

MIN Faculty Department of Informatics

Bipedal Locomotion Oberseminar TAMS

Marc Bestmann

University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems

07. Januar 2020

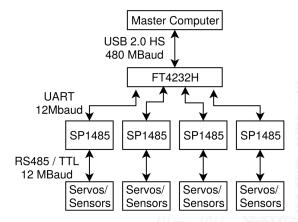
Today I want to give you an overview of my work in the last year. It is like an update for my talk last year.

Reminder of my thesis topic:

- Bipedal walking
- Holonomic
- Low Cost hardware
- Integration with
 - ► falling
 - stand up
 - pathplanning
 - odometry

- 1. Hardware
- 2. Dynamic Stack Decider
- 3. Hardware Control Manager
- 4. Quintic Walk
 - Inverse Kinematics Path Planning Odometry
- 5. Deep Quintic
- 6. Further Paper

- ▶ I had most of the necessary hardware for my thesis finished
- This year I mostly worked on improving and publishing



Servo Control

- ► Further work on the QUADDXL approache, presented last year
- Using a single USB-to-Serial-Chip to have four bus systems
- The goal was to reach 1kHz update cycle on the 20 Dynamixel servos
- My prototype reached 1,373 Hz (compared to current best of ca. 200Hz)
- I wrote a paper which I presented at the RoboCup Symposium
- Currently a student (Jasper) is integrating it into the robot
- Additional work was done by a student (Tobias) to create a FPGA version
 - Will probably be continued a independent study

Foot Pressure

- Worked a bit further on foot pressure sensors
- Able to read them with 700Hz
- Further improvements will be investigated by students
 - Replacing microcontroller for better update rate
 - 3D printing foot base for nicer integration

- The robot was often damaged when falling
- Mostly broken gears due to the impact
- Flexible 3D printed bumpers were added on the torso
- Flexible 3D printed SEAs were added to the shoulders
- Most of the work was done by the RoboCup team

Dynamic Stack Decider

- Lightweight behavior framework
- Flexible like a behavior tree and simple like a FSM
- I already wrote a paper in 2018 for a workshop at IROS which was canceled
- 2019 I co-authored a new paper which is in second phase of peer review for *Journal of Intelligent & Robotic Systems*
- Some improvements were made
 - Better rqt plugin
 - Creation by Domain Specific Language
- Currently in use for the master project

Hardware Control Manager - HCM

Hardware Control Manager

Bipedal Locomotion

- Allows to handle bipedal robot like wheeled ones
- Seven functions
 - Hardware error
 - Manual stop
 - Falling
 - Standing up
 - Joint mutex
 - Semantic state
- This year updated to new DSD version
- I'm currently writing the paper
- Probably will submit it in a journal

Quintic Walk

Quintic Walk

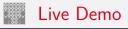
- ► Holonomic bipedal walk engine in cartesian space
- Parameters influence position of quintic spline points
- I implemented and presented the first version in 2018
 - Was still completely open loop
- This year I improved it
 - Complete refactoring of the code base
 - Common spline engine interface also used in kick and stand up
 - Faster speed change
 - PID torso control to improve pitch stability
 - Stopping when unstable
 - Phase reset
 - BiolK balance goal did not work
- Won the push recovery challenge in this years RoboCup
- A bit more testing and evaluation for the stability features is needed
- ► Learning of parameters in simulation would still be necessary
- Paper planed for this years CLAWAR

Quintic Walk

Bipedal Locomotion

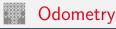
Video

Quintic Walk - Inverse Kinematics


- ▶ Walk engine computes goals in Cartesian space
- Need to be transformed into joint space by IK
- Currently BiolK (gradient method) is used
- Takes up a lot of computing power
 - ▶ ca. 1,5 cores at 200Hz control cycle
- Since no additional BiolK goals are used, I tried other approaches
- Analytic solution not easy since first three joint axis don't cross
- FastIK does not find a solution
- KDL and TrackIK work in the Movelt! demo, but not in my code

Path Planning

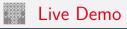
Quintic Walk - Path Planning


- The walk engine takes velocities as input
- To be able to go to a specific location, path planning is necessary
- Due to the HCM we can handle the robot as if it has wheels
- Therefore I used the standard ROS package move_base
- After some initial problems it worked well
- Biggest problem was the odometry

Bipedal Locomotion

RViz live demo

Quintic Walk - Odometry


- Originally I computed the odometry just by using the walk engine
- One transformation tracked where the support foot is in the world
 - After each step the goal of the step was added to this vector
- This one was combined with the current goal of the torso in relation to the support foot to get the odometry
- The error was bigger than expected due to servos in the knees not reaching the goal position
- This lead to problems with the path planning
- I wrote a new odometry, which uses the actual joint feedback
- The error was largely minimized
- A more in depth evaluation has to be done

Deep Quintic

Deep Quintic

- I want to improve the walking with RL
- My idea is to use reward shaping similar to Deep Mimic
- Normally this is done by using mocap data
- The Wolfgang kinematic is very different from humans
- Instead of using mocap, use Quintic Walk data
- Train using PPO
- Original my idea was to use RoboSchool
 - Deprecated and not longer supported
 - Multiple other problems with code base
- DeepMimic code base not usable
- Decided on PyBullet
- As validation I tried to let the robot learn to stand still
 - Active stable standing is actually interesting for push recovery
- Currently not working, I don't know why

Deep Quintic

Bipedal Locomotion

PyBullet environment demo

Current State

Deep Quintic

- ► Robot 🗸
- ► Robot model 🗸
- Train environment (PyBullet) (\checkmark)
- Learn algorithm (stable baselines PPO2) (\checkmark)
- Policy network (same as Deep Mimic) (\checkmark)
- Reward function X
- Real world training / evaluation X
 - \blacktriangleright Make robot able to withstand many falls \checkmark
 - \blacktriangleright HCM to stand up automatically \checkmark
 - Celing cam + april tag to get data \checkmark
 - Pathplanning to provide command velocities
 - Evaluation script that provides random navigation goals and records results X

Further Papers

Further Paper

- Unrelated to this I co-authored two more papers in 2019
- Position Estimation on Image-Based Heat Map Input using Particle Filters in Cartesian Space
 - Main author Niklas
 - Published at IEEE MFI
- An Open Source Vision Pipeline Approach for RoboCup Humanoid Soccer
 - Main author Niklas
 - Published at RoboCup Symposium
- Ask me about it if you are interested

Further Paper

Bipedal Locomotion

Questions?

