Image Segmentation with Gated Shape CNN for Autonomous Driving

Jeanine Liebold

Intelligent Robotics - 02.12.2019

Outline

- Motivation
- Fundamentals
- Gated Shape CNN
- Experiments
- Results
- Conclusion
- References

Motivation

- Image classification
- Object detection
- Image segmentation
 - pixel wise classifiction
 - shape

input image

segmentation map

segmentation overlay

background person

Motivation

Image Segmentation in 2015

[3]

Motivation

Ground-Truth

[2]

Fundamentals -Neural Networks

- Optimization problem
- All weights initialized randomly
- Loss is calculated (segmentation map/ground-truth)
- Weights optimized based on optimizer

x-input; w-weights; b-bias; y-output

Fundamentals -Convolutional Neural Networks

Fundamentals -CNN Image Classification

(a) Texture	image	
81.4%	Indian	elephant
10.3%	indri	
8.2%	black	swan

(b) Content image					
71.1%	tabby cat				
17.3%	grey fox				
3.3%	Siamese cat				

(c) Texture-shape cue conflict					
63.9%	Indian	elephant			
26.4%	indri				
9.6%	black	swan			

[5]

- Objects depending more on shape then on texture:
 - small
 - high distance

How to avoid noisy boundaries and loss of detail in high distances?

Gated Shape CNN

Title of Paper: "Gated-SCNN: Gated Shape CNNs for Semantic Segmentation"

Authors:

- Towaki Takikawa (NVIDIA)
- David Acuna (University of Waterloo)
- Varun Jampani (University of Toronto)
- Sanja Fidler (Vector Institute)
- Published: 12 July 2019, ICCV 2019

Gated Shape CNN -Approach

- Seperate color, texture and shape processing
- Information gets fused in very top layer
- New type of gates in architecture
- Cityscape dataset:

Gated Shape CNN -Architecture

Gated Shape CNN -Architecture

e.g. DeepLabV3+ (Google)

Gated Shape CNN -Architecture

Gated Shape CNN -Shape Stream

Gated Shape CNN -Shape Stream (Residual Block)

Conv: Convolution

BN: Batch Normalization

ReLu: Activation with Rectifier Linear Unit

Gated Shape CNN -Shape Stream (Gate)

Conv: Convolution

BN: Batch Normalization

ReLu: Activation with Rectifier Linear Unit

Conc: Concatenation

Gated Shape CNN -Output Gates 1-3

[1]

Gated Shape CNN -Output Shape Stream

input image

output shape stream

Gated Shape CNN -Dual Task Loss

[1]

- Combination of the two loss functions
 - semantic segmentation
 - boundary segmentation

Experiments

Segmentation mask

Boundaries of predicted segmentation masks

Experiments

- Distance based evaluation
- Mulitple crop factors

Crop Factor: 0

Crop Factor: 400

[1]

Results -Errors in Predictions

Results -Evaluation

- Baseline DeepLabV3+
- Evaluation Metrics
 - ► IoU = $\frac{TP}{TP+FP+FN}$ = intersection over union
 - F-score along the boundary

F-Score = 2*recall*precision recall+precision

> TP = true positive pixels FP = false positive pixels FN = false negative pixels

Results -Intersection over Union (IoU)

Method	pole	t-light	t-sign	person	rider	mean
LRR	58.6	68.2	72.0	81.6	60.0	69.7
DeepLabV2	49.6	57.9	67.3	79.8	59.8	70.4
Piecewise	51.1	65.0	71.7	81.5	61.1	71.6
PSP-Net	62.6	71.8	80.7	82.1	61.5	78.8
DeepLabV3+	65.2	68.6	78.9	82.3	62.8	78.8
Ours	70.8	75.9	83.1	85.3	67.9	80.8
	-					

[1]

Results -Boundary F-Score

Thrs	Method	pole	t-light	t-sign	person	rider	mean
12рх	DeepLabV3+	83.8	75.2	81.2	76.6	78.7	80.1
	Ours	87.1	82.3	84.4	80.4	82.8	81.8
9рх	DeepLabV3+	82.1	73.7	79.5	74.7	76.8	78.7
	Ours	86.1	81.5	83.3	79.1	81.5	80.7
5px	DeepLabV3+	77.9	69.0	74.7	69.0	71.9	74.7
	Ours	83.6	78.6	80.4	75.4	77.8	77.6
Зрх	DeepLabV3+	72.0	62.8	67.7	61.5	66.4	69.7
	Ours	79.6	74.3	76.2	69.8	73.1	73.6

[1]

Results -Different Crop Factors

Mean intersection over union (mIoU)

Conclusion

[1] GSCNN (2019)

[3] SegNet (2015)

How to avoid noisy boundaries and loss of detail in high distances?

Conclusion

[1] GSCNN (2019)

[3] SegNet (2015)

- Two-Stream CNN architecture leads to:
 - sharper predictions around object boundaries
 - a boosts performance on thinner and smaller objects
 - crop mechanisms showed improvement in high distance objects

References

[1] Towaki Takikawa, David Acuna, Varun Jampani, and SanjaFidler; Gated-SCNN: Gated Shape CNNs for semantic segmentation; ICCV 2019; <u>https://arxiv.org/pdf/1907.05740.pdf</u>, retrieved 29.11.2019

[2] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, Bernt Schiele; **The Cityscapes Dataset for Semantic Urban Scene Understanding**; CVPR 2016, <u>https://www.cityscapes-dataset.com/</u> retrieved 29.11.2019

[3] Vijay Badrinarayanan, Ankur Handa, Roberto Cipolla; SegNet: A Deep Convolutional Encoder-Decoder Architecture for Robust Semantic Pixel-Wise Labelling; CVPR 2015;

http://mi.eng.cam.ac.uk/projects/segnet/ retrieved 29.11.2019

[4] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian
Schroff, andHartwig Adam; Encoder-Decoder with Atrous
SeparableConvolution for Semantic Image Segmentation; ECCV
2018; <u>https://arxiv.org/pdf/1802.02611.pdf</u> retrieved 29.11.2019

References

[5] Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A. Wichmann, Wieland Brendel; ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness; ICLR 2019;

https://arxiv.org/pdf/1811.12231.pdf retrieved 28.11.2019

[6] Cat image: <u>https://www.cats.org.uk/media/2197/financial-assistance.jpg?width=1600</u>, retrieved 20.11.2019

[7] Dog/cat image: <u>https://i.pinimg.com/originals/1d/c9/ca/1dc9caf8c7ede4c33156bbc</u> <u>aa5edbaba.jpg</u> retrieved 20.11.2019

Github Gated Shape CNN: https://github.com/nv-tlabs/gscnn

Results

📀 NVIDIA.

GATED-SCNN

Gated Shape CNNs for Semantic Segmentation

Towaki Takikawa, David Acuna, Varun Jampani, Sanja Fidler

[1]