Path following with reinforcement learning for autonomous cars

- Mozzam Motiwala (IAS)

Index

- Basics of Reinforcement Learning
- Model Based vs Model Free Reinforcement
 Learning
- Autonomous Car collision avoidance

What is Reinforcement Learning?

• Learning by trial and error only based on a reward signal[1]

Exploration vs Exploitation?

https://towardsdatascience.com/solving-the-multi-armedbandit-problem-b72de40db97c

Markov-Desicion Process

Transition Function?

Optimal Policy?

Some terminalogy

• Value Function: $v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t \mid S_t = s]$

$$= \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \Big[r + \gamma v_{\pi}(s') \Big], \quad \text{for all } s \in \mathbb{S},$$

• Action Value Function: $q_{\pi}(s, a) \doteq \mathbb{E}_{\pi}[G_t \mid S_t = s, A_t = a]$

Why Discounting Factor?

Gridworld

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

$R_t = -1$ on all transitions

Finding Optimal Policy

[1]

Cart Pole Balancing Problem

1	Observation 1995	on:			
2	Type:	Box(4)			
3	Num	Observation	Min	Max	
4	Θ	Cart Position	-4.8	4.8	
5	1	Cart Velocity	-Inf	Inf	
6	2	Pole Angle	-24°	24°	
7	3	Pole Velocity At Tip			
8					
9	Action:				
10	Type:	Discrete(2)			
11	Num	Action			
12	Θ	Push cart to the left			
13	1	Push cart to the right			

https://towardsdatascience.com/cartpole-introduction-toreinforcement-learning-ed0eb5b58288

https://www.youtube.com/watch?v=Lt-KLtkDlh8

Index

- Basics of Reinforcement learning
- Model Based vs Model Free Reinforcement
 Learning
- Autonomous Car collision avoidance

Model-based

By a model of the environment we mean anything that an agent can use to predict how the environment will respond to its actions[2].

https://towardsdatascience.com/model-based-reinforcement-learning-cb9e41ff1f0d

Two states A, B; no discounting; 8 episodes of experience

Why model-based RL?

Reduced number of interaction with the real environment while learning.

Advantages?

- Fast
- Need less data

Types: Neural Network Model, Guassian Process Model.. etc

Problems?

• What if the model is wrong?

Model Based+ Model Free

Results

Why better result?

Tabular Dyna-Q

Initialize Q(s, a) and Model(s, a) for all $s \in S$ and $a \in A(s)$ Loop forever: (a) $S \leftarrow$ current (nonterminal) state

- (b) $A \leftarrow \varepsilon$ -greedy(S, Q)
- (c) Take action A; observe resultant reward, R, and state, S'
- (d) $Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_{a} Q(S',a) Q(S,A) \right]$
- (e) $Model(S, A) \leftarrow R, S'$ (assuming deterministic environment)
- (f) Loop repeat n times:
 - $S \gets \text{random previously observed state}$
 - $A \leftarrow \text{random}$ action previously taken in S
 - $R, S' \leftarrow Model(S, A)$

$$Q(S, A) \leftarrow Q(S, A) + \alpha \left[R + \gamma \max_{a} Q(S', a) - Q(S, A) \right]$$

WITH PLANNING (n=50)

[1]

Index

- Basics of Reinforcement learning
- Model Based vs Model Free Reinforcement
 Learning
- Autonomous Car Collision Avoidance

Application: Autonomous Car

Why Reinforcement Learning? Problem with traditional methods

- Slow
- Assumptions

Learning in RL

- Adapting to environment
- Learning from mistakes

KeenCalmAndPosters con

Generalized Computation Graph

Self-supervised Deep Reinforcement Learning with Generalized Computation Graphs(GCG) for Robot Navigation[3]

- H=1 : Model-Free
- H= N (Length of Episode): Model-Based

Model Details

- Deep RNN as Model
- Model output 1= Current Reward ŷ: Robots speed
- Model output 2= Future Value to go(value of the state)
 ^b: Distance travelled before collision
- Policy Evaluation Function :

$$J(\mathbf{s}_t, \mathbf{A}_t^H) = \sum_{h=0}^{H-1} -\hat{y}_{t+h} - \hat{b}_{t+H}.$$

• Policy Evaluation by sampling k random action sequence and selecting the one with max reward.

GCG : Algorithm

Algorithm 1 Reinforcement learning with generalized computation graphs

- 1: **input**: computation graph $G_{\theta}(\mathbf{s}_t, \mathbf{A}_t^H)$, error function $\mathcal{E}_t(\theta)$, and policy evaluation function $J(\mathbf{s}_t, \mathbf{A}_t^H)$
- 2: initialize dataset $\mathcal{D} \gets \emptyset$
- 3: for t = 1 to T do
- 4: get current state s_t
- 5: $\mathbf{A}_t^H \leftarrow \arg \max_{\mathbf{A}} J(\mathbf{s}_t, \mathbf{A})$
- 6: execute first action \mathbf{a}_t
- 7: receive labels y_t and b_t
- 8: add $(\mathbf{s}_t, \mathbf{a}_t, y_t, b_t)$ to dataset \mathcal{D}
- 9: update G_{θ} by $\theta \leftarrow \arg \min_{\theta} \mathcal{E}_{t'}(\theta)$ using \mathcal{D}

10: end for

Evaluation and Results

https://www.youtube.com/watch?v=NIFbLVG6LpA

Distance until crash (m)	Random policy	Double Q-learning with off-policy data	Our approach
Mean	3.4	7.2	52.4
Median	2.8	6.1	29.3
Max	8.0	21.5	197.0

TABLE I: Evaluation of our learned policy navigating at 1.2m/s using only monocular images in a real-world indoor environment after 4 hours of self-supervised training, compared to a random policy and double Q-learning trained with the same data gathered by our approach.

[3]

Summary

- Benefits of Reinforcement Learning
- Model-Free vs Model-Based
- Combined approach that subsumes Model-free
 and Model-based

References

- 1. R. Sutton and A. Barto, Reinforcement Learning: An Introduction
- 2. R. Sutton, "Dyna, an Integrated Architecture for Learning, Planning, and Reacting," in AAAI, 1991.
- **3.** G. Kahn, A. Villaflor, B. Ding, P. Abbeel, and S. Levine. Self-Supervised Deep ReinforcementLearning with Generalized Computation Graphs for Robot Navigation. InIEEE InternationalConference on Robotics and Automation, 2018.

Doubt is not a pleasant condition, but certainty is absurd. Voltaire

