Brain-Computer Interface Enabled Shared Control Systems For Robotic Grasping

Stefanie Stoppel

Intelligent Robotics Seminar, 02.12.2019

Dept. Informatik – Technical Aspects of Multimodal Systems, TAMS

University of Hamburg

TA

Content

- 1. Motivation
- 2. Background
- 3. Method
- 4. Results
- 5. Discussion
- 6. Conclusion

Motivation

- Fascinating research topic: controlling machines with "thoughts"
- Medical uses [Abdulkader15]
 - Epileptic seizure detection and forecasting
 - Physically challenged or locked-in persons
 ⇒ restore movement and communication capabilities using external devices
- ... but sustaining attention for BCI-only control is tiring \Rightarrow shared control

Background — Brain-Computer Interfaces (BCI)

- Link between human brain and computer system
- Brain signals can be used to control external devices (e.g. cursor, drone, robotic arm)
- Two broad categories [Gandhi15]:
 - o synchronous: computer generates cues
 ⇒ user produces brain signals
 - asynchronous: user intent from brain signals

Background — Brain-Computer Interfaces (BCI)

BCI systems have 4 main components [Abdulkader15]

Paper overview

- Downey, John E., et al. "Blending of brain-machine interface and vision-guided autonomous robotics improves neuroprosthetic arm performance during grasping." *Journal of neuroengineering and rehabilitation* 13.1 (2016): 28.
- Blend human and system control for good grasp performance
 - human ⇒ BCI-enabled arm translation & object selection (high level tasks)
 - o robot ⇒ infer user intent & align grasp position (low level tasks)
- Objective: Comparison of performance & ease of use of "BCI-only" to shared control

Method — Signal Acquisition

- Electrocorticography (ECoG): Microelectrode recording arrays implanted on cortex surface
- Green: Subject 1
 - 2 x 96-channel
- Yellow: Subject 2
 - 2 x 88-channel (squares)
 - 2 x 32-channel (rectangles)

Adapted from [Downey16]

Method — BCI Decoding

- Map firing rates \Rightarrow 4D vector
 - translation velocity (3D \Rightarrow x,y and z)
 - grasp velocity $(1D \Rightarrow g)$
- Optimal linear estimation (OLE) decoder trained:

$$\boldsymbol{f} = \boldsymbol{b}_0 + \boldsymbol{b}_x \boldsymbol{v}_x + \boldsymbol{b}_y \boldsymbol{v}_y + \boldsymbol{b}_z \boldsymbol{v}_z + \boldsymbol{b}_g \boldsymbol{v}_g$$

sqrt(unit's firing rate)

kinematic velocity

coefficients

Method — Two-Step Calibration

Computer-controlled movements ⇒ subjects observe & try to control ↓ ▼ First OLE decoder

User-controlled movements based on decoder from step 1

Final OLE decoder

 ∇

- Model library including
 - Depth-image templates for object identification
 - Hand positions and grasp envelopes
- Grasp envelope
 - truncated cone (length: 25 cm)
 - oriented along stable grasp path

[Downey16]

Outside grasp envelope	full user control					

Outside grasp envelope	full user control
Inside grasp envelope	 shared control blending of system and user commands

Outside grasp envelope	full user control
Inside grasp envelope	 shared control blending of system and user commands system assistance control of hand position system infers user intent

Outside grasp envelope	full user control
Inside grasp envelope	 shared control blending of system and user commands system assistance control of hand position system infers user intent hand close to object high certainty of user intention higher weight of system commands user issues hand-closing command to grasp

• Blending of user and system commands

 $C = (1 - \alpha)R + \alpha B$

C: resulting velocity R: system's velocity B: user's (BCI-decoded) velocity α : arbitration factor, $\alpha \in [0.001, 1]$

- Outside grasp envelope
 - $\alpha = 1 \Rightarrow$ full user control
- At stable grasp position
 - $\alpha = 0.001 \Rightarrow$ nearly complete system control

[Downey16]

Experiments

	Action Research Arm Test (ARAT)	Multiple Object Task	
Task			
Target object			
Conditions			
Subjects			[Downey16]

Experiments

	Action Research Arm Test (ARAT)	Multiple Object Task	
Task	Grasp the target object and move it to release area		
Target object	Single cube (2.5, 5, 7.5 and 10 cm)		
Conditions	With and without shared control		
Subjects	1 and 2		[Downey16]

Experiments

	Action Research Arm Test (ARAT)	Multiple Object Task	
Task	Grasp the target object and move it to release area	Grasp the target out of two objects and lift it	
Target object	Single cube (2.5, 5, 7.5 and 10 cm)	One of two cubes (7.5 cm)	
Conditions	With and without shared control	With and without shared control	
Subjects	1 and 2	2	[Downey16]

Results — Action Research Arm Test (ARAT)

Results — ARAT Best Trials

Results — Multiple Object Task

	Success rate		Median completion time (sec)		
Target	w/Assist	w/o Assist	w/Assist	w/o Assist	
1	100 %	50 %	8.7	19.3	
2	100 %	50 %	8.4	17.8	
3	75 %	67 %	7.7	30.5	
4	100 %	80 %	8.1	20.7	
5	100 %	25 %	8.3	28.7	
6	75 %	0 %	9.6	-	
Total	92 %	46 %	8.3	26.3	

Downey16

Discussion

0

- Shared control at all times
- Allows for error correction
 - wrong object \Rightarrow abort grasp
 - relocate dropped objects
- Decreased perceived difficulty of usage with shared control
- Selection between multiple objects

0

- Cubes are simple objects
 ⇒ generalizability?
- Only 2 subjects
- Electrocorticography (ECoG) requires invasive operation

Conclusion

- Real-time shared control of BCI and system improves grasp performance
- Users have control of robotic arm most of the time, but were assisted in difficult parts of task
- Future directions
 - Extend object library \Rightarrow more complex geometries
 - Allow users to switch shared control on / off
 - Enable object selection by BCI commands instead of proximity

References

- [Downey16]: Downey, John E., et al. "Blending of brain-machine interface and vision-guided autonomous robotics improves neuroprosthetic arm performance during grasping." *Journal of neuroengineering and rehabilitation* 13.1 (2016): 28.
 <u>DOI: 10.1186/s12984-016-0134-9</u>
- **[Gandhi15]:** Gandhi, V. "Chapter 2-interfacing brain and machine." *Brain-Computer Interfacing for Assistive Robotics* (2015): 7-63. DOI: 10.1016/C2013-0-23408-5
- [Abdulkader15]: Abdulkader, Sarah N., Ayman Atia, and Mostafa-Sami M. Mostafa.
 "Brain computer interfacing: Applications and challenges." *Egyptian Informatics Journal* 16.2 (2015): 213-230. DOI: 10.1016/j.eij.2015.06.002

Thank you for your kind attention!

Any questions?

Method — Hardware

- WAM Arm by Barrett Technology Inc.
 - 7 DoF robot
 - 4 DoF 3-fingered Barrett Hand
- RGB-D camera mounted above arm base
- Neuroport Neural Signal Processor (Blackrock Microsystems)

Results — Action Research Arm Test (ARAT)

		Success rate		Mean completion time (sec)		Mean difficulty	
Sessions	Cube	w/Assist	w/o Assist	w/Assist	w/o Assist	w/Assist	w/o Assist
Subject 1	10 cm	67 %	0 %	25	-	3.7	8.3
	7.5 cm	100 %	44 %	22	23	3.0	6.3
	5 cm	67 %	11 %	16	14	4.7	7.7
	2.5 cm	78 %	33 %	48	64	5.0	8.3
	Total	78 %	22 %	28	37	4.1	7.7
Subject 2	10 cm	0 %	0 %	_	-	7.0	7.0
	7.5 cm	50 %	0 %	29	-	4.5	7.5
	5 cm	50 %	0 %	20	-	4.0	9.0
	2.5 cm	83 %	0 %	42	-	2.0	9.0
	Total	46 %	0 %	33	-	4.4	8.1

[Downey16]

Results — Action Research Arm Test (ARAT)

