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What is Object Pose Estimation good for?
Motivation Foundations PoseCNN DOPE Conclusion

I Estimate the 6D pose of objects from an image
I With the 6-DoF pose we can perform robotic manipulation
I Awareness of the surrounding: 3D position and orientation of

objects in the environment
I pick-and-place, hand-over from a person, imitation learning

Tremblay et al. 2018

Marcus Rottschäfer – Deep Image Processing for Object Pose Estimation 2 / 17



Outline
Motivation Foundations PoseCNN DOPE Conclusion

1. Motivation
2. Foundations of Object Pose Estimation
3. PoseCNN
4. Deep Object Pose Estimation (DOPE)
5. Conclusion

Marcus Rottschäfer – Deep Image Processing for Object Pose Estimation 2 / 17



What is Object Pose Estimation?
Motivation Foundations PoseCNN DOPE Conclusion

I We are talking about 6D Object Pose Estimation
I Find the 6-DoF (degrees of freedom) pose:

What is estimated in 6D pose estimation? Inspired by Xiang et al. 2018.
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What is Object Pose Estimation?
Motivation Foundations PoseCNN DOPE Conclusion

I We are talking about 6D Object Pose Estimation
I Find the 6-DoF (degrees of freedom) pose:

What is estimated in 6D pose estimation? Inspired by Xiang et al. 2018.

I (Typically from a set of predefined object categories)
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Two approaches to Object Pose Estimation
Motivation Foundations PoseCNN DOPE Conclusion

Methods can be roughly classified into two approaches (Xiang et
al. 2018):
I Template-based approaches:

I Create a template (e.g. 2D render of 3D object model) and
match it to different regions in the image

I Use ideas from 2D object detection (matches) and augment to
6D (e.g. YOLO or SSD for 6D)

I Works good with texture-less objects, bad with occlusions
between objects!

I Feature-based approaches:
I Matching image features (points-of-interest, pixelwise) on

features of 3D object model
⇒ 2D-3D correspondences allow recovery of 6D pose

I Requires textures on objects for meaningful features
I More robust to occlusions due to feature-based matching
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PoseCNN - Introduction
Motivation Foundations PoseCNN DOPE Conclusion

I PoseCNN is a DNN for 6D Object Pose Estimation
I Combines the advantages of both approaches
I Split into two stages:

First stage in PoseCNN. Extracting shared image features. Xiang et al. 2018.
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PoseCNN - Introduction
Motivation Foundations PoseCNN DOPE Conclusion

I PoseCNN is a DNN for 6D Object Pose Estimation
I Combines the advantages of both approaches
I Split into two stages:

Second stage in PoseCNN, extracting task specific features. Xiang et al. 2018.
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PoseCNN - Breakdown into three Tasks
Motivation Foundations PoseCNN DOPE Conclusion

PoseCNN breaks down the 6D pose estimation into 3 tasks:

1. Semantic labeling

2. 3D translation estimation

3. 3D rotation regression
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PoseCNN - Semantic Labeling (1/3)
Motivation Foundations PoseCNN DOPE Conclusion

I First branch of the network, used for object detection
I Richer information about object shape than e.g. bounding box

CNN architecture for semantic labeling in PoseCNN. Xiang et al. 2018.

I Semantic labeling of individual objects
I Additionally helps for 3D translation estimation
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PoseCNN - 3D Translation Estimation (2/3)
Motivation Foundations PoseCNN DOPE Conclusion

I Estimate the 3D translation T = (Tx ,Ty ,Tz)
T (object origin

in camera coordinate system)
I Recover T from 2D object center C and Tz (→ projection

equation)

Architecture for the 3D translation estimation. Xiang et al. 2018.

Pixelwise center voting in PoseCNN. Xi-

ang et al. 2018.

I Hough voting layer outputs center points. Depth Tz is mean of
pixelwise-depth prediction
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PoseCNN - 3D Rotation Regression (3/3)
Motivation Foundations PoseCNN DOPE Conclusion

I We know which object, we know its 3D Translation → need the
3D rotation of the object

I Input: Image features, BBox contents, regress to quaternion
representation

PoseCNN architecture branch for the 3D rotation regression. Xiang et al. 2018.
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PoseCNN - Training
Motivation Foundations PoseCNN DOPE Conclusion

I Training on YCB-Video, subset of LINEMOD and 80k synthetic
images of the YCB set.

21 YCB objects used for training. Xiang et al. 2018.
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Problems with PoseCNN
Motivation Foundations PoseCNN DOPE Conclusion

PoseCNN achieve state-of-the-art results on YCB-Video,
LINEMOD and Occluded-LINEMOD.

1. Manually labeled 3D object detection datasets are prohibitive
2. Test data highly corrolated to training data
3. Explicitly challenging to generalize

I same camera intrinsics
I same background biases
I similar (restricted) lighting conditions
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PoseCNN achieve state-of-the-art results on YCB-Video,
LINEMOD and Occluded-LINEMOD.

1. Manually labeled 3D object detection datasets are prohibitive
2. Test data highly correlated to training data
3. Explicitly challenging to generalize

I same camera intrinsics
I same background biases
I similar (restricted) lighting conditions

In practice, restricts use of PoseCNN.
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Deep Object Pose Estimation (DOPE)
Motivation Foundations PoseCNN DOPE Conclusion

I Single-Shot Deep Neural Net for 6D Object Pose Estimation

Marcus Rottschäfer – Deep Image Processing for Object Pose Estimation 12 / 17



DOPE - 1. Architectural Changes
Motivation Foundations PoseCNN DOPE Conclusion

I (Belief Maps, Vector Fields)
→ Vertices Estimation

I Object Pose: Vertices
correspond to 3D bounding
box edges

I (Projected vertices, camera
intrinsics, object dimensions)
→ PnP-Algorithm → 6D
Pose
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DOPE - 2. Synthetic Datasets Only!
Motivation Foundations PoseCNN DOPE Conclusion

Examples for the domain randomized and photorealistic image datasets. Tremblay et al. 2018.

I Training on 60k domain-randomized, 60k photorealistic images
I Vary camera position, background, light, contrast, texture,

distractors, orientation, etc.
Marcus Rottschäfer – Deep Image Processing for Object Pose Estimation 14 / 17



PoseCNN vs. DOPE - Results
Motivation Foundations PoseCNN DOPE Conclusion

PoseCNN vs. DOPE estimation of YCB objects on data showing extreme lighting conditions. Tremblay et al. 2018.

I On-par with/better than PoseCNN on YCB-Video dataset
I Better generalization, e.g. extreme lighting conditions, new

backgrounds
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Conclusion
Motivation Foundations PoseCNN DOPE Conclusion

So in Conclusion:
I PoseCNN and DOPE achieve state-of-the-art in 6D Object

Pose Estimation (2018)
I DOPE superior generalization to new environments
I DR + photorealistic data promising technique for data

generation
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DOPE on Trixi
Motivation Foundations PoseCNN DOPE Conclusion

Copyright 2020 by Michael Görner
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PoseCNN - Projection Equation
Motivation Foundations PoseCNN DOPE Conclusion

I 3D translation T = (Tx ,Ty ,Tz)
T can be recovered based on

the following equation:

I Where:
C = (cx , cy )

T is the estimated 2D object center (projection of
T on the image)
Tz is the estimated depth of C
fx , fy are the focal lengths of the camera
(px , py )

T is the principal point
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Evaluation Metric - ADD
Motivation Foundations PoseCNN DOPE Conclusion

Average Distance Metric (ADD) for evaluation of 6D pose
estimation:

Where:
I R and T are the ground-truth rotation and translation
I R̂ and T̂ are the estimated rotation and translation
I M denotes the set of 3D model points, m is the number of

points
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PoseCNN vs. DOPE - Accuracy-threshold Curves
Motivation Foundations PoseCNN DOPE Conclusion

Accuracy-threshold curves for 5 YCB objects on the YCB-Video dataset. Tremblay et al. 2018.

I Numbers display the area under the curve (AUC)
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