||v_{x,y}|| = ||\hat{v}_{x,y}|| + \delta$
- Throwing primitive takes $\phi_t = (r, v)$

Figure: Throwing module [Zen+19]

Basics

Re

Methods

- \blacktriangleright Release velocity \hat{v} is also feed in the grasping and throwing network
- \blacktriangleright μ concatenated with k-channel image where each pixel holds value of \hat{v}
- Conditions the grasping and throwing predictions on \hat{v}
- Supervising grasps by accuracy of throws leads to better grasps

Figure: Release velocity feed [Zen+19]

- Self-supervision from trial and error
- Tracking ground truth landing position of thrown objects
- Not a single network that maps states to actions
- Four modules that provide intermediate (differentiable) results
- Output are factors that does not directly control the actuator
- Complex systems are hard to control

[Gla17]

		Methods				
Overhead Camera	RGB-D Carmera		RGB-D Heightma	x16 orientations (per graphing angle) Perception Module (TCN ResNet.7)	Grasping Module GCN ResNet.7)	$Q_{g} \xrightarrow{\times 16} \phi_{g}$ irasping Scores irasping Scores isotic horizontal grapp $x_{16} \xrightarrow{\times 16} \phi_{t}$
1		-	Controller	Sim. throwing velo	city 0 Throw	ring Release Velocity ixel-wise sampled grasp)

Figure: Overview [Zen+19]

Results

Evaluation metrics

Grasping success (% rate of succesfull grasps)

Results

- Throwing success (% rate of target hits)
- 12 various objects are grasped and thrown
- Target are 12 boxes outside kinematic range
- Real world: UR5 robot with RG2 gripper

Figure: Workspace [Zen+19]

Figure: RG2 gripper [Onr]

- ▶ 8 different objects (4 seen, 4 unseen), 12 in total
- Varying center of mass (CoM)
- Simulated environment does not account for aerodynamics
- Real world experiments are conducted

TABLE I THROWING PERFORMANCE IN SIMULATION (MEAN %)

Method	Balls	Cubes	Rods	Hammers	Seen	Unseen
Regression	70.9	48.8	37.5	32.8	41.8	28.4
Regression-PoP	96.1	73.5	52.8	47.8	56.2	35.0
Physics-only	98.6	83.5	77.2	70.4	82.6	50.0
Residual-physics	99.6	86.3	86.4	81.2	88.6	66.5

TABLE II GRASPING PERFORMANCE IN SIMULATION (MEAN %)

Method	Balls	Cubes	Rods	Hammers	Seen	Unseen
Regression	99.4	99.2	89.0	87.8	95.6	69.4
Regression-PoP	99.2	98.0	89.8	87.0	96.4	70.6
Physics-only	99.4	99.2	87.6	85.2	96.6	64.0
Residual-physics	98.8	99.2	89.2	84.8	96.0	74.6

Figure: [Zen+19]

Real World

Motivation

Appendi

- 15,000 steps training, 1,000 steps testing
- Average grasping and throwing success rates

	Gn	sping	Throwing		
Method	Seen	Unseen	Seen	Unseen	
Human-baseline	-	-	-	80.1±10.8	
Regression-PoP	83.4	75.6	54.2	52.0	
Physics-only	85.7	76.4	61.3	58.5	
Residual-physics	86.9	73.2	84.7	82.3	

TABLE III

TABLE IV								
PICKING	SPEED VS	STATE-OF-THE-ART	SYSTEMS					

System	Mean Picks Per Hour (MPPH)
Cartman [24]	120
Dex-Net 2.0 [20]	250
FC-GQ-CNN [27]	296
Dex-Net 4.0 [21]	312
TossingBot (w/ Placing)	432
TossingBot (w/ Throwing)	514

Figure: [Zen+19]

Residual physics outperforms by learning residual throwing velocities

Results

Compensate for for grasping offsets from objects CoM

Figure: Throwing performance on hammers[Zen+19]

- \triangleright 2 variants of grasp success label y_i
- Grasping supervised by throwing yields best throwing results
- Supervised grasps are more restricted, resulting in more dexterous throws

Figure: Histograms of succesfull grasps[Zen+19]

Conclusion

Generalization via analytic models

Data-driven residual corrects the real world projectile velocity

- dynamics
- Residual Physics leverage advantages of physic based controllers while maintaining the capacity to account for

Synergies between grasping and throwing is exploited

- Learning by combining physics with trial and error
- Throwing correlates with grasp quality

Relationship of throwing to grasping

Paper provides new perspectives on throwing

Conclusion

Thank	you	for	your	attention!

Conclusion

Questions?

References

Motivation	Basics Methods Results Conclusion References Appendix
[Gla17]	Tobias Glasmachers. "Limits of end-to-end learning".
	nn 17–32 ISSN: 15337028 arXiv:
	arXiv: 1704.08305v1.
[Gra]	Gratis Malvorlagen.de. Gefaehrlicher Hammerwerfer
	Ausmalbild und Malvorlage (Sport). URL:
	https://www.gratis-
	malvorlagen.de/sport/gefaehrlicher-
	hammerwerfer/ (Retrieved $05/23/2020$).
[Mat]	Emily Matchar. Nine Tasks Robots Can Do That May
	Surprise You Innovation Smithsonian Magazine.
	URL: https:
	//www.smithsonianmag.com/innovation/nine-
	tasks-robots-can-do-that-may-surprise-you-
	180964729/ (Retrieved 05/23/2020).

References (cont.)

Basics Methods	Results	Conclusion	References	Appendix
NASA Glenn	Research Cen	<mark>ter</mark> . Ballis	tic Flight	
Equations . U	RL:			
https://www	.grc.nasa.g	gov/www/]	k-	
12/airplane	e/ballflght	.html (Re	etrieved	
05/23/2020).				
Onrobot. RG.	2 robot grippe	er - A flexi	ible end-of-a	arm
tooling grippe	er OnRobot.	URL:		
https://onr	cobot.com/en	n/produc ⁻	ts/rg2-gr	ipper
(Retrieved 05	/27/2020).			
Lerrel Pinto a	and Abhinav C	Gupta. "Su	Ipersizing	
self-supervisio	on: Learning t	o grasp fro	om 50K trie	es and
700 robot ho	urs". In: <i>Pro</i> e	ceedings -	IEEE Interr	national
Conference of	n Robotics an	d Automa	tion 2016-J	une
(2016), pp. 3	406–3413. ISS	SN: 105047	729. doi:	
10.1109/ICF	RA.2016.748	7517. arXi	v: 1509.06	825.
	Pasics Methods NASA Glenn Equations. U https://www 12/airplane 05/23/2020). Onrobot. RG tooling grippe https://onr (Retrieved 05 Lerrel Pinto a self-supervisio 700 robot how Conference o (2016), pp. 3 10.1109/ICF	EasiesMethodsResultsNASA Glenn Research CenEquations. URL:https://www.grc.nasa.g12/airplane/ballflght05/23/2020).Onrobot. RG2 robot grippedtooling gripper OnRobot.https://onrobot.com/ea(Retrieved 05/27/2020).Lerrel Pinto and Abhinav Cself-supervision: Learning to700 robot hours". In: ProcConference on Robotics and(2016), pp. 3406–3413. ISS10.1109/ICRA.2016.748"	PasiesMethodsResultsConclusionNASA Glenn Research Center. BallisEquations. URL:https://www.grc.nasa.gov/www/112/airplane/ballflght.html (Resource)05/23/2020).Onrobot. RG2 robot gripper - A flex.tooling gripper OnRobot. URL:https://onrobot.com/en/product(Retrieved 05/27/2020).Lerrel Pinto and Abhinav Gupta. "Suself-supervision: Learning to grasp from 700 robot hours". In: Proceedings - Conference on Robotics and Automatica (2016), pp. 3406-3413. ISSN: 10504710.1109/ICRA.2016.7487517. arXii	PasicsMethodsResultsConclusionReferencesNASA Glenn Research Center.Ballistic FlightEquations.URL:https://www.grc.nasa.gov/www/k-12/airplane/ballflght.html (Retrieved05/23/2020).Onrobot.RG2 robot gripper - A flexible end-of-tooling gripper / OnRobot.URL:https://onrobot.com/en/products/rg2-gr(Retrieved 05/27/2020).Lerrel Pinto and Abhinav Gupta."Supersizingself-supervision:Learning to grasp from 50K trie700 robot hours".In: Proceedings - IEEE InternConference on Robotics and Automation 2016-J(2016), pp. 3406-3413. ISSN: 10504729. DOI:10.1109/ICRA.2016.7487517.arXiv: 1509.06

References (cont.)

Motivation	Basics	Methods	Results	Conclusion	References	Appendix
[SK16]	Brunc	Siciliano a	and Oussa	ama Khatib	. Springer	
	handb	ook of rob	otics. 20	16, pp. 1–2	2227. doi:	
	10.10	07/978-3	-319-32	552-1.		
[Uni16]	Unive	rsal Robots	s <mark>A/S</mark> . UF	R5 Technica	al specificat	ions.
	2016.	URL: http	os://www	.universa	1-	
	robot	cs.com/do	wnload-o	center/#/	cb-series	/ur5
	(Retri	eved 05/2	5/2020).			
[Uni18]	Unive	rsal Robots	s A/S. Pa	rameters fo	or calculatio	ons of
	kinem	atics and o	dynamics.	2018. UR	L: https:	
	//www	.univers	al-robot	cs.com/ar	ticles/ur	-
	artic	cles/para	meters-1	for-calcu	lations-o	f-
	kinem	natics-an	d-dynam:	ics/ (Retri	ieved	
	05/25	/2020).	-	,		

References (cont.)

Motivation	Basics	Methods	Results	Conclusion	References	Appendix
[Wen19]	Lilian W	l <mark>eng</mark> . Se	lf-Supervi	sed Represe	entation Lea	arning.
	2019. UI	RL: http	ps://lil	ianweng.g	;ithub.io/	lil-
	log/201	19/11/1	0/self-	supervise	d-	
	learnir	ng.html	(Retrieve	ed $05/23/2$	020).	
[Zen+19]	Andy Ze	eng et al	. "Tossing	gBot: Learn	ing to Thro	w
	Arbitrar	y Object	s with Re	sidual Phys	sics". In: (2	2019).
	DOI: 10	.15607/	'rss.201	9.xv.004.	arXiv:	
	1903.11	1239.				
[Zen19]	Andy Ze	eng. Tos	singBot: I	Learning to	Throw Arb	itrary
	Objects	with Re	sidual Ph	<i>ysics</i> . 2019	. URL:	
	https:/	//tossi	ngbot.c	s.princet	on.edu/	
	(Retriev	ed 05/2	3/2020).			

Appendix - Learning of release velocities

Ballistics [Zen19]

Train networks to predict motions that account for fragile objects

Appendix

- Explore additional sensing modalities such as force-torque
- How should robots learn semantics of the visual world?
- Classic computer vision: predefined semantics using manually constructed class categories
- Here: Implicitly learn object-level semantics from physical interactions

Motivatio

Basics

nods

C

Referen

Appendix

Video

[Zen19]

Appendix - Loss Function

Loss function for network training:

• Binary cross-entropy error \mathcal{L}_g from predictions of grasping success

Appendix

• Huber-loss \mathcal{L}_t from its regression of δ_i for throwing

(1)
$$\mathcal{L} = \mathcal{L}_g + y_i \mathcal{L}_t$$

(2)
$$\mathcal{L}_g = -(y_i \log q_i + (1 - y_i) \log(1 - q_i))$$

(3)
$$\mathcal{L}_t = \begin{cases} \frac{1}{2} (\delta_i - \bar{\delta}_i)^2, & for \ |\delta_i - \bar{\delta}_i| < 1, \\ |\delta_i - \bar{\delta}_i| - \frac{1}{2}, otherwise \end{cases}$$

where y_i is the binary ground truth grasp success label, q_i and $\bar{\delta_i}$ are the predicted values and $\bar{\delta_i}$ is the ground truth residual label

					Appendix
	and the	A COLORADOR NO.	ACCOUNTER ACCOUNT ACCOUNT	Indiana Antonio	
		Cashing and Cashing an	Contraction in the second second	THE REAL PROPERTY AND INCOME.	States and a second second

Fig. 10. Emerging semantics from interaction. Visualizing pixel-wise deep features μ learned by TossingBot (c.e) overlaid on the input heightmap image (b) generated from an RGB-D side-view (a) of a bin of objects. (c) shows a heatmap of pixel-wise feature distances from the feature vector of a query pixel on a ping pong ball (labeled 1). Likewise, (e) shows a heatmap of pixel-wise feature distances from the feature vector of a query pixel on a ping pong ball (labeled 1). Likewise, (e) shows a heatmap of pixel-wise feature distances from the feature vector of a query pixel on a pink marker pen (labeled 2). These visualizations show that TossingBot learns feature distances from the feature vector of a query pixel on a pink marker pen (labeled 2). These visualizations show that TossingBot learns features that distinguish object categories from each other without explicit supervision (*i.e.*, only task-level grasping and throwing). For reference, the same visualization technique is used on deep features generated by a ResNet18 per-trained on ImageNet (d,f).

Figure: [Zen+19]

Appendix (cont.) - Image Projection

- Capture RGB-D image from fixed mount camera
- Project data onto 3D-point cloud
- Orthographical back-projection in gravity direction
- color and height-from-bottom channels
- normalization allows sharing of learned convolutional filters

Appendix

Figure: Projection [Zen+19]

Appendix (cont.) - Gripper Modalities

			Appendix

- ▶ Top-down parallel yaw grasp centered at $x = (x_x, x_y, x_z)$
- ▶ Oriented θ° around gravity direction
- Gripper approaches x until middle point of finger tips meets x
- Gripper closes and lifts upwards
- Planning by stable, collision-free IK-solver

Appendix (cont.) - Release Position

- Derive release position r from landing location p
- Assume: aerial trajectory is linear on xy-horizontal plane and in the v_x, v_y direction
- Neglect orthogonal aerodynamic forces
- Parallel aerodynamic forces are compensated
- Making all release positions accessible by robot
- ▶ Constants: $r_z = 0.04$ m and distance to base $\sqrt{r_x^2 + r_y^2} = 0.7$ m in sim, 0.02m and 0.76 m in reality

• Constraint:
$$(r_{x,y} - p_{x,y})xv_{x,y} = 0$$

Appendix (cont.) - Physics controller

- Physics based controller provides a closed form solution
- Generalizes well to new landing locations
- Serves as consistent approximation for \hat{v}
- Simplified model
- Neglects aerodynamic drag
- Gripper release velocity does not directly determine projectile velocity
- Centripetal forces

$$p = r + \hat{v}t + \frac{1}{2}at^2 \tag{1}$$

Appendix

Appendix (cont.) Example Calculation

Motivation	Basics	Methods	Results	Conclusion	References	Appendix

• UR5 joint speed:
$$\frac{180^{\circ}}{s} \Rightarrow \omega = \frac{\pi}{s}$$

- Length of lower arm: $\approx 0.49m$
- ▶ Peripheral speed: $v = \frac{pi}{s} \cdot 0.49m \approx 1.54 \frac{m}{s}$
- ▶ Ballistic equation projectile range: $x = v_0 \cdot \cos \theta \cdot t$
- Ballistic equation ToF³: $t = \frac{2 \cdot v_0 \cdot \sin \theta}{g}$
- Throwing angle $\theta = \text{impact angle} = 45^{\circ}$

$$x = \frac{2 \cdot (v_0)^2 \cdot \sin(2 \cdot \theta)}{2 \cdot g} = \frac{2 \cdot (1.54 \frac{m}{s})^2 \cdot \sin 90}{2 \cdot 9.81 \frac{m}{s^2}} \approx 0.24m$$

³Time-of-Flight

Appendix (cont.) - Learning of release velocities

Ballistic calculation:

- ▶ Ballistic equation projectile range: $x = \hat{v} \cdot \cos \theta \cdot t$
- Ballistic equation ToF⁴: $t = \frac{2 \cdot v_0 \cdot \sin \theta}{q}$
- Throwing angle θ = impact angle

$$\hat{v} = \sqrt{\frac{x \cdot g}{\sin\left(2 \cdot \theta\right)}} \tag{2}$$

Appendix

e.g.
$$\sqrt{rac{0.24m\cdot 9.81rac{m}{s^2}}{\sin{(2\cdot45)}}}pprox 1.53rac{m}{s}$$
 throwing velocity

Appendix (cont.) - Learning of release velocities

Appendix

- fixed throwing release height r_z
- fixed release distance from robot base origin c_d
- \blacktriangleright release vel. angled 45° upwards
- landing location $\mathbf{p} = (p_x, p_y, p_z)$
- ▶ release position r is fixed at $c_d = 0.76$ m and r_z at constant height $c_h = 0.02$ m
- ▶ Release vel. magnitude ||v||

Appendix (cont.) - Learning of release velocities

Motivation	Basics	Methods	Results	Conclusion	References	Appendix

Ballistic calculation:

$$\theta = \arctan(\frac{p_y}{p_x})$$

$$r_x = c_d \sin \theta$$

$$r_y = c_d \cos \theta$$

$$\|v\| = \sqrt{\frac{a(p_x^2 + p_y^2)}{r_z - p_z - \sqrt{p_x^2 + p_y^2}}}$$

Appendix (cont.) - Self Supervised Learning

 Pinto and Gupta [PG16] emphasized benefits of large-scale datasets

Appendix

- Introduced large robot dataset
- Limit human involvement
- Execute trial and error grasps
- Image patch of grasp feed to CNN
- Output is the likelihood of the grasp

Appendix (cont.) - Self Supervised Learning

Motivation Basics Methods Results Conclusion References Appendix

- Trained model is used for next grasping stage
- Execute grasp along the predicted output
- Grasps are evaluated by gripper's force sensor
- Correct grasp modalities are reinforced

[PG16]

Appendix (cont.) - Self Supervised Learning

better utilizing unlabelled data, while learning in a supervised learning manner

Appendix

- framing a supervised learning task in a special form to predict only a subset of information using the rest
- all the information needed, both inputs and labels, has been provided. This is known as self-supervised learning.
- self-generated labels
- To make use of this much larger amount of unlabeled data, one way is to set the learning objectives properly so as to get supervision from the data itself.
- The self-supervised task, also known as pretext task, guides us to a supervised loss function.

[Wen19]

Motivation

Algorithm 1 System Pipeline

1: Initialize robot. 2: Initialize policy with model f. 3: Initialize replay buffer. 4: while step i < N and not *terminate* do 5: $I^{i} = robot.CaptureState()$ $p^i = robot.SelectTarget()$ 6: 7. $\phi_a^i, \phi_t^i = f.$ Inference (I^i, p^i) while robot.is_grasping do 8: f.ExperienceReplay(buffer) 9: $y^{i-1} = robot.CheckGraspSuccess()$ 10: *robot*.ExecuteThrow(ϕ_{i}^{i-1}, p^{i-1}) 11: ▷ asynchronous 12: while robot.is throwing do 13: f.ExperienceReplay(buffer) 14: robot.ExecuteGrasp(ϕ_a^i) ▷ asynchronous $\bar{p}^{i-1} = robot. TrackLanding()$ 15: buffer.SaveData($I^{i-1}, p^{i-1}, \phi_a^{i-1}, \phi_t^{i-1}, y^{i-1}, \bar{p}^{i-1}$) 16: 17: i = i + 1

Figure: Ideal ballistic equations [Zen+19]

Appendix

Figure: Ideal ballistic equations [NAS]

A vector quantity has both magnitude and direction.

Figure: Vector components [NAS]

							Appendix
--	--	--	--	--	--	--	----------

Figure: Denavit-Hartenberg parameters of UR robots [Uni18]

						Appendix
--	--	--	--	--	--	----------

UR5e									
Kinematics	theta [rad]	a [m]	d [m]	alpha [rad]	Dynamics	Mass [kg]	Center of Mass [m]		
Joint 1	0	0	0.1625	π/2	Link 1	3.761	[0, -0.02561, 0.00193]		
Joint 2	0	-0.425	0	0	Link 2	8.058	[0.2125, 0, 0.11336]		
Joint 3	0	-0.3922	0	0	Link 3	2.846	[0.15, 0.0, 0.0265]		
Joint 4	0	0	0.1333	π/2	Link 4	1.37	[0, -0.0018, 0.01634]		
Joint 5	0	0	0.0997	-π/2	Link 5	1.3	[0, 0.0018,0.01634]		
Joint 6	0	0	0.0996	0	Link 6	0.365	[0, 0, -0.001159]		

Figure: UR5 Technical specifications [Uni16]

Appendix (cont.)

tertered	

Motivation Basics Methods Results Conclusion References Appendix					Conclusion		Appendix
--	--	--	--	--	------------	--	----------

Figure: PyBullet simulation [Zen+19]

Motivati

tivation

Me

Re

Co

Refe

Appendix

Video

[Zen19]

Motivati

tivation

Me

Re

Co

Refe

Appendix

Video

[Zen19]