

MIN Faculty Department of Informatics

Human-Robot Collaboration in an industrial environment

Laura Schäfer

University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems

09. December 2019

References

- 1. Motivation and Introduction
- 2. Functionalities of HRC
- 3. KUKA Robot "LBR IIWA"
- 4. Conclusion
- 5. References

Motivation of presentation

Motivation and Introduction

Functionalities

KUKA Robot "LBR I

BR IIWA"

Refe

Is it possible that humans and robots work together in an industrial environment like humans with humans?

Fig. 1 - https://images.app.goo.gl/4Kup5vSPPUZxG7eR9

Human-Robot Interaction

Motivation and Introduction

- Human acts as the supervisor
- Human acts as the robot operator
- Human acts as the Team partner working with the robot
- Non-participant in the work process
- Robots perform tasks autonomously but are seperated from humans by protective fences

Definition

Human-Robot Interaction is the Interaction between humans and robots.

Human-Robot Collaboration

Motivation and Introduction

- Shared human and robot work / workspace: No separation by protective fences
- Integration of a sensorial system of a robot: Information, patterns
- High productivity and greater efficiency
- Safety-related considerations are regulated by ISO standards

Definition

Human-Robot Collaboration is the shared working environment of humans and robots, in which they can work and carry out tasks together in order to achieve goals.

The characteristics of HRC

Motivation and Introduction

Functionalit

KUKA Robot "LB

NA" Conc

References

- System requirements due to high risk potential:
 - Lightweight: Few kilograms of collision mass
 - Soft corners and edges
 - Slower than humans
 - Sensors to detect and avoid collision
- Protection mechanisms
 - Switching the robot off an on during physical contact

	Safety	2
	Coexistence	
Colla	aboration	
Fig. 1	- General control	architecture

cf. [1]

Working in an industrial environment

Motivation and Introduction

Before Industry 4.0

- Industry 1.0: First Mechanical Loom
- Industry 2.0: First Assembly Line
- Industry 3.0 First Programmable Logic Controller

Since Industry 4.0: Cyber-Physical Systems

- Motto: Smart Manufacturing
- Motivation: Mass Production
- Involved Technologies:
 - Internet of Things (IoT)
 - Cloud Computing
 - Big Data
 - Robotics and Artificial Intelligence (AI)

Definition

Industry 4.0 is the process of change in the industry through the striving of more flexible and more efficient manufacturing.

Working in an industrial environment

Motivation and Introduction

ot "LBR IIWA"

Referen

Before Industry 4.0

- Industry 1.0: First Mechanical Loom
- Industry 2.0: First Assembly Line
- Industry 3.0 First Programmable Logic Controller

Since Industry 4.0: Cyber-Physical Systems

- Motto: Smart Manufacturing
- Motivation: Mass Production
- Involved Technologies:
 - Internet of Things (IoT)
 - Cloud Computing
 - Big Data
 - Robotics and Artificial Intelligence (AI)

Definition

Industry 4.0 is the process of change in the industry through the striving of more flexible and more efficient manufacturing.

Collaborative operative modes of HRC

Motivation and Introduction

Functionalities of HRC

KUKA Robot "LBR III

onclusion

References

The Four Collaborative and Operative modes of HRC [2]

Speed between robot and human operator

KUKA Robot "LB

lusion

References

General calculation for minimum protective distance :

$$S(t_0) = S_h[v_h(t_0)] + S_r[v_r(t_0)] + S_s[v_s(t_0)] + C + Z_d + Z_r$$

$$S_h = \int_{t_0}^{t_0 + T_r + T_s} v_h(t) dt$$

$$S_r = \int_{t_0}^{t_0+T_r} v_r(t) dt$$

$$S_s = \int_{t_0+T_r}^{t_0+T_r+T_s} v_s(t) dt$$

Speed [2]

Speed between robot and human operator

Trend of separation distance

Robot programming approaches

Motivation and Introduction

KUKA Robot "LBR II

Conclusion

References

Programming approaches

- Lead through programming
- Off-line programming
- Walk-through programming
- Learning by demonstration
 Input modes

Gesture Recognition - Overview

Motivation and Introduction

Functionalities of HRC

KUKA Robot "LBR IIW/

Conclusion

References

\" Conclus

Reference

Sensors

- Image based: Marker, Depth Sensor, Stereo Camera
- ▶ Non-image based: Glove, Band, Non-wearable
- Gesture Identification
- Visual Features
- Learning Algorithms
- Human Model
- Gesture Tracking
- Single Hypothesis Tracking
- Advanced Tracking Method (Extended Model Tracking)
- Tracking by detection

Activation and Introduction

R IIWA" Co

Referen

Sensors

- Image based: Marker, Depth Sensor, Stereo Camera
- ▶ Non-image based: Glove, Band, Non-wearable

Gesture Identification

- Visual Features
- Learning Algorithms
- Human Model

Gesture Tracking

- Single Hypothesis Tracking
- Advanced Tracking Method (Extended Model Tracking)
- Tracking by detection

Gesture Recognition

Motivation and Introduction

\" Conclu

References

Sensors

- Image based: Marker, Depth Sensor, Stereo Camera
- ▶ Non-image based: Glove, Band, Non-wearable

Gesture Identification

- Visual Features
- Learning Algorithms
- Human Model

Gesture Tracking

- Single Hypothesis Tracking
- Advanced Tracking Method (Extended Model Tracking)
- Tracking by detection

Gesture Recognition - Gesture Classification

Motivation and Introduction

KUKA Robot "LBR I

Conclusion

References

- K-Nearest Neighbours (A)
- Hidden Markov Model (B)
- Ensemble Method (C)
- Deep Learning (D)

cf. [3]

Motivation and Introduction

- ▶ Author: C.A. Monje, P. Pierro, C.Balaguer
- Title: A New Approach on Human-Robot Collaboration with Humanoid Robot RH-2. Goal: Joint Transportation of an Object between Human and a Robot
- Publisher: Robotica
- Year: 2011
- Pages: 949 957

Model of humanoid robot RH-1 and RH-2

Motivation and Introduction

Functionalities of HRC

KUKA Robot "LBR III

Conclusion

References

Humanoid robot RH-1

Humanoid robot RH-2

cf. [6]

	Functionalities of HRC		

2 control Loops:

- Collaborative control loop
- Posture stability control loop

Implementation of HRC - Collaborative control loop

Functionalities of HRC

General control architecture cf. [6]

Implementation of HRC - Collaborative control loop

Motivation and Introduction

KUKA Robot "LBI

'A" Con

- Task 1: The end-effector of right and left arms should coincide in position and orientation
- Task 2: The end-effector must follow the desired trajectory angels

Model of single inverted pendulum

Implementation of HRC - Posture stability loop

Motivation and Introduction

Functionalities of HR

KUKA Robot '

BR IIWA"

Reference

The center of mass (COM) control problem and strategy

- Purpose: control the COM position
 - Innovative ankle actuator for the new prototype RH-2
 - Experimental transfer function of ankle actuator

- Control problem in an open loop must be solved
- Model matching technique is used

KUKA Robot "LBR IIWA"

Motivation and Introduction

Functionalities of H

KUKA Robot "LBR IIWA"

Conclusion

References

https://www.youtube.com/watch?time_c ontinue = 83v = sJBgEk96igk

Implementation of the KUKA Robot "LBR IIWA"

KUKA Robot "LBR IIWA'

- Configuration by programming
- Intuitive control enabled through Torque sensor
- Safe working environment
- 7 axes enable flexibility
- Technology: Java

Limitations and Challenges of HRC

- Whole-body control problem
- Intuitive user interface needs to be designed
- Need to distinct between safe coexistence and collaboration
- Acceptance of Robots in the Workplace
- Redesign of Workplaces for Robots

KUKA Robot "LBR IIWA"

Conclusion

References

Potential of HRC

- Precision
- Flexibility
- Globally used programming language
- ▶ New environment, same performance
- High level of Customization

References

Is HRC still part of the Industry 4.0 or already part of the Industry 5.0?

- Motto: Human-Robot Co-working
- Motivation: Smart Society
- Involved Technologies:
 - Human-Robot Collaboration

Motivation and Introduction

- L. Onnasch, X. Maier, T. Jühensohn. (2016) Mensch-Roboter-Interaktion - Eine Taxonomie für alle Anwendungsfälle. baua: Fokus. DOI:10.21934. p.4
- [2] V.Villani, F. Pini, F. Leali, C. Secchi. (2018) Survey on human-robot collaboration in industrial settings: Safety, intuitive interfaces and applications. Mechatronics 55.248-266. DOI: 10.1016
- [3] H. Liu, L. Wang. Gesture recognition for human-robot collaboration: A review (2018/11/12). International Journal of Industrial Ergonomics. DOI: -10.1016/j.ergon.2017.02.004. 355-367

References (cont.)

Motivation and Introduction

References

- [4] Khalid, A., Kirisci, P., Ghrairi, Z. (2016) A methodology to develop collaborative robotic cyber physical systems for production environments. Springer Berlin Heidelberg. DOI: 10.1007/s12159-016-0151-x.
- [5] Robla-Goméz, V. M. Becerra, J.R. LLATA, E. Genozález-Sarabia, C. Torre-Ferreiro, J. Pérez-Oria. (2018)
 "Working Together: A Review on Safe Human-Robot Collaboration in Industrial Environments". Vol. 5. 26765-26769. DOI: 10.1109/2773127. pp.26754-26755
- [6] C.A. Monje, P. Pierro, C.Balaguer. (2011) "A new approach on human-robot collaboration with humanoid robot RH-2", Robotica, 29, 949-957. doi: 0.1017/S026357471100018X.

References (cont.)

Motivation and Introduction

IIWA" C

References

- [7] KUKA Roboter GmbH. 2017. Sensitive robotics_LBR iiwa [brochure]. Retrieved November 20, 2019 from https://www.kuka.com/en-de/products/robotsystems/industrial-robots/lbr-iiwa. p. 13
- [8] S.Rolando Cruz-Ramírez, Y. Ishizuka, Y. Mae, T. Tukakubo and Tatsuo. (2008). "Dismantling Interior Facilities in Buildings by Human Robot Collaboration", 2008 IEE Internation Conference on Robotics and Automation, 2583-2590, pp. 2585.
- [9] Demir, K. A., Döven, G., Sezen, B. (2019). Industry 5.0 and Human-Robot Co-working. Procedia Computer Science, 158, 688-695.

MABI Speedy - Collaborative Robot (Welding)

Motivation and Introduction

Functionalities of I

KUKA Robot "LBR II

onclusion

References

https://www.youtube.com/watch?time_c ontinue = 50v = mbVIIdKTiO8 feature = embyogo

L.Schäfer – Human-Robot Collaboration in an industrial environment

MABI Speedy - Collaborative Robot (Welding)

Motivation and Introductior

Functionalitie

IRC KUK#

obot "LBR IIWA"

in Re

References

- Relief during unpleasant movements (e.g overhead movements)
- Improving performance and quality of life
- Technical Information
 - Load capacity: 6kg
 - Range in A5
 - Number of axes: 6