Few Shot Learning for Robot Motion

Intelligent Robotics Seminar 06.01.2020 University of Hamburg Lisa Mickel

Content

- Introduction
- Reinforcement learning
- Approach 1: Model free maximum entropy
- Approach 2: Model based
- Results: Simulation and real-life
- Comparison & conclusion

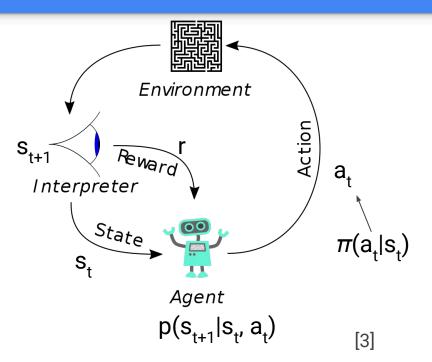
Introduction

 State-of-the-art locomotion controllers: explicit planning of motions → precise knowledge of robot dynamics

- Here: reinforcement learning on Minitaur robot
- Requirements:
 - Stable gait on various terrains
 - Sample efficient
 - Safe learning

Reinforcement Learning

- Markov Decision Process (MDP):
 - State and action space
 - Transition probability
 - Policy
 - Reward function
- Model free: learn policy $\boldsymbol{\pi}(a_t|s_t)$
- Model based: learn transition probability p(s_{t+1}|s_t, a_t)



Approach 1: Learning to Walk via Deep Reinforcement Learning

Haarnoja, Ha, Zhou, Tan, Tucker, Levine

Google Brain, University of California, Berkeley

Jun 2019

- Model free algorithms often limited to simulation
- Extension of maximum entropy learning

A1: Maximum Entropy Learning

- Entropy = measure for variance
- Encourage exploration by including entropy of policy

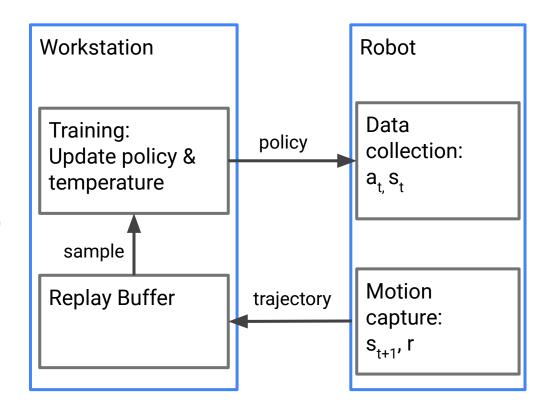
$$\sum_{t=0}^{T} \mathbb{E}_{\tau \sim \rho_{\pi}} \left[r(\mathbf{s}_t, \mathbf{a}_t) - \alpha_t \log \pi_t(\mathbf{a}_t | \mathbf{s}_t) \right]$$

- Hyperparameter α = temperature
- Training results dependent on its value
- New approach: learn temperature
 - \circ Add constraint: Minimum expected entropy H of policy π

$$\mathbb{E}_{\tau \sim \rho_{\pi}} \left[\sum_{t=0}^{T} r(\mathbf{s}_{t}, \mathbf{a}_{t}) + \alpha_{t} \left(-\log \left(\pi_{t}(\mathbf{a}_{t} | \mathbf{s}_{t}) \right) - \mathcal{H} \right) \right]$$

A1: System Setup

- On robot:
 - Execute policy
 - Measure robot state
 - Compute reward signal
- Workstation
 - Train with sample from buffer
 - Update policy (neural network) parameters and temperature



Approach 2: Data Efficient Reinforcement Learning for Legged Robots

Yang, Caluwaerts, Iscen, Zhang, Tan, Sindhwani

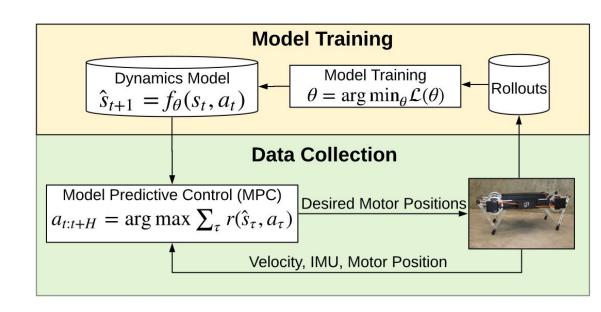
> Robotics at Google United States

> > Oct 2019

• Model based few shot RL algorithm

A2: System Setup

- MPC: plan action based on dynamics model → execute plan
- Current robot state as feedback, periodically replan
- Periodic retraining with all trajectories

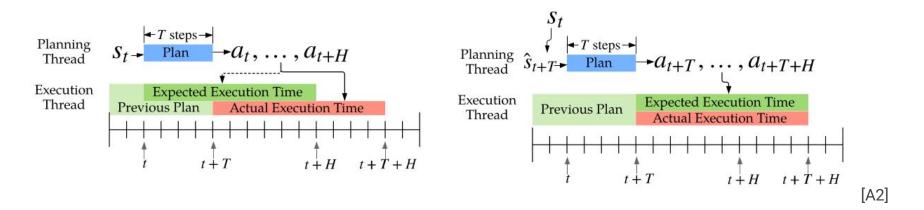


[A2]

A2: Planning

- Control frequency > planning frequency
 - Simultaneous planning and execution of actions
 - Planning horizon: 450 ms (=75 control steps), replan every 72 ms
- Planning latency

 \rightarrow plan based on future robot state (asynchronous control)

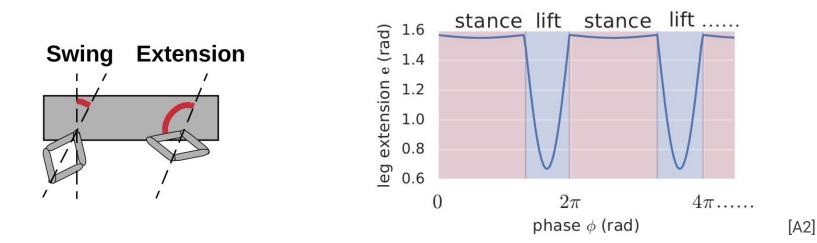


- Dynamics model: Neural network
- Long term accuracy of dynamics model: multi-step loss function
- Predict n states and average over single step error \rightarrow accumulation of error

$$\mathcal{L}_{\text{multi-step}}(\theta) = \frac{1}{|\mathcal{D}|} \sum_{(s_{t:t+n}, a_{t:t+n-1}) \in \mathcal{D}} \frac{1}{n} \sum_{\tau=1}^{n} \left\| (s_{t+\tau} - s_{t+\tau-1}) - f_{\theta}(\hat{s}_{t+\tau-1}, a_{t+\tau-1}) \right\|_{2}^{2}$$

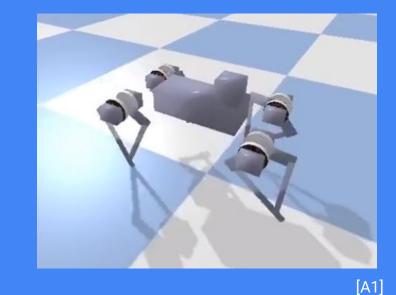
A2 Trajectory Generators

- Periodically lift legs
- 4 independent phases
 - \rightarrow Freely modulate leg movements independently

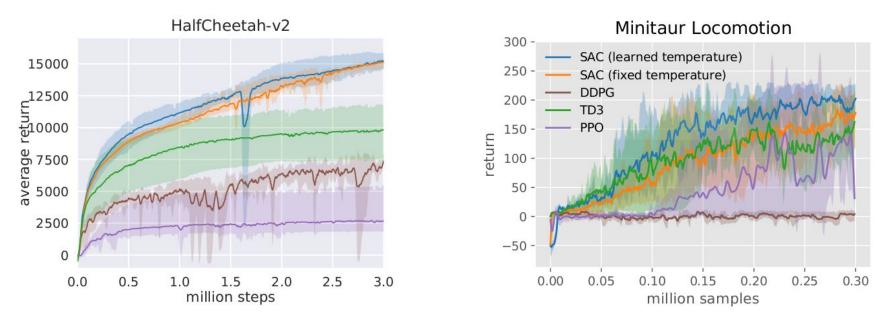


Results: Simulation

- Goal:
 - A1: Walk straight
 - A2: Walk forward matching speed profile



A1: Performance

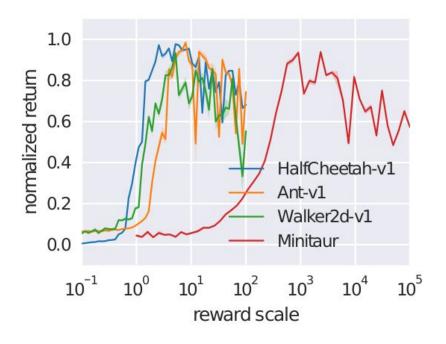


- Several benchmark tests
- Compare to standard algorithms \rightarrow A1 matches best performance
- Best on minitaur robot

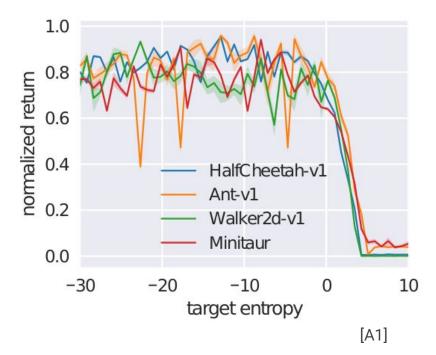
[A1]

A1: Influence of hyperparameter on performance

• SAC: Temperature = inverse reward scale



• A1: Minimum expected entropy



A1: Data Efficiency

• Compare to standard SAC

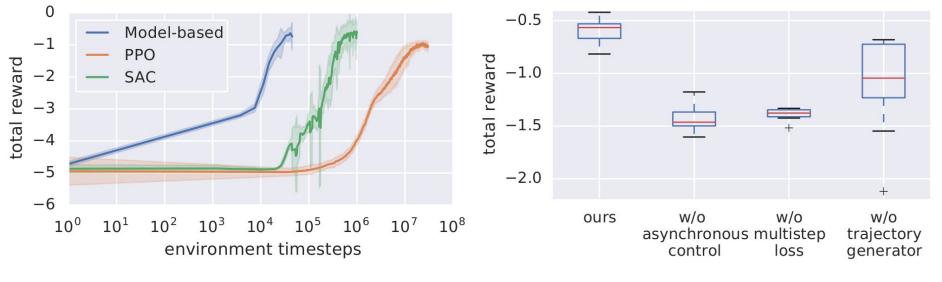
- Two measures for data efficiency:
 - number of control steps
 - number of episodes

Minitaur Locomotion SAC (learned temperature) SAC (fixed temperature) 4000 number of episodes 3000 -2000 -1000 -0 -0.05 0.20 0.25 0.30 0.00 0.10 0.15 million samples [A1]

A2: Performance

• Comparison to model free algorithms

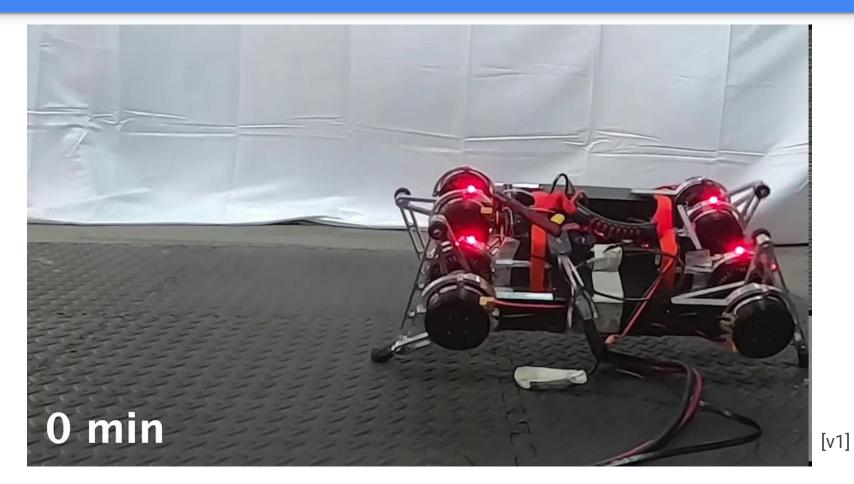
• Influence of algorithm components on performance



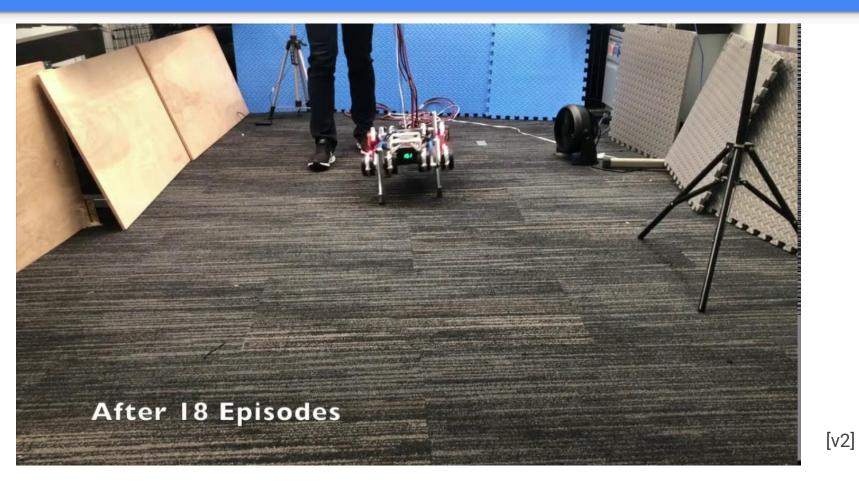
Results: Real-Life

[A1]

A1: Training Video



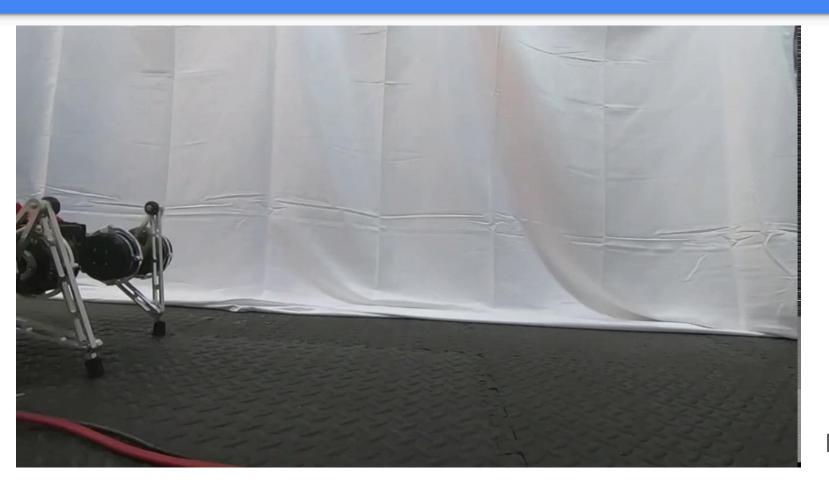
A2: Training Video



Training Results

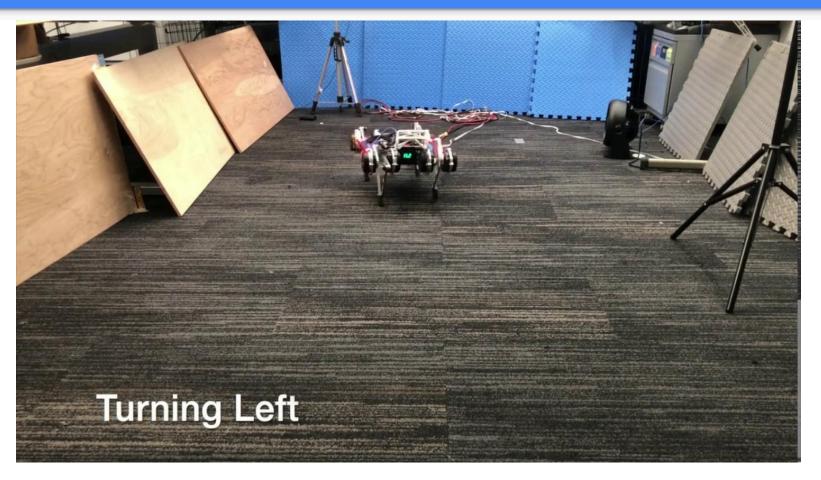
Approach	A1	A2
Walking speed	0.32 m/s (0.8 body lengths/s)	0.66 m/s (1.6 body lengths/s)
Steps	160 000	45 000
Episodes	400	36

A1: Generalization



[v3]

A2: Generalization



[v2]

Comparison

Approach	A1	A2
Gait	Learns sinusoidal pattern, different front and hind leg frequency	Adapts sinusoidal pattern of TGs Higher walking speed
Data efficiency	Better than standard SAC	Better than A1
Hyperparameters	Minimum expected entropy	Planning algorithm, multi step loss (simulation)
Gait generalizability	Slope, step, obstacle	Slope New tasks
Range of applicability	Various robots	Problem specific Adaptability?

Conclusion and Outlook

• Two data efficient reinforcement algorithms that successfully train real-life minitaur robot to walk

- Future work:
 - \circ Additional sensors \rightarrow more complex behaviours
 - \circ Safety measures \rightarrow larger robots

Thank you for your attention!

A1: Tuomas Haarnoja,, Sehoon Ha, Aurick Zhou, Jie Tan, George Tucker, Sergey Levine; *Learning to Walk via Deep Reinforcement Learning*; arXiv:1812.11103v3 [cs.LG]; Jun 2019

A2: Yuxiang Yang, Ken Caluwaerts, Atil Iscen, Tingnan Zhang, Jie Tan, Vikas Sindhwani; Data Efficient Reinforcement Learning for Legged Robots; arXiv:1907.03613v2; Oct 2019

Other:

- https://towardsdatascience.com/introduction-to-various-reinforcement-learning-algorithms-i-q-l earning-sarsa-dqn-ddpg-72a5e0cb6287
- https://en.wikipedia.org/wiki/Reinforcement_learning
- https://spinningup.openai.com/en/latest/algorithms/sac.html
- https://en.wikipedia.org/wiki/Markov_decision_process

[1] https://newatlas.com/anymal-quadruped-robot-eth-zurich/52097/

[2]

https://www.hackster.io/news/meet-ghost-minitaur-a-quadruped-robot-that-climbs-fences-and-opens-doors-bfec23debdf4

[3] https://en.wikipedia.org/wiki/Reinforcement_learning

[v1] https://www.youtube.com/watch?time_continue=4&v=FmMPHL3TcrE&feature=emb_logo

[v2] https://www.youtube.com/watch?v=oB9IXKmdGhc&feature=youtu.be

[v3] https://www.youtube.com/watch?v=KOObeljzXTY&feature=emb_logo