64-424 Intelligent Robotics

https://tams.informatik.uni-hamburg.de/ lectures/2019ws/vorlesung/ir

Marc Bestmann / Michael Görner / Jianwei Zhang

University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences
Department of Informatics
Technical Aspects of Multimodal Systems

Winterterm 2019/2020

Outline

1. Distance

Outline

1. Distance

Fundamentals
Infrared
Ultrasonic sensors
Laser Range Finder

Stereo Camera
Stereo Audio
Depth Camera
Radio Landmark Tracking
Summary

Measurement of distance

The ability to measure distance plays a crucially important role in the field of robotics - it is particularly important for mobile robots

- Obstacle detection/avoidance
- Localization
- ...

Several sensors can be used to determine the distance

- Infrared/Ultrasonic sensor
- Laser rangefinder
- Camera-based
- ...

Measurement of distance (cont.)

The predominant underlying physical principles for measurement of distance using sensor devices are:

- Time-of-flight (TOF)
\rightarrow Time required for a signal to travel through a medium
- Phase shift/difference
\rightarrow Difference in phase as a property of the reflected signal
- Triangulation
\rightarrow The geometric approach

Time-of-flight

Measurement of distance using the time-of-flight principle is a straightforward process

- Emit signal (impulse)
- Measure time (Δt) until reception of the echo/reflection
- Determine distance (D) using knowledge about the speed (v) of the signal

$$
D=\frac{\Delta t \cdot v}{2}
$$

Time-of-flight (cont.)

Example: Distance measurement using light impulses

- Signal: Light impulse
- Medium: Air
- Measured time: 65 ns

Assuming $v=c$, where c is the speed of light ($299792458 \mathrm{~m} / \mathrm{s}$) and a value of 65 ns for Δt the resulting distance is

$$
9.74 m \approx \frac{0.000000065 \mathrm{~s} \cdot 299792458 \mathrm{~m} / \mathrm{s}}{2}
$$

Phase shift/difference

As an alternative to time-of-flight, the phase shift approach is also very straightforward

- Emit signal with wave length (λ)
- Measure phase difference between received echo and signal
- Determine distance (D) based on the phase shift $(\Delta \theta)$ between the reflected signal and the emitted signal
- For light modulated with frequency $f_{\text {mod }}: \lambda=\frac{c}{f_{\text {mod }}}$

$$
D=\frac{1}{2} \cdot \frac{\Delta \theta}{2 \pi} \cdot \lambda
$$

Phase shift (cont.)

Phase shift (cont.)

Example: Distance measurement using light impulses

- Signal: Light impulse
- Medium: Air
- Frequency: 10 MHz
- Measured phase shift: 4.78rad

Assuming c the speed of light ($299792458 \mathrm{~m} / \mathrm{s}$) the resulting distance is

$$
11.45 m \approx \frac{1}{2} \cdot \frac{4.78}{2 \pi} \cdot \frac{299792458 \mathrm{~m} / \mathrm{s}}{10000000 \mathrm{~s}^{-1}}
$$

Phase shift (cont.)

Caution:

- Impossible to distinguish between all $D=n \cdot \lambda, n \in \mathbb{N}$
- To receive a distinct result, constraints $\Delta \theta<360^{\circ}$ and $2 D<\lambda$ need to apply
- A modulation frequency of $f_{\text {mod }}=10 \mathrm{MHz}$ results in a wavelength of about 30 m

Triangulation

Triangulation is the process of calculation of distance to a point using knowledge about viewing angles

- Use two viewing points with the distance between them (baseline) known
- Align both "viewers" looking towards the point in question
- Determine the angles of both "viewers" to the baseline
- Calculate the distance using basic trigonometry

Two viewing points may be obtained in a number of ways:

- Movement of a single sensor
- Special design of the sensor
- Multiple sensors

Triangulation (cont.)

$$
D=I_{2}=\frac{l_{1} \sin (\alpha)}{\sin (\alpha+\Theta)}
$$

Triangulation (cont.)

Infrared sensors

- Infrared sensors are the most simple type of non-contact sensors
- Infrared sensors emit a signal in the infrared spectrum

Infrared sensors (cont.)

Reflection of the emitted signal by objects in the vicinity:

- The intensity of the reflected light is inversely proportional to the squared distance
- To be able to distinguish the emitted signal from other infrared sources in the vicinity (e.g. fluorescent lamps or sunlight), it is usually modulated with a low frequency (e.g. 100 Hz)
- Assuming that all objects are equal in color and surface, the distance to the objects can be determined with usable accuracy

Infrared sensors (cont.)

Measured sensor output based on different object surfaces

Infrared sensors (cont.)

Problem: In realistic environments, surfaces are not equal in color

- Colored surfaces reflect different amounts of light
- Black surfaces are practically invisible
- In fact, IR-sensors can only be used for object detection, but not for exact distance measurement
- If an IR-signal is received by the sensor, one can assume, that there's an object in front of of the sensor
- Note: A missing IR-signal does not necessarily mean there is no object in front of the sensor
- IR-sensors are usually used for short distances (50 to 100 cm)

Ultrasonic sensors

Dolphins and Bats use various different sound navigation and ranging (sonar) techniques:

- Fixed frequencies
- Varying frequencies

Note: Although artificial ultrasonic sensors are capable of creating frequencies similar to those in the animal world, the animal capabilities remain unmatched

Ultrasonic sensors (cont.)

- Ultrasonic waves are differentiated from electromagnetic waves based on the following physical properties:
- Medium
- Speed (in medium)
- Wavelength
- Ultrasonic waves require a medium like air or water
- Ultrasonic speed in air amounts to $331.3 \mathrm{~m} / \mathrm{s}+0.6 \times{ }^{\circ} \mathrm{C}$
- Time-of-flight measurement is possible for short distances
- The wavelength of an ultrasonic sensor driven with a frequency of 50 kHz amounts to $\approx 6.872 \mathrm{~mm}$

Ultrasonic sensors (cont.)

Piezoelectric ultrasonic transducer:

- To produce ultrasonic waves, the movement of a surface is required, leading to a compression or expansion of the medium
- One possibility to generate ultrasonic waves is the use of a piezoelectric transducer
- Applied voltage causes a bending of the piezoelectric element
- Piezoelectricity is reversible, therefore incoming ultrasonic waves produce an output voltage
- The opening angle (beam angle) of the ultrasonic signal, can be up to 30° wide

Ultrasonic sensors (cont.)

Piezoelectric ultrasonic transducer (cont.)

Example: Pioneer platform equipped with 16 ultrasonic (sonar) sensors

Ultrasonic precision

The minimum distance $d_{\text {min }}$ which can still be measured, is specified as:

$$
d_{\text {min }}=\frac{1}{2} v t_{l m p u l s e}
$$

v : Speed of the wave in the corresponding medium
$t_{\text {lmpulse }}$: Duration of the emitted impulse in seconds The maximum distance $d_{\max }$ which can still be measured, is specified as:

$$
d_{\max }=\frac{1}{2} v t_{\text {Interval }}
$$

v : Speed of the wave in the corresponding medium
$t_{\text {Interval }}$: Time span between the single impulses

Ultrasonic sensors (cont.)

Reflection of ultrasonic waves from smooth (and flat) surfaces is well-defined However:

- Very rough structures lead to diffuse reflection of ultrasonic waves
- Note: A round rod produces a diffuse reflection

Ultrasonic precision (cont.)

Measurements with sonar sensors are subject to several inaccuracies

- An object perceived at a distance may be located at an arbitrary position within the sonar cone on the arc at a distance
- Mirror and total reflections cause flawed measurements
- If the sonar beam hits a smooth object in a flat angle, the signal will usually be deflected and no echo will reach the sensor

Ultrasonic precision (cont.)

Caution:

- If several sonar sensors are used simultaneously, specifically encrypted signals need to be used, because otherwise crosstalk may occur
- Since the measurement depends on the temperature of the medium, a change in air temperature will introduce measurement errors (e.g. a difference of $16^{\circ} \mathrm{C}$ will cause a measurement error of 30 cm over a distance of 10 m)

Ultrasonic precision (cont.)

Measuring principle

Ultrasonic precision (cont.)

Measurement error

Ultrasonic precision (cont.)

Invisible wall

Ultrasonic precision (cont.)

Ultrasonic precision (cont.)

Corner error

Laser range finders

- Laser range finders (LRF) measure the distance, speed and acceleration of recognized objects
- Functional principle similar to that of a sonar sensor
- Instead of a short sonic impulse, a short light impulse is emitted from the laser range finder
- The time span between emission and reception of the reflected impulse is used for distance measurement
 (time-of-flight)

Laser range finders (cont.)

- Using a rotating mirror, the pulsed laser beam is deflected and the environment is
scanned in a fan-shaped area ("laser radar" or Lidar)
- In practice rotations between 0.1 Hz and 100 Hz are used

Laser range finders (cont.)

- Within its field (plane) of view the LRF emits a light impulse (spot) with a typical resolution of $0.25^{\circ}, 0.5^{\circ}$ or 1°
- Due to the geometry of the beam and the diameters of the single spots, they overlap on the measured object up to a certain distance

Laser range finders (cont.)

The range of the laser range finders depends on the remission (reflectivity) of the object and the transmitting power

Material	Remission
Cardboard, black	10%
Cardboard, grey	20%
Wood (fir raw, dirty)	40%
PVC, grey	50%
Paper, white dull	80%
Aluminum, black	$110 \ldots 150 \%$
Steel, stainless glossy	$120 \ldots 150 \%$
Steel, high-gloss	$140 \ldots 200 \%$
Reflectors	$>2000 \%$

Moon reflectors

Human Stereo Camera

$$
d=c /\left(2^{*} \tan (a / 2)\right)
$$

Human performance: up to around $2 m$

Humans "Cheating" in 3D Vision

Humans use a lot of visual cues for 3D vision

- Shading
- Texture
- Focus
- Motion
- Shadows
- Prior

Knowledge

Robot Stereo Camera

https://aemstatic-ww2.azureedge.net/content/dam/VSD/print-articles/2014/11/1412VSD_ProdFocus_Fig1b.jpg

Stereo Camera Example

Stage 1: Rectification After the images are transmitted to the PC over the IEEE-1394 bus, they are corrected and aligned to remove lens distortion.

Stage 2: Laplacian of Gaussian
The Laplacian of Gaussian filter is applied to create edge images that are not biased by image brightness.

Stage 3: Correlation Stereo
For each pixel in the right image, a corresponding pixel in the left image is obtained via correlation using the Sum of Absolute Differences criteria.

Computing Depth

Focal length: f

Baseline: b
Disparity: $d=x^{\prime}-x$

$$
z=\frac{b f}{d}
$$

http://graphics.cs.cmu.edu/courses/15869/fall2013content/lectures/19_depthcamera/depthcamera_slides.pdf

Correspondence Problem

http://graphics.cs.cmu.edu/courses/15869/fall2013content/lectures/19_depthcamera/depthcamera_slides.pdf

Problems with Correspondence

Role of the Baseline

- Small Baseline
- large depth error
- Large Baseline
- difficult search problem
- smaller area for depth information
- Multiple camera setups
can provide small and
large baselines at the
can provide small and
large baselines at the same time
- Increased complexity for processing multiple images

Audio Localization

- Basic idea similar to stereo camera
- Microphones can be used passively to get position of sound source
- At least two microphones necessary, typically more than two are used (microphone array)
- Typical robotic application: find position of human speaker
- Most difficult problem: correspondence of sound signal
- We will not go into depth, if interested visit signal processing lecture

Audio Localization

http://yuandenghub.com/wp-content/uploads/2018/07/figure2.png

Depth Camera

- Two different base principles
- Structured light
- Time-of-Flight
- A lot of cheap sensors
- XBox Kinect (360 / One)
- Intel RealSense
- Asus Xtion
- ...

Structured Light

- Simplify correspondence problem by encoding spatial position in light pattern

Projected light pattern

Camera image
http://graphics.cs.cmu.edu/courses/15869/fall2013content/lectures/19_depthcamera/depthcamera_slides.pdf

Structured Light

http://graphics.cs.cmu.edu/courses/15869/fall2013content/lectures/19_depthcamera/depthcamera_slides.pdf

Structured Light Application

http://graphics.cs.cmu.edu/courses/15869/fall2013content/lectures/19_depthcamera/depthcamera_slides.pdf

XBox Infrared Output

Time of Flight Cameras

Time of Flight Cameras

Peter Fankhauser, Kinect v2 for Mobile Robot Navigation Evaluation and Modeling, ETH Zürich

Time of Flight vs. Phase difference

- Kinect One uses phase difference
- Microsoft calls it "Time of Flight Camera" anyway
- Phase difference is simpler to measure for a whole picture
- since you can get complete image at one time point

Calibration of Kinect for Xbox One and Comparison between the Two Generations of Microsoft Sensors, Diana Pagliari and Livio Pinto

Time of Flight Cameras

Time of Flight Cameras

Live demo

In reality

- A lot of different products available
- Integrated combination of multiple cameras and structured pattern
- Depth processing sometimes onboard
- (Proprietary) driver software usually provides depth information
- Open source software for generic stereo camera
- ROS (stereo_image_proc)
- OpenCV
- Improvement of these sensors still active field of research

Radio Landmark Tracking

- Use radio signals to get current position
- Mostly by satellites (GPS, GALILEO, GLONASS, ...)
- Also possible with earth bound signals, e.g. WiFi
- Getting absolute position by getting distance to multiple sources and then using triangulation
- The absolute position over time can be used to compute velocity and acceleration

GALILEO

https://phys.org/news/2017-07-europe-galileo-satnav-problems-clocks.html

Satellite Based Radio Landmark Tracking

- Accuracy depends on multiple factors
- Satellite coverage
- Signal blockage
- Atmospheric conditions
- Receiver design
- Typical accuracy
- GPS
- Smartphone: 5m
- Dual-receiver: few cm
- Long-term measurement: few mm
- Galileo, GLONASS similar
- Much better results and robustness when using combination

Typical Problems

- Most frequent problems
- Signal blocked by building, trees
- Indoor, underground use
- Signal reflected on buildings or walls
- Less frequent problems
- Solar storms
- Radio interference or jamming
- Satellite maintenance

https://www.gps.gov/systems/gps/performance/accuracy/

Summary

- Different methods to measure distance
- Time of flight
- Phase shift
- Triangulation
- Multiple sensors based on these methods
- Infrared sensors
- Ultrasonic sensors
- Laser range finders
- Stereo cameras
- Structured light cameras
- Time of flight cameras

Summary (cont.)

- Problems
- Material properties
- Invisible corners/walls
- Sunlight
- Multiple active sensors
- Correspondence

