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Coordinate Systems

I Standard orthonormal basis
for 3D Cartesian space

I RGB → XYZ for
visualization

I When multiple CSs are
relevant, usually called
frame and associated with a
name

I There are many ways to
specify frames w.r.t. each
other
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Coordinate Systems - Handedness

Left-Handed

I DirectX, POV-Ray, Unity,
. . .

Right-Handed

I OpenGL, OpenCV, ROS,
. . .
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Coordinate Systems - Relative Pose

I The pose of a rigid object comprises its position and
orientation w.r.t. some CS

I It can be represented by
I its Cartesian coordinate system (CS) K (frame) and
I a transformation between CS K and e. g. the global CS B

(B → K)

ezK

exB

ezB

exK

eyK

p’

p

K

p, p’ −− position vector

e      −− unit vector
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Coordinate transformation

I Transition between
coordinate systems (frames)

Typical reference frames:
I Robot base
I End-effector (tool)
I Table (world)
I Object
I Camera
I Screen
I ...

Frame transformations convert
one frame into another.
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Relative Pose - Position

I Coordinates of the Origin
I Translations along the axis of the

reference coordinate system (here B)
ezK

exB

ezB

exK

eyK

p’

p

K

p, p’ −− position vector

e      −− unit vector

P

B

eyB

I Defined by: p = [px , py , pz ]T ∈ R3 w.r.t. exB, eyB, ezB
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Relative Pose - Orientation (Spacial Alignment)
I Euler-angles φ, θ, ψ

I Rotations performed in sequence around the
axes of a coordinate system

I e.g. Roll-Pitch-Yaw, ZY ′Z ′′, . . .
I Axis-Angle ê, θ

I Rotation around axis ê by angle θ
I Elegant algebraic version: Unit Quaternions

I Rotation matrix R ∈ R3×3

I 9 parameters for 3 DOF
I For plain rotations: det(R) = 1

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33


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Euler Angles

I Represented as rotations φ, θ, ψ ∈ [0; 2π) around axes
I It remains undefined around which axes!
I Proper Euler angles rotate around:

I z − x − z
I x − y − x

I y − z − y
I z − y − z

I x − z − x
I y − x − y

I Tait-Bryan angles rotate around:
I x − y − z
I y − z − x

I z − x − y
I x − z − y

I z − y − x
I y − x − z

I All sequences can be interpreted w.r.t. the reference frame
(extrinsic) or the partially rotated frame (intrinsic)

There are 24 possible interpretations of Euler angles!
A gimbal lock can happen!
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Gimbal Lock
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Axis-Angle / Unit Quaternions

Euler’s Rotation Theorem Any rotation can be expressed as
an elemental rotation around a single axis (The Euler axis ê).

Axis-Angle

I Represented as
ê = [x , y , z ] ∈ R3 and
θ ∈ [0; 2π)

I Often encoded as ê only,
where ‖ê‖ = θ

Unit Quaternions
I Represented as

q = w + x · i + y · j + z · k
with unit vectors i, j, k and
‖q‖ = 1

q = cos θ2 +(êx i+ êy j+ êzk) sin θ
2

I Usually encoded as
[x , y , z ,w ] or [w , x , y , z ]
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Coordinate transformation

Points in space referenced in a local frame can be transformed into
a global frame through:
I Translations
I Rotations

Bp = Bd1 +
Bp1

= Bd1 +
BRK

Kp1

Please note:
I BRK : rotation matrix R, that

describes rotations to generate
frame K from frame B

I K p: vector p based on frame K .
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Application: Relative transformations

There are the following transformations:

T6

I Z: World → Base of the manipulator
I T6: Base of the manipulator

→ End of the manipulator
I E: End of the manipulator

→ End effector
I B: World → Object
I G: Object → Grasp Pose
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Application: Transformation chain

There are two descriptions of the end effector’s frame, one in relation to
the object and the other in relation to the manipulator. Both descriptions
are equal:

ZT6E = BG

To find the manipulator transformation:

T6 = Z−1BGE−1

To determine the coordinate frame of the object:

B = ZT6EG−1

T6

The transformation chain is also called the kinematic chain.
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In Reality

If you are programming anything robotic related just use a library
which does the transformations for you. You will save time and
have less bugs. If you use Euler Angles you do have to be aware of
their downsides and the order that this library uses.
Example libraries:
I tf2 (ROS, C++, Python)
I Robotics Library (C++)
I Robotic System Toolbox (Matlab)
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Want to Know More About Transformations

For a more in depth lecture about transformations in the robotic
domain, please visit "Introduction to Robotics" in the summer
term.
You can find the last years slides here:
https://tams.informatik.uni-
hamburg.de/lectures/2019ss/vorlesung/itr/index.php?content=03-
documents
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Introduction

Various vision systems are used in robotic applications as a
fundamental tool for environmental perception
I Much of the information obtained by the human brain includes

vision as a dominating/contributing modality
I Roughly 60% of the brain are said to be dealing with visual

data - mostly in combination with other modalities
Some of the questions computer/machine vision research is trying
to answer are:
I Where am I? (Scene modeling, classification, recognition, etc.)
I What is around? (Object detection/recognition, etc.)
I How can I interact? (Structure estimation, tracking, etc.)
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Introduction (cont.)

Vision sensor technology is evolving steadily, with many (quite)
different options available
I Linear camera sensor
I Analog CCD camera (black/white or color)
I Standard CMOS camera (e.g. web cam)
I High-Dynamic-Range (HDR) CMOS camera
I Structured light camera (Infrared, RGB)
I Stereo vision system
I Omnidirectional vision system
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Introduction (cont.)

Vision systems are widely used in industrial automation applications
I Object grasping tasks

I Objects with predetermined position (e.g. production line)
I Randomly positioned objects (e.g. ’bin-picking’)

I Object handling tasks
I Cutting, tying, wrapping, sealing, etc.
I Inspection during assembly

I Assembly tasks
I Welding, gluing, attaching, etc.
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Introduction (cont.)

Automated visual inspection at the production line.
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Introduction (cont.)

Vision systems in robotics are used for a wide range of applications
I Perception of objects

I Static: Recognition, searching, indexing, . . .
I Dynamic: Tracking, manipulation, . . .

I Perception of humans
I Face recognition
I Gaze tracking
I Gesture recognition
I . . .
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Introduction (cont.)

Navigation and modeling of the environment
I Robot localization:

I Relative
I Absolute
I In reference to various coordinate frames

I Object recognition and localization
I 3D scene reconstruction
I Allocation of the environment
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Introduction (cont.)

Vision-based motion control
I Visual-Servoing

I Coarse and fine positioning
I Tracking of movable objects

I Collision avoidance
I Depth map based distance measurement

I Coordination with other robots and/or humans
I Motion estimation
I Intention recognition
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Application scenario

Very common application scenario: Vision-based manipulator control.
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Application scenario (cont.)

Chain of transformations of the common application scenario.
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Kinematic chain

Data (points) can be easily transformed between coordinate frames
using a suitable transformation sequence of the kinematic chain

Z : Transformation from world coordinates to manipulator base
coordinates

T6: Compound transformation from the base of the manipulator to
the end of the manipulator

E : Transformation from the end of the manipulator to the gripper

B: Transformation from world coordinates to object coordinates
G: Specification of the grasp coordinate frame in reference to the

object coordinate frame
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Kinematic chain (cont.)

During grasping and manipulation of the object, the coordinates of
the grasping point can be determined in two ways:

ZT6E = BG

Marc Bestmann / Michael Görner / Jianwei Zhang 29
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Kinematic chain (cont.)

To determine the transformation of the manipulator, the following
equation needs to be solved:

T6 = Z−1BGE−1

In order to determine the location of the object after manipulation,
one has to solve:

B = ZT6EG−1
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Kinematic chain (cont.)

A camera included in the scenario introduces two additional
transformation matrices:

C : Transformation of camera coordinates into world coordinates
(Off-line determination of the transformation through camera
calibration)

I: Transformation of grasping point coordinates into the camera
coordinate frame
(Grasping point is determined using image processing techniques)
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Kinematic chain (cont.)

The transformation P from the grasping point to the world
coordinate system is given as:

P = I C

The camera to world transformation is determined through the
following equation:

C = I−1 P
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Camera calibration

Camera calibration in the context of three-dimensional image
processing is the determination of the intrinsic and/or extrinsic
camera parameters

Intrinsic parameters
I Internal geometrical structure and optical features of the

camera

Extrinsic parameters
I Three-dimensional position and orientation of the camera’s

coordinate frame in relation to a world coordinate frame
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Camera calibration (cont.)

What information does one get?
In order to reconstruct 3D information of the environment from
two or more images, it is necessary to know the relation between
the coordinate frames of the 2D image and the objects of the 3D
environment
I The relation between 2D and 3D can be described using two

transformations
I Perspective projection (3D → 2D)
I Backprojection (2D → 3D)

Marc Bestmann / Michael Görner / Jianwei Zhang 35



University of Hamburg

MIN Faculty
Department of Informatics

2.2 Vision systems - Camera calibration 64-424 Intelligent Robotics

Camera calibration (cont.)

Perspective projection (3D point → 2D point)
I Knowing the camera projection matrix the 2D projection of a

3D point can be determined (approximated)

Backprojection (2D point → 3D beam)
I If a 2D image point is known, there is a ray in 3D space on

which the corresponding 3D point lies
I If there are two or more views of the 3D point, its coordinates

can be determined using triangulation

Marc Bestmann / Michael Görner / Jianwei Zhang 36



University of Hamburg

MIN Faculty
Department of Informatics

2.2 Vision systems - Camera calibration 64-424 Intelligent Robotics

Camera calibration (cont.)

I The perspective projection is useful in order to reduce the
search space during scene analysis

I The backprojection is helpful for deriving 3D information based
on features in 2D images

I These transformations are used in various applications:
I Automatic assembly
I Robot calibration
I Tracking
I Trajectory analysis
I 3D metrology
I . . .
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Camera calibration (cont.)

Several calibration techniques have been established
I Camera calibration can be done on-line or off-line
I Using a calibration object:

I Identification of the camera parameters
I Determination of coordinate transformation between camera

coordinates and world coordinates
I Using self-calibration approaches
I Using machine learning methods
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Pinhole camera model

Pinhole camera without lens distortion
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Pinhole camera model
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Pinhole camera model
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Pinhole camera model 1D
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Pinhole camera model 2D

Pinhole camera without lens distortion [OpenCV]

Marc Bestmann / Michael Görner / Jianwei Zhang 43



University of Hamburg

MIN Faculty
Department of Informatics

2.2 Vision systems - Camera calibration 64-424 Intelligent Robotics

Pinhole camera model (cont.)

I (xw , yw , zw ): 3D world coordinate system with the origin Ow
[m]

I (x , y , z): 3D coordinate system of the camera with the origin
Oc (optical center) [m]

I (X ,Y ): 2D image coordinate system with the origin Oi [pixels]
I f : Focal length of the camera [m]
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Pinhole camera model (cont.)

Projection of camera coordinates onto image coordinates
I Point P is projected onto the corresponding (ideal) image

coordinate (u, v)
I Perspective projection with focal length f :

u = f xz v = f yz
I The image coordinates (X ,Y ) are calculated from (u, v) as

follows:
X = sxu + Cx Y = syv + Cy

I The scaling factors sx and sy are used to convert the image
coordinates from meters to pixels [pixels/m]

I Cx ,Cy are the coordinates of the principal point in the image
Marc Bestmann / Michael Görner / Jianwei Zhang 45
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Pinhole camera model - Assumptions
I Intrinsic Assumptions (typical error source in braces)

I Pixels are squared (sensor manufacturing)
I Optical center in the center (sensor misplacement)
I No skew (inaccurate synchronization of the pixel-sampling

process)
I Extrinsic Assumptions

I No rotation
I Camera at (0,0,0) - no translation
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Intrinsic Parameters

Transformation from camera to image coordinates
I Let P(x,y,z) be a point in the camera coordinate system
I Let fx = sx ∗ f and fy = sy ∗ f
I Let θ be the skew angle between x and y axis
I Let Cx ,Cy be the principal points coordinates in image plane
I Its projection into the camera coordinate system can be

determined as follows:XY
1

 = K

xy
z

with K =

fx −fxcot(θ) cx
0 fy/sin(θ) cy
0 0 1


I K is the camera matrix consisting of the intrinsic parameters
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Extrinsic Parameters

Transformation from world to camera coordinates
I Let P(xw , yw , zw ) be a point in the world coordinate system
I Its projection into the camera coordinate system can be

determined as follows:xy
z

 = R

xwyw
zw

+ t

with R =

r1 r2 r3
r4 r5 r6
r7 r8 r9

 and t =

txty
tz


I The parameters R and t are the extrinsic parameters
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Calibration parameters

The pinhole camera model contains the following calibration
parameters:
I The three independent extrinsic parameters of R
I The three independent extrinsic parameters of t
I The intrinsic parameters fx , fy , θ, Cx and Cy
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Lens distortion

Real cameras have lenses and produce a variety of imaging errors
and do not satisfy constraints of the pinhole camera model

The main error sources are:
I Low spatial resolution due to low resolution of the camera

device being used
I Most (cheap) lenses are asymmetrical and generate distortions
I Imprecision during assembly (pose of the lens)
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Lens distortion (cont.)

I Distortion by the lens system results in a changed position of
the image pixels on the image plane

I The pinhole camera model is no longer sufficient
I It is replaced by the following model:

u′ = u + Du(u, v)
v ′ = v + Dv (u, v)

where u and v are the non-observable, distortion-free image
coordinates, and u′ and v ′ the corresponding distorted
coordinates
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Lens distortion (cont.)
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Lens distortion (cont.)

Types of distortion
I There are two primary types of distortions:

I Radial
I Tangential

I Radial distortion causes an offset of the ideal position inwards
(barrel distortion) or outwards (pincushion distortion)
Possible cause: Flawed radial bend of the lens

I Tangential distortion shifts the ideal position along a tangential
curve
Possible cause: Non-parallel sensor/lens
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University of Hamburg

MIN Faculty
Department of Informatics

2.3 Vision systems - Lens distortion 64-424 Intelligent Robotics

Lens distortion

Radial distortion: Straight lines → no distortion
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Lens distortion (cont.)

Tangential distortion: Straight lines → no distortion
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Camera model

Since radial lens distortion is the dominant type, the following
equations can be used to establish a simplified, yet more correct
camera model:

Xd = X (1+ k1r2 + k2r4 + k3r6)

Yd = Y (1+ k1r2 + k2r4 + k3r6)

with r2 = x2 + y2

Where Xd ,Yd are the distorted image coordinates.
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Calibration

The problem camera calibration procedures are trying to solve is
the identification of the unknown parameters of the camera model
I The computation of these parameters for the distortion-free

camera model yields the position of the camera in world
coordinates

Calibration requires a set of m object points, which:

1. Have known world coordinates {xw ,i , yw ,i , zw ,i}, i = 1, . . . ,m
with sufficiently accurate precision

2. Lie within the camera’s field of view
These calibration points are detected in the camera image with
their respective image coordinates {Xi ,Yi}
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Calibration (cont.)

I Having these known world coordinates can be tricky
I Only calibrating intrinsic parameters is easier, since we only

need known points in camera frame
I A checkerboard with known square sizes is enough
I Dependent on the use case, intrinsic parameters may be enough
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Intrinsic Calibration Objects

A typical 3D calibration object
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Intrinsic Calibration Objects

Typical calibration pattern
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Use of Intrinsic Calibration Parameters

Using the determined camera parameters, the image can be undistorted
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In the Real World

Different open source implementations exists that do the camera
calibration for you.
I camera_calibration (ROS package)
I Interactive camera calibration application (OpenCV)
I Camera Calibrator (Matlab)
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Live Demo

Live demo
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Fiducial Markers
I In robotics, we are often interested in getting transforms

I Robot -> Object
I Robot -> World

I Getting these directly from camera images is difficult
I Computing poses of known, well-structured elements is easy
I Those are called fiducial markers or short tags
I Tags can be used for extrinsic calibration
I Also widely used in augmented reality
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Fiducal Markers

From DeGol et a., ChromaTag: A Colored Marker and Fast Detection
Algorithm
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AprilTag

I One of the most used marker types in robotics is the AprilTag
I There are different families available
I The widely used Tag36h11 family offers 587 tags with minimal

Hamming distance of 11 bit
I For each tag you get the ID and the pose
I Very low false-positive detection rates
I False-negative detection highly depends on image quality
I Multiple can be grouped as bundle to get better measurements
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AprilTag Detection

Original image
From John Wang and Edwin Olson, AprilTag 2: Efficient and robust fiducial detection
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AprilTag Detection (cont.)

Adaptive thresholding
From John Wang and Edwin Olson, AprilTag 2: Efficient and robust fiducial detection
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AprilTag Detection (cont.)

Segmentation
From John Wang and Edwin Olson, AprilTag 2: Efficient and robust fiducial detection
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AprilTag Detection (cont.)

Detected quads
From John Wang and Edwin Olson, AprilTag 2: Efficient and robust fiducial detection
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AprilTag Detection (cont.)

Tag detections
From John Wang and Edwin Olson, AprilTag 2: Efficient and robust fiducial detection
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Live Demo

Live demo
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Tag Application Examples

I Extrinsic calibration
I Getting "ground truth" for training data
I Removing the object pose estimation sub task from a larger

task, to concentrate on the other aspects
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Tag Application Examples
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Tag Application Examples

Marc Bestmann / Michael Görner / Jianwei Zhang 75



University of Hamburg

MIN Faculty
Department of Informatics

2.3 Vision systems - Lens distortion 64-424 Intelligent Robotics

Discussion of Tags
I Pro

I Simplifies task
I Production costs very low
I Computational cost comparably low
I Normally quiet precise
I Ease to employ in artificial environments, e.g. factory

I Contra
I Difficult to use on large distances
I Difficult to use on very small scales, e.g. getting finger tip

positions
I Not usable for natural environments
I Tags in training data lead to learning tag detection
I Rotation is not so precise (can be improved by bundles)
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Application Examples
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Visually controlled grasping

Task:

Two-dimensional fine positioning of a robot hand or a gripper in
relation to the object that is to be grasped

Procedure:

1. Offline-specification of the target position (e.g. object features
from stereo image processing)

2. Online transformation of the current difference in relation to
the target position (e.g. with a hand camera)
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Visually controlled grasping (cont.)

Basic control loop used for visual servoing
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Visually controlled grasping (cont.)

Example of visually controlled gripper reaching a suitable
position and orientation for grasping of the object
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Summary

I Relies on computing transformation sequences between world,
object, reference, camera (...) frames

I Camera calibration requires a set of free parameters to be
tuned (can be achieved by a suitable optimization technique)
I Essential for retrieving accurate sensor measurements
I Is typically done by using a geometric object with structured

visual pattern
I Lens distortion (radial / tangential) needs to be incorporated

I Usage of tags can largely simplify the task
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