

MIN Faculty Department of Informatics

Flocking Navigation in Swarm Robotics

Jonas Hagge

University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems

18. November 2019

Swarm Robotics Motivation Swarm Robotics Motivation Navigation

2. Outdoor flocking and formation flight

Introduction Communication Algorithms Flocking and Formation

3. Results

Conclusion

Bibliography

Swarm Robotics

Introduction

Outdoor flocking and formation flight

- multiple autonomous robots
- non central coordination possible
- solve collective tasks
 [Bay16]

[rob]

Results

scalability

robustness

[CPD⁺18, MDSD16]

Use-Cases of Swarm Robotics

Introduction

- Warehouse delivery (carrying objects)
- search and rescue (distributed map building)
- agriculuture (distributed sensing)
- Military (distributed map building and sensing)
- Airspace coordination

[CPD+18]

Outdoor flocking and formation flig

Results

 each robot needs limited knowledge of environment
 group of animals is more effective for navigational tasks [DDWL08]

Real pigeons flying from R to H. [DDWL08]

Paper Title: Outdoor flocking and formation flight with autonomous aerial robots
published in: IROS 2014
Authors: G. Vásárhelyi, Cs. Virágh, G. Somorjai, N. Tarcai, T. Szörényi, T. Nepusz, T. Vicsek
"All authors are with the Department of Biological Physics, Eötvös University, Budapest, Hungary" [VVS⁺14]

Outdoor flocking and formation flight

- still problems with autonomous flight maneuvers for single drones
- other flock members have to be detected
- delay in detection/communication
- weather

Outdoor flocking and formation flight

Results

- GPS
- wireless communication
- using 10 Drones
- no central data processing unit [VVS⁺14]

The drone used for outdoor flocking and formation flight [VVS⁺14]

Outdoor flocking and formation flight

Middle range Velocity Alignment

Introduction

Outdoor flocking and formation flight

Middle range Velocity Alignment

Introduction

Outdoor flocking and formation flight

Global positional constraints

Outdoor flocking and formation flight

- Flocking
 - defined walls constrain movement
 - walls implemented as virtual agents
- Formation Flights
 - flying around global reference target
 - ► for grid: heuristic for smallest circle [VVS⁺14]

Result Tracklogs Rectangle

Introduction

Result Tracklogs Circle

Introduction

Outdoor flocking and formation fligh

Outdoor flocking and formation fligh

- other systems outputting these informations could work with the same algorithms
- simulations showed larger numbers would be possible
- oscillation time could be improved
- real time os could help with delays

[VVS⁺14]

[Bay16] Levent Bayındır. A review of swarm robotics tasks. *Neurocomputing*, 172:292–321, 2016.

[CPD⁺18] Soon-Jo Chung, Aditya Avinash Paranjape, Philip Dames, Shaojie Shen, and Vijay Kumar.
 A survey on aerial swarm robotics.
 IEEE Transactions on Robotics, 34(4):837–855, 2018.

[DDWL08] Gaia Dell'Ariccia, Giacomo Dell'Omo, David P Wolfer, and Hans-Peter Lipp. Flock flying improves pigeons' homing: Gps track analysis of individual flyers versus small groups. Animal Behaviour, 76(4):1165–1172, 2008.

[dro] Image of drone swarm.

https://spectrum.ieee.org/automaton/robotics/drones/

this-autonomous-quadrotor-swarm-doesnt-need-gps.

last accessed: 2019/11/12.

[MDSD16] Gupta Mamta, Saxena Devika, Kumari Sugandha, and Kaur Dawinder.

Issues and applications of swarm robotics. International Journal of Research in Engineering, Technology and Science, 6:1–5, 2016.

[rob]

Image of robocup.

https://guardian.ng/wp-content/uploads/2017/07/RoboCup.jpg.

[VVS⁺14] Gábor Vásárhelyi, Cs Virágh, Gergo Somorjai, Norbert Tarcai, Tamás Szörényi, Tamás Nepusz, and Tamás Vicsek.

Outdoor flocking and formation flight with autonomous aerial robots. In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 3866–3873. IEEE, 2014.

$$\begin{cases} a_{pot}^{\rightarrow i} = \\ -D \sum_{j \neq i} \min(r_1, r_0 - |x^{\rightarrow ij}|) \frac{x^{\rightarrow ij}}{|x^{\rightarrow ij}|} & \qquad if |x^{\rightarrow ij}| < r_0 \\ 0 \text{ otherwise} \end{cases}$$

 $D \rightarrow$ spring constant of a repulsive half-spring $x^{\rightarrow ij} = x^{\rightarrow j} - x^{\rightarrow i}$

 $r_0 \rightarrow$ equilibrium distance $r_1 \rightarrow$ upper treshold for repulsion $_{[VVS^+14]}$

Middle range Velocity Alignment

$$a_{slip}^{
ightarrow i} = C_{frict} \sum_{j
eq i} rac{v^{
ightarrow ij}}{(max(|x^{
ightarrow ij}| - (r_0 - r_2), r_1))^2}$$

$$C_{frict} \rightarrow$$
 viscous friction coefficient
 $v^{\rightarrow ij} = v^{\rightarrow j} - v^{\rightarrow i}$
 $r_0 \rightarrow$ equilibrium distance
 $r_2 \rightarrow$ constant slope around equilibrium distance
 $r_1 \rightarrow$ lower threshold
 $|VVS^+14|$