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1. Recommended Design Practices
This chapter provides design recommendations for Intel® FPGA devices. This chapter
also describes the Intel Quartus® Prime Design Assistant. The Design Assistant checks
your design for violations of Intel’s design recommendations

Current FPGA applications have reached the complexity and performance
requirements of ASICs. In the development of complex system designs, design
practices have an enormous impact on the timing performance, logic utilization, and
system reliability of a device. Well-coded designs behave in a predictable and reliable
manner even when retargeted to different families or speed grades. Good design
practices also aid in successful design migration between FPGA and ASIC
implementations for prototyping and production.

For optimal performance, reliability, and faster time-to-market when designing with
Intel FPGA devices, you should adhere to the following guidelines:

• Understand the impact of synchronous design practices

• Follow recommended design techniques, including hierarchical design partitioning,
and timing closure guidelines

• Take advantage of the architectural features in the targeted device

1.1. Following Synchronous FPGA Design Practices

The first step in good design methodology is to understand the implications of your
design practices and techniques. This section outlines the benefits of optimal
synchronous design practices and the hazards involved in other approaches.

Good synchronous design practices can help you meet your design goals consistently.
Problems with other design techniques can include reliance on propagation delays in a
device, which can lead to race conditions, incomplete timing analysis, and possible
glitches.

In a synchronous design, a clock signal triggers every event. If you ensure that all the
timing requirements of the registers are met, a synchronous design behaves in a
predictable and reliable manner for all process, voltage, and temperature (PVT)
conditions. You can easily migrate synchronous designs to different device families or
speed grades.

1.1.1. Implementing Synchronous Designs

In a synchronous design, the clock signal controls the activities of all inputs and
outputs.

On every active edge of the clock (usually the rising edge), the data inputs of registers
are sampled and transferred to outputs. Following an active clock edge, the outputs of
combinational logic feeding the data inputs of registers change values. This change
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triggers a period of instability due to propagation delays through the logic as the
signals go through several transitions and finally settle to new values. Changes that
occur on data inputs of registers do not affect the values of their outputs until after
the next active clock edge.

Because the internal circuitry of registers isolates data outputs from inputs, instability
in the combinational logic does not affect the operation of the design if you meet the
following timing requirements:

• Before an active clock edge, you must ensure that the data input has been stable
for at least the setup time of the register.

• After an active clock edge, you must ensure that the data input remains stable for
at least the hold time of the register.

When you specify all your clock frequencies and other timing requirements, the
Intel Quartus Prime Timing Analyzer reports actual hardware requirements for the
setup times (tSU) and hold times (tH) for every pin in your design. By meeting
these external pin requirements and following synchronous design techniques, you
ensure that you satisfy the setup and hold times for all registers in your device.

Tip: To meet setup and hold time requirements on all input pins, any inputs to
combinational logic that feed a register should have a synchronous
relationship with the clock of the register. If signals are asynchronous, you
can register the signals at the inputs of the device to help prevent a violation
of the required setup and hold times.

When you violate the setup or hold time of a register, you might oscillate the
output, or set the output to an intermediate voltage level between the high
and low levels called a metastable state. In this unstable state, small
perturbations such as noise in power rails can cause the register to assume
either the high or low voltage level, resulting in an unpredictable valid state.
Various undesirable effects can occur, including increased propagation delays
and incorrect output states. In some cases, the output can even oscillate
between the two valid states for a relatively long period of time.

1.1.2. Asynchronous Design Hazards

Asynchronous design techniques, such as ripple counters or pulse generators, can
work as “short cuts” to save device resources. However, asynchronous techniques
have inherent problems. For example, relying on propagation delays can result in
incomplete timing constraints and possible glitches and spikes, because propagation
delay varies with temperature and voltage fluctuations.

Asynchronous design structures that depend on the relative propagation delays can
present race conditions. Race conditions arise when the order of signal changes affect
the output of the logic. The same logic design can have varying timing delays with
each compilation, depending on placement and routing. The number of possible
variations make it impossible to determine the timing delay associated with a
particular block of logic. As devices become faster due to process improvements,
delays in asynchronous designs may decrease, resulting in designs that do not
function as expected. Relying on a particular delay also makes asynchronous designs
difficult to migrate to other architectures, devices, or speed grades.

1. Recommended Design Practices
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The timing of asynchronous design structures is often difficult or impossible to model
with timing assignments and constraints. If you do not have complete or accurate
timing constraints, the timing-driven algorithms that synthesis and place-and-route
tools use may not be able to perform the best optimizations, and the reported results
may be incomplete.

Additionally, asynchronous design structures can generate glitches, which are pulses
that are very short compared to clock periods. Combinational logic is the main cause
of glitches. When the inputs to the combinational logic change, the outputs exhibit
several glitches before settling to their new values. Glitches can propagate through
combinational logic, leading to incorrect values on the outputs in asynchronous
designs. In synchronous designs, glitches on register's data inputs have no negative
consequences, because data processing waits until the next clock edge.

1.2. HDL Design Guidelines

When designing with HDL code, consider how synthesis tools interpret different HDL
design techniques and what results to expect.

Design style can affect logic utilization and timing performance, as well as the design’s
reliability. This section describes basic design techniques that ensure optimal synthesis
results for designs that target Intel FPGA devices while avoiding common causes of
unreliability and instability. As a best practice, consider potential problems when
designing combinational logic, and pay attention to clocking schemes so that the
design maintains synchronous functionality and avoids timing issues.

1.2.1. Optimizing Combinational Logic

Combinational logic structures consist of logic functions that depend only on the
current state of the inputs. In Intel FPGAs, these functions are implemented in the
look-up tables (LUTs) with either logic elements (LEs) or adaptive logic modules
(ALMs).

For cases where combinational logic feeds registers, the register control signals can
implement part of the logic function to save LUT resources. By following the
recommendations in this section, you can improve the reliability of your combinational
design.

1.2.1.1. Avoid Combinational Loops

Combinational loops are among the most common causes of instability and
unreliability in digital designs. Combinational loops generally violate synchronous
design principles by establishing a direct feedback loop that contains no registers.

Avoid combinational loops whenever possible. In a synchronous design, feedback
loops should include registers. For example, a combinational loop occurs when the
left-hand side of an arithmetic expression also appears on the right-hand side in HDL
code. A combinational loop also occurs when you feed back the output of a register to
an asynchronous pin of the same register through combinational logic.

1. Recommended Design Practices
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Figure 1. Combinational Loop Through Asynchronous Control Pin

Logic

D Q

Tip: Use recovery and removal analysis to perform timing analysis on asynchronous ports,
such as clear or reset in the Intel Quartus Prime software.

Combinational loops are inherently high-risk design structures for the following
reasons:

• Combinational loop behavior generally depends on relative propagation delays
through the logic involved in the loop. As discussed, propagation delays can
change, which means the behavior of the loop is unpredictable.

• In many design tools, combinational loops can cause endless computation loops .
Most tools break open combinational loops to process the design. The various tools
used in the design flow may open a given loop differently, and process it in a way
inconsistent with the original design intent.

1.2.1.2. Avoid Unintended Latch Inference

Avoid using latches to ensure that you can completely analyze the timing performance
and reliability of your design. A latch is a small circuit with combinational feedback
that holds a value until a new value is assigned. You can implement latches with the
Intel Quartus Prime Text Editor or Block Editor.

A common mistake in HDL code is unintended latch inference; Intel Quartus Prime
Synthesis issues a warning message if this occurs. Unlike other technologies, a latch in
FPGA architecture is not significantly smaller than a register. However, the architecture
is not optimized for latch implementation and latches generally have slower timing
performance compared to equivalent registered circuitry.

Latches have a transparent mode in which data flows continuously from input to
output. A positive latch is in transparent mode when the enable signal is high (low for
a negative latch). In transparent mode, glitches on the input can pass through to the
output because of the direct path created. This presents significant complexity for
timing analysis. Typical latch schemes use multiple enable phases to prevent long
transparent paths from occurring. However, timing analysis cannot identify these safe
applications.

The Timing Analyzer analyzes latches as synchronous elements clocked on the falling
edge of the positive latch signal by default. It allows you to treat latches as having
nontransparent start and end points. Be aware that even an instantaneous transition
through transparent mode can lead to glitch propagation. The Timing Analyzer cannot
perform cycle-borrowing analysis.

Due to various timing complexities, latches have limited support in formal verification
tools. Therefore, you should not rely on formal verification for a design that includes
latches.

1. Recommended Design Practices
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Related Information

Avoid Unintentional Latch Generation on page 71

1.2.1.3. Avoid Delay Chains in Clock Paths

Delays in PLD designs can change with each placement and routing cycle. Effects such
as rise and fall time differences and on-chip variation mean that delay chains,
especially those placed on clock paths, can cause significant problems in your design.
Avoid using delay chains to prevent these kinds of problems.

You require delay chains when you use two or more consecutive nodes with a single
fan-in and a single fan-out to cause delay. Inverters are often chained together to add
delay. Delay chains are sometimes used to resolve race conditions created by other
asynchronous design practices.

In some ASIC designs, delays are used for buffering signals as they are routed around
the device. This functionality is not required in FPGA devices because the routing
structure provides buffers throughout the device.

1.2.1.4. Use Synchronous Pulse Generators

Use synchronous techniques to design pulse generators.

Figure 2. Asynchronous Pulse Generators
The figure shows two methods for asynchronous pulse generation. The first method uses a delay chain to
generate a single pulse (pulse generator). The second method generates a series of pulses (multivibrators).

Trigger

Pulse Trigger
Pulse

Clock

Using an AND Gate Using a Register

In the first method, a trigger signal feeds both inputs of a 2-input AND gate, and the
design adds inverters to one of the inputs to create a delay chain. The width of the
pulse depends on the time differences between the path that feeds the gate directly
and the path that goes through the delay chain. This is the same mechanism
responsible for the generation of glitches in combinational logic following a change of
input values. This technique artificially increases the width of the glitch.

In the second method, a register’s output drives its asynchronous reset signal through
a delay chain. The register resets itself asynchronously after a certain delay. The
Compiler can determine the pulse width only after placement and routing, when
routing and propagation delays are known. You cannot reliably create a specific pulse
width when creating HDL code, and it cannot be set by EDA tools. The pulse may not
be wide enough for the application under all PVT conditions. Also, the pulse width
changes if you change to a different device. Additionally, verification is difficult
because static timing analysis cannot verify the pulse width.

Multivibrators use a glitch generator to create pulses, together with a combinational
loop that turns the circuit into an oscillator. This method creates additional problems
because of the number of pulses involved. Additionally, when the structures generate
multiple pulses, they also create a new artificial clock in the design that must be
analyzed by design tools.

1. Recommended Design Practices
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Figure 3. Recommended Synchronous Pulse-Generation Technique

Trigger Signal

Clock

Pulse

The pulse width is always equal to the clock period. This pulse generator is
predictable, can be verified with timing analysis, and is easily moved to other
architectures, devices, or speed grades.

1.2.2. Optimizing Clocking Schemes

Like combinational logic, clocking schemes have a large effect on the performance and
reliability of a design.

Avoid using internally generated clocks (other than PLLs) wherever possible because
they can cause functional and timing problems in the design. Clocks generated with
combinational logic can introduce glitches that create functional problems, and the
delay inherent in combinational logic can lead to timing problems.

Tip: Specify all clock relationships in the Intel Quartus Prime software to allow for the best
timing-driven optimizations during fitting and to allow correct timing analysis. Use
clock setting assignments on any derived or internal clocks to specify their relationship
to the base clock.

Use global device-wide, low-skew dedicated routing for all internally-generated clocks,
instead of routing clocks on regular routing lines.

Avoid data transfers between different clocks wherever possible. If you require a data
transfer between different clocks, use FIFO circuitry. You can use the clock uncertainty
features in the Intel Quartus Prime software to compensate for the variable delays
between clock domains. Consider setting a clock setup uncertainty and clock hold
uncertainty value of 10% to 15% of the clock delay.

The following sections provide specific examples and recommendations for avoiding
clocking scheme problems.

1.2.2.1. Register Combinational Logic Outputs

If you use the output from combinational logic as a clock signal or as an asynchronous
reset signal, you can expect to see glitches in your design. In a synchronous design,
glitches on data inputs of registers are normal events that have no consequences.
However, a glitch or a spike on the clock input (or an asynchronous input) to a register
can have significant consequences.

Narrow glitches can violate the register’s minimum pulse width requirements. Setup
and hold requirements might also be violated if the data input of the register changes
when a glitch reaches the clock input. Even if the design does not violate timing
requirements, the register output can change value unexpectedly and cause functional
hazards elsewhere in the design.

1. Recommended Design Practices
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To avoid these problems, you should always register the output of combinational logic
before you use it as a clock signal.

Figure 4. Recommended Clock-Generation Technique

D Q
Internally Generated Clock

Routed on Global Clock Resource

D Q D Q

D Q
Clock 

Generation
Logic

Registering the output of combinational logic ensures that glitches generated by the
combinational logic are blocked at the data input of the register.

1.2.2.2. Avoid Asynchronous Clock Division

Designs often require clocks that you create by dividing a master clock. Most Intel
FPGAs provide dedicated phase-locked loop (PLL) circuitry for clock division. Using
dedicated PLL circuitry can help you avoid many of the problems that can be
introduced by asynchronous clock division logic.

When you must use logic to divide a master clock, always use synchronous counters
or state machines. Additionally, create your design so that registers always directly
generate divided clock signals, and route the clock on global clock resources. To avoid
glitches, do not decode the outputs of a counter or a state machine to generate clock
signals.

1.2.2.3. Avoid Ripple Counters

To simplify verification, avoid ripple counters in your design. In the past, FPGA
designers implemented ripple counters to divide clocks by a power of two because the
counters are easy to design and may use fewer gates than their synchronous
counterparts.

Ripple counters use cascaded registers, in which the output pin of one register feeds
the clock pin of the register in the next stage. This cascading can cause problems
because the counter creates a ripple clock at each stage. These ripple clocks must be
handled properly during timing analysis, which can be difficult and may require you to
make complicated timing assignments in your synthesis and placement and routing
tools.

You can often use ripple clock structures to make ripple counters out of the smallest
amount of logic possible. However, in all Intel devices supported by the Intel Quartus
Prime software, using a ripple clock structure to reduce the amount of logic used for a
counter is unnecessary because the device allows you to construct a counter using one
logic element per counter bit. You should avoid using ripple counters completely.

1.2.2.4. Use Multiplexed Clocks

Use clock multiplexing to operate the same logic function with different clock sources.
In these designs, multiplexing selects a clock source.

1. Recommended Design Practices
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For example, telecommunications applications that deal with multiple frequency
standards often use multiplexed clocks.

Figure 5. Multiplexing Logic and Clock Sources

Clock 1
Multiplexed Clock Routed 
on Global Clock Resource

Clock 2

Select Signal

D Q

D Q

D Q

Adding multiplexing logic to the clock signal can create the problems addressed in the
previous sections, but requirements for multiplexed clocks vary widely, depending on
the application. Clock multiplexing is acceptable when the clock signal uses global
clock routing resources and if the following criteria are met:

• The clock multiplexing logic does not change after initial configuration

• The design uses multiplexing logic to select a clock for testing purposes

• Registers are always reset when the clock switches

• A temporarily incorrect response following clock switching has no negative
consequences

If the design switches clocks in real time with no reset signal, and your design cannot
tolerate a temporarily incorrect response, you must use a synchronous design so that
there are no timing violations on the registers, no glitches on clock signals, and no
race conditions or other logical problems. By default, the Intel Quartus Prime software
optimizes and analyzes all possible paths through the multiplexer and between both
internal clocks that may come from the multiplexer. This may lead to more restrictive
analysis than required if the multiplexer is always selecting one particular clock. If you
do not require the more complete analysis, you can assign the output of the
multiplexer as a base clock in the Intel Quartus Prime software, so that all register-to-
register paths are analyzed using that clock.

Tip: Use dedicated hardware to perform clock multiplexing when it is available, instead of
using multiplexing logic. For example, you can use the clock-switchover feature or
clock control block available in certain Intel FPGA devices. These dedicated hardware
blocks ensure that you use global low-skew routing lines and avoid any possible hold
time problems on the device due to logic delay on the clock line.

Note: For device-specific information about clocking structures, refer to the appropriate
device data sheet or handbook on the Literature page of the Altera website.

1. Recommended Design Practices
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1.2.2.5. Use Gated Clocks

Gated clocks turn a clock signal on and off using an enable signal that controls gating
circuitry. When a clock is turned off, the corresponding clock domain is shut down and
becomes functionally inactive.

Figure 6. Gated Clock

Clock

Gated Clock

D Q D Q

Gating Signal

You can use gated clocks to reduce power consumption in some device architectures
by effectively shutting down portions of a digital circuit when they are not in use.
When a clock is gated, both the clock network and the registers driven by it stop
toggling, thereby eliminating their contributions to power consumption. However,
gated clocks are not part of a synchronous scheme and therefore can significantly
increase the effort required for design implementation and verification. Gated clocks
contribute to clock skew and make device migration difficult. These clocks are also
sensitive to glitches, which can cause design failure.

Use dedicated hardware to perform clock gating rather than an AND or OR gate. For
example, you can use the clock control block in newer Intel FPGA devices to shut
down an entire clock network. Dedicated hardware blocks ensure that you use global
routing with low skew, and avoid any possible hold time problems on the device due to
logic delay on the clock line.

From a functional point of view, you can shut down a clock domain in a purely
synchronous manner using a synchronous clock enable signal. However, when using a
synchronous clock enable scheme, the clock network continues toggling. This practice
does not reduce power consumption as much as gating the clock at the source does.
In most cases, use a synchronous scheme.

1.2.2.5.1. Recommended Clock-Gating Methods

Use gated clocks only when your target application requires power reduction and
gated clocks provide the required reduction in your device architecture. If you must
use clocks gated by logic, follow a robust clock-gating methodology and ensure the
gated clock signal uses dedicated global clock routing.

You can gate a clock signal at the source of the clock network, at each register, or
somewhere in between. Since the clock network contributes to switching power
consumption, gate the clock at the source whenever possible to shut down the entire
clock network instead of further along.
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Figure 7. Recommended Clock-Gating Technique for Clock Active on Rising Edge
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To generate a gated clock with the recommended technique, use a register that
triggers on the inactive edge of the clock. With this configuration, only one input of
the gate changes at a time, preventing glitches or spikes on the output. If the clock is
active on the rising edge, use an AND gate. Conversely, for a clock that is active on
the falling edge, use an OR gate to gate the clock and register

Pay attention to the delay through the logic generating the enable signal, because the
enable command must be ready in less than one-half the clock cycle. This might cause
problems if the logic that generates the enable command is particularly complex, or if
the duty cycle of the clock is severely unbalanced. However, careful management of
the duty cycle and logic delay may be an acceptable solution when compared with
problems created by other methods of gating clocks.

In the Timing Analyzer, ensure to apply a clock setting to the output of the AND gate.
Otherwise, the timing analyzer might analyze the circuit using the clock path through
the register as the longest clock path and the path that skips the register as the
shortest clock path, resulting in artificial clock skew.

In certain cases, converting the gated clocks to clock enable pins may help reduce
glitch and clock skew, and eventually produce a more accurate timing analysis. You
can set the Intel Quartus Prime software to automatically convert gated clocks to clock
enable pins by turning on the Auto Gated Clock Conversion option. The conversion
applies to two types of gated clocking schemes: single-gated clock and cascaded-
gated clock.

Related Information

Auto Gated Clock Conversion logic option
In Intel Quartus Prime Help

1.2.2.6. Use Synchronous Clock Enables

To turn off a clock domain in a synchronous manner, use a synchronous clock enable
signal. FPGAs efficiently support clock enable signals because there is a dedicated
clock enable signal available on all device registers.

This scheme does not reduce power consumption as much as gating the clock at the
source because the clock network keeps toggling, and performs the same function as
a gated clock by disabling a set of registers. Insert a multiplexer in front of the data
input of every register to either load new data, or copy the output of the register.

1. Recommended Design Practices

UG-20175 | 2018.09.24

Send Feedback Intel Quartus Prime Standard Edition User Guide: Design Recommendations

13

http://quartushelp.altera.com/current/#logicops/logicops/def_synth_gated_clock_conversion.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(UG-20175%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 8. Synchronous Clock Enable
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1.2.3. Optimizing Physical Implementation and Timing Closure

This section provides design and timing closure techniques for high speed or complex
core logic designs with challenging timing requirements. These techniques may also
be helpful for low or medium speed designs.

1.2.3.1. Planning Physical Implementation

When planning a design, consider the following elements of physical implementation:

• The number of unique clock domains and their relationships

• The amount of logic in each functional block

• The location and direction of data flow between blocks

• How data routes to the functional blocks between I/O interfaces

Interface-wide control or status signals may have competing or opposing constraints.
For example, when a functional block's control or status signals interface with physical
channels from both sides of the device. In such cases you must provide enough
pipeline register stages to allow these signals to traverse the width of the device. In
addition, you can structure the hierarchy of the design into separate logic modules for
each side of the device. The side modules can generate and use registered control
signals per side. This simplifies floorplanning, particularly in designs with transceivers,
by placing per-side logic near the transceivers.

When adding register stages to pipeline control signals, turn off Auto Shift Register
Replacement in the Assignment Editor (Assignments ➤ Assignment Editor) for
each register as needed. By default, chains of registers can be converted to a RAM-
based implementation based on performance and resource estimates. Since pipelining
helps meet timing requirements over long distance, this assignment ensures that
control signals are not converted.

1.2.3.2. Planning FPGA Resources

Your design requirements impact the use of FPGA resources. Plan functional blocks
with appropriate global, regional, and dual-regional network signals in mind.

In general, after allocating the clocks in a design, use global networks for the highest
fan-out control signals. When a global network signal distributes a high fan-out control
signal, the global signal can drive logic anywhere in the device. Similarly, when using
a regional network signal, the driven logic must be in one quadrant of the device, or
half the device for a dual-regional network signal. Depending on data flow and
physical locations of the data entry and exit between the I/Os and the device,
restricting a functional block to a quadrant or half the device may not be practical for
performance or resource requirements.
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When floorplanning a design, consider the balance of different types of device
resources, such as memory, logic, and DSP blocks in the main functional blocks. For
example, if a design is memory intensive with a small amount of logic, it may be
difficult to develop an effective floorplan. Logic that interfaces with the memory would
have to spread across the chip to access the memory. In this case, it is important to
use enough register stages in the data and control paths to allow signals to traverse
the chip to access the physically disparate resources needed.

1.2.3.3. Optimizing for Timing Closure

To achieve timing closure for your design, you can enable compilation settings in the
Intel Quartus Prime software, or you can directly modify your timing constraints.

Compilation Settings for Timing Closure

Note: Changes in project settings can significantly increase compilation time. You can view
the performance gain versus runtime cost by reviewing the Fitter messages after
design processing.

Table 1. Compilation Settings that Impact Timing Closure

Setting Location Effect on Timing Closure

Perform Physical Synthesis
for Combinational logic for
Performance

Assignments ➤ Settings ➤
Compiler Settings ➤
Advanced Settings (Fitter)

If enabled, the Netlist Optimization report panel
identifies logic that physical synthesis can modify. You
can use this information to modify the design so that
the associated optimization can be turned off to save
compile time.

Allow Register Duplication Assignments ➤ Settings ➤
Compiler Settings ➤
Advanced Settings (Fitter)

This technique is most useful where registers have
high fan-out, or where the fan-out is in physically
distant areas of the device.
Review the netlist optimizations report and consider
manually duplicating registers automatically added by
physical synthesis. You can also locate the original and
duplicate registers in the Chip Planner. Compare their
locations, and if the fan-out is improved, modify the
code and turn off register duplication to save compile
time.

Prevent Register Retiming Assignments ➤ Settings ➤
Compiler Settings

Useful if some combinatorial paths between registers
exceed the timing goal while other paths fall short.
If a design is already heavily pipelined, register
retiming is less likely to provide significant
performance gains, since there should not be
significantly unbalanced levels of logic across pipeline
stages.
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Guidelines for Optimizing Timing Closure using Timing Constraints

Appropriate timing constraints are essential to achieving timing closure. Use the
following general guidelines in applying timing constraints:

• Apply multicycle constraints in your design wherever single-cycle timing analysis is
not necessary.

• Apply False Path constraints to all asynchronous clock domain crossings or resets
in the design. This technique prevents overconstraining and the Fitter focuses only
on critical paths to reduce compile time. However, overconstraining timing critical
clock domains can sometimes provide better timing results and lower compile
times than physical synthesis.

• Overconstrain rather than using physical synthesis when the slack improvement
from physical synthesis is near zero. Overconstrain the frequency requirement on
timing critical clock domains by using setup uncertainty.

• When evaluating the effect of constraint changes on performance and runtime,
compile the design with at least three different seeds to determine the average
performance and runtime effects. Different constraint combinations produce
various results. Three samples or more establish a performance trend. Modify your
constraints based on performance improvement or decline.

• Leave settings at the default value whenever possible. Increasing performance
constraints can increase the compile time significantly. While those increases may
be necessary to close timing on a design, using the default settings whenever
possible minimizes compile time.

Related Information

Design Evaluation for Timing Closure
In Intel Quartus Prime Standard Edition Handbook Volume 2

1.2.3.4. Optimizing Critical Timing Paths

To close timing in high speed designs, review paths with the largest timing failures.
Correcting a single, large timing failure can result in a very significant timing
improvement.

Review the register placement and routing paths by clicking Tools ➤ Chip Planner.
Large timing failures on high fan-out control signals can be caused by any of the
following conditions:

• Sub-optimal use of global networks

• Signals that traverse the chip on local routing without pipelining

• Failure to correct high fan-out by register duplication

For high-speed and high-bandwidth designs, optimize speed by reducing bus width
and wire usage. To reduce wire usage, move the data as little as possible. For
example, if a block of logic functions on a few bits of a word, store inactive bits in a
FIFO or memory. Memory is cheaper and denser than registers, and reduces wire
usage.

Related Information

Exploring Paths in the Chip Planner
In Intel Quartus Prime Standard Edition Handbook Volume 2

1. Recommended Design Practices

UG-20175 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

16

https://www.intel.com/content/www/us/en/programmable/documentation/mwh1410471376527.html#mwh1410471229890
https://www.intel.com/content/www/us/en/programmable/documentation/mwh1410471376527.html#mwh1410471320677
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(UG-20175%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


1.2.4. Optimizing Power Consumption

The total FPGA power consumption is comprised of I/O power, core static power, and
core dynamic power. Knowledge of the relationship between these components is
fundamental in calculating the overall total power consumption.

You can use various optimization techniques and tools to minimize power consumption
when applied during FPGA design implementation. The Intel Quartus Prime software
offers power-driven compilation features to fully optimize device power consumption.
Power-driven compilation focuses on reducing your design’s total power consumption
using power-driven synthesis and power-driven placement and routing.

Related Information

Power Optimization
In Intel Quartus Prime Standard Edition Handbook Volume 2

1.2.5. Managing Design Metastability

In FPGA designs, synchronization of asynchronous signals can cause metastability. You
can use the Intel Quartus Prime software to analyze the mean time between failures
(MTBF) due to metastability. A high metastability MTBF indicates a more robust
design.

Related Information

• Managing Metastability with the Intel Quartus Prime Software on page 94

• Metastability Analysis and Optimization Techniques
In Intel Quartus Prime Standard Edition Handbook Volume 2

1.3. Checking Design Violations

To improve the reliability, timing performance, and logic utilization of your design,
avoid design rule violations. The Intel Quartus Prime software provides the Design
Assistant tool that automatically checks for design rule violations and reports their
location. The Design Assistant is supported only in the Quartus Prime Standard Edition
software. The Design Assistant does not support Intel Arria® 10 or MAX 10 devices.

The Design Assistant is a design rule checking tool that allows you to check for design
issues early in the design flow. The Design Assistant checks your design for adherence
to Intel-recommended design guidelines. You can specify which rules you want the
Design Assistant to apply to your design. This is useful if you know that your design
violates particular rules that are not critical and you can allow these rule violations.
The Design Assistant generates design violation reports with details about each
violation based on the settings that you specified.

This section provides an introduction to the Intel Quartus Prime design flow with the
Design Assistant, message severity levels, and an explanation about how to set up the
Design Assistant. The last parts of the section describe the design rules and the
reports generated by the Design Assistant.

1.3.1. Validating Against Design Rules

You can run the Design Assistant following design synthesis or compilation. The
Design Assistant performs a post-fit netlist analysis of your design.
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The default is to apply all the rules to your project. If there are some rules that are
unimportant to your design, you can turn off the rules that you do not want the
Design Assistant to use.
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Figure 9. Intel Quartus Prime Design Flow with the Design Assistant
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1. Database of the default rules for the Design Assistant.

2. A file that contains the .xml codes of the custom rules for the Design Assistant.
For more details about how to create this file .

The Design Assistant analyzes your design netlist at different stages of the
compilation flow and may yield different warnings or errors, even though the
netlists are functionally the same. Your pre-synthesis, post-synthesis, and post-
fitting netlists might be different due to optimizations performed by the Intel
Quartus Prime software. For example, a warning message in a pre-synthesis
netlist may be removed after the netlist has been synthesized into a post-
synthesis or post-fitting netlist.

The exact operation of the Design Assistant depends on when you run it:

• When you run the Design Assistant after running a full compilation or fitting, the
Design Assistant performs a post-fitting analysis on the design.

• When you run the Design Assistant after performing Analysis and Synthesis, the
Design Assistant performs post-synthesis analysis on the design.

• When you start the Design Assistant after performing Analysis and Elaboration,
the Design Assistant performs a pre-synthesis analysis on the design. You can also
perform pre-synthesis analysis with the Design Assistant using the command-line.
You can use the -rtl option with the quartus_drc executable, as shown in the
following example:

quartus_drc <project_name> --rtl=on

If your design violates a design rule, the Design Assistant generates warning
messages and information messages about the violated rule. The Design Assistant
displays these messages in the Messages window, in the Design Assistant
Messages report, and in the Design Assistant report files. You can find the Design
Assistant report files called <project_name>.drc.rpt in the <project_name>
subdirectory of the project directory.
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1.3.2. Creating Custom Design Rules

You can define and validate your design against your own custom set of design rules.
You can save these rules in a text file (with any file extension) with the XML format.

You then specify the path to that file in the Design Assistant settings page and run the
Design Assistant for violation checking.

Refer to the following location to locate the file that contains the default rules for the
Design Assistant:

<Intel Quartus Prime install path>\quartus\libraries\design-assistant
\da_golden_rule.xml

1.3.2.1. Custom Design Rule Examples

The following examples of custom rules show how to check node relationships and
clock relationships in a design.

This example shows the XML codes for checking SR latch structures in a design.

Example 1. Detecting SR Latches in a Design

<DA_RULE ID="EX01" SEVERITY="CRITICAL" NAME="Checking Design for SR Latch" 
DEFAULT_RUN="YES">
<RULE_DEFINITION>
   <FORBID>
   <OR>
      <NODE NAME="NODE_1" TYPE="SRLATCH" />
      <HAS_NODE NODE_LIST="NODE_1" />
      <NODE NAME="NODE_1" TOTAL_FANIN="EQ2" /> 
      <NODE NAME="NODE_2" TOTAL_FANIN="EQ2" />
      <AND>
         <NODE_RELATIONSHIP FROM_NAME="NODE_1" FROM_TYPE="NAND" 
TO_NAME="NODE_2" TO_TYPE="NAND" /> 
         <NODE_RELATIONSHIP FROM_NAME="NODE_2" FROM_TYPE="NAND" 
TO_NAME="NODE_1" TO_TYPE="NAND" /> 
      </AND>
      <AND>
         <NODE_RELATIONSHIP FROM_NAME="NODE_1" FROM_TYPE="NOR" 
TO_NAME="NODE_2" TO_TYPE="NOR" /> 
         <NODE_RELATIONSHIP FROM_NAME="NODE_2" FROM_TYPE="NOR" 
TO_NAME="NODE_1" TO_TYPE="NOR" /> 
      </AND>
      </OR>
   </FORBID>
</RULE_DEFINITION>

<REPORTING_ROOT>
   <MESSAGE NAME="Rule %ARG1%: Found %ARG2% node(s) related to this rule.">
      <MESSAGE_ARGUMENT NAME="ARG1" TYPE="ATTRIBUTE" VALUE="ID" /> 
      <MESSAGE_ARGUMENT NAME="ARG2" TYPE="TOTAL_NODE" VALUE="NODE_1" /> 
   </MESSAGE>
</REPORTING_ROOT>
</DA_RULE>

The possible SR latch structures are specified in the rule definition section. Codes
defined in the <AND></AND> block are tied together, meaning that each statement in
the block must be true for the block to be fulfilled (AND gate similarity). In the
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<OR></OR> block, as long as one statement in the block is true, the block is fulfilled
(OR gate similarity). If no <AND></AND> or <OR></OR> blocks are specified, the
default is <AND></AND>.

The <FORBID></FORBID> section contains the undesirable condition for the design,
which in this case is the SR latch structures. If the condition is fulfilled, the Design
Assistant highlights a rule violation.

Example 2. Detecting SR Latches in a Design

<AND>
  <NODE_RELATIONSHIP FROM_NAME="NODE_1" FROM_TYPE="NAND" TO_NAME="NODE_2"
   TO_TYPE="NAND" /> 
  <NODE_RELATIONSHIP FROM_NAME="NODE_2" FROM_TYPE="NAND" TO_NAME="NODE_1"
   TO_TYPE="NAND" />
</AND>

Figure 10. Undesired Condition 1

NAND2

NODE_1

NAND2

NODE_2

<AND>
 <NODE_RELATIONSHIP FROM_NAME="NODE_1" FROM_TYPE="NOR" TO_NAME="NODE_2" 
TO_TYPE="NOR" />
 <NODE_RELATIONSHIP FROM_NAME="NODE_2" FROM_TYPE="NOR" TO_NAME="NODE_1" 
TO_TYPE="NOR" />
</AND>
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Figure 11. Undesired Condition 2
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This example shows how to use the CLOCK_RELATIONSHIP attribute to relate nodes
to clock domains. This example checks for correct synchronization in data transfer
between asynchronous clock domains. Synchronization is done with cascaded
registers, also called synchronizers, at the receiving clock domain. The code in This
example checks for the synchronizer configuration based on the following guidelines:

• The cascading registers need to be triggered on the same clock edge

• There is no logic between the register output of the transmitting clock domain and
the cascaded registers in the receiving asynchronous clock domain.

Example 3. Detecting Incorrect Synchronizer Configuration

<DA_RULE ID="EX02" SEVERITY="HIGH" NAME="Data Transfer Not Synch Correctly" 
DEFAULT_RUN="YES">

<RULE_DEFINITION>
<DECLARE>
   <NODE NAME="NODE_1" TYPE="REG" /> 
   <NODE NAME="NODE_2" TYPE="REG" /> 
   <NODE NAME="NODE_3" TYPE="REG" /> 
</DECLARE>
<FORBID>
   <NODE_RELATIONSHIP FROM_NAME="NODE_1" TO_NAME="NODE_2" TO_PORT="D_PORT" 
CLOCK_RELATIONSHIP="ASYN" /> 
   <NODE_RELATIONSHIP FROM_NAME="NODE_2" TO_NAME="NODE_3" TO_PORT="D_PORT" 
CLOCK_RELATIONSHIP="!ASYN" /> 
   <OR>
      <NODE_RELATIONSHIP FROM_NAME="NODE_1" TO_NAME="NODE_2" TO_PORT="D_PORT" 
REQUIRED_THROUGH="YES" THROUGH_TYPE="COMB" CLOCK_RELATIONSHIP="ASYN" /> 
      <CLOCK_RELATIONSHIP NAME="SEQ_EDGE|ASYN" NODE_LIST="NODE_2, NODE_3" /> 
   </OR>
</FORBID>
</RULE_DEFINITION>

<REPORTING_ROOT>
<MESSAGE NAME="Rule %ARG1%: Found %ARG2% node(s) related to this rule.">
   <MESSAGE_ARGUMENT NAME="ARG1" TYPE="ATTRIBUTE" VALUE="ID" /> 
   <MESSAGE_ARGUMENT NAME="ARG2" TYPE="TOTAL_NODE" VALUE="NODE_1" /> 
   <MESSAGE NAME="Source node(s): %ARG3%, Destination node(s): %ARG4%">
      <MESSAGE_ARGUMENT NAME="ARG3" TYPE="NODE" VALUE="NODE_1" />
      <MESSAGE_ARGUMENT NAME="ARG4" TYPE="NODE" VALUE="NODE_2" />
   </MESSAGE>
</MESSAGE>
</REPORTING_ROOT>
</DA_RULE>
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The codes differentiate the clock domains. ASYN means asynchronous, and !ASYN
means non-asynchronous. This notation is useful for describing nodes that are in
different clock domains. The following lines from the example state that NODE_2 and
NODE_3 are in the same clock domain, but NODE_1 is not.

<NODE_RELATIONSHIP FROM_NAME="NODE_1" TO_NAME="NODE_2" TO_PORT="D_PORT" 
CLOCK_RELATIONSHIP="ASYN" /> 

<NODE_RELATIONSHIP FROM_NAME="NODE_2" TO_NAME="NODE_3" TO_PORT="D_PORT" 
CLOCK_RELATIONSHIP="!ASYN" />

The next line of code states that NODE_2 and NODE_3 have a clock relationship of
either sequential edge or asynchronous.

<CLOCK_RELATIONSHIP NAME="SEQ_EDGE|ASYN" NODE_LIST="NODE_2, NODE_3" />

The <FORBID></FORBID> section contains the undesirable condition for the design,
which in this case is the undesired configuration of the synchronizer. If the condition is
fulfilled, the Design Assistant highlights a rule violation.

The possible SR latch structures are specified in the rule definition section. Codes
defined in the <AND></AND> block are tied together, meaning that each statement in
the block must be true for the block to be fulfilled (AND gate similarity). In the
<OR></OR> block, as long as one statement in the block is true, the block is fulfilled
(OR gate similarity). If no <AND></AND> or <OR></OR> blocks are specified, the
default is <AND></AND>.

The <FORBID></FORBID> section contains the undesirable condition for the design,
which in this case is the SR latch structures. If the condition is fulfilled, the Design
Assistant highlights a rule violation.

The following examples show the undesired conditions from with their equivalent block
diagrams:

Example 4. Undesired Condition 3

<NODE_RELATIONSHIP FROM_NAME="NODE_1" TO_NAME="NODE_2" TO_PORT="D_PORT" 
CLOCK_RELATIONSHIP="ASYN" /> 

<NODE_RELATIONSHIP FROM_NAME="NODE_2" TO_NAME="NODE_3" TO_PORT="D_PORT" 
CLOCK_RELATIONSHIP="!ASYN" /> 

<NODE_RELATIONSHIP FROM_NAME="NODE_1" TO_NAME="NODE_2" TO_PORT="D_PORT" 
REQUIRED_THROUGH="YES" 
   THROUGH_TYPE="COMB" CLOCK_RELATIONSHIP="ASYN" />

Figure 12. Undesired Condition 3
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Example 5. Undesired Condition 4

<NODE_RELATIONSHIP FROM_NAME="NODE_1" TO_NAME="NODE_2" TO_PORT="D_PORT" 
CLOCK_RELATIONSHIP="ASYN" />

<NODE_RELATIONSHIP FROM_NAME="NODE_2" TO_NAME="NODE_3" TO_PORT="D_PORT" 
CLOCK_RELATIONSHIP="!ASYN" />

<CLOCK_RELATIONSHIP NAME="SEQ_EDGE|ASYN" NODE_LIST="NODE_2, NODE_3" />

Figure 13. Undesired Condition 4
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1.4. Use Clock and Register-Control Architectural Features

In addition to following general design guidelines, you must code your design with the
device architecture in mind. FPGAs provide device-wide clocks and register control
signals that can improve performance.

1.4.1. Use Global Reset Resources

ASIC designs may use local resets to avoid long routing delays. Take advantage of the
device-wide asynchronous reset pin available on most FPGAs to eliminate these
problems. This reset signal provides low-skew routing across the device.

The following are three types of resets used in synchronous circuits:

• Synchronous Reset

• Asynchronous Reset

• Synchronized Asynchronous Reset—preferred when designing an FPGA circuit

1.4.1.1. Use Synchronous Resets

The synchronous reset ensures that the circuit is fully synchronous. You can easily
time the circuit with the Intel Quartus Prime Timing Analyzer.

Because clocks that are synchronous to each other launch and latch the reset signal,
the data arrival and data required times are easily determined for proper slack
analysis. The synchronous reset is easier to use with cycle-based simulators.

There are two methods by which a reset signal can reach a register; either by being
gated in with the data input, or by using an LAB-wide control signal (synclr). If you
use the first method, you risk adding an additional gate delay to the circuit to
accommodate the reset signal, which causes increased data arrival times and
negatively impacts setup slack. The second method relies on dedicated routing in the
LAB to each register, but this is slower than an asynchronous reset to the same
register.
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Figure 14. Synchronous Reset
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Figure 15. LAB-Wide Control Signals
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Consider two types of synchronous resets when you examine the timing analysis of
synchronous resets—externally synchronized resets and internally synchronized
resets. Externally synchronized resets are synchronized to the clock domain outside
the FPGA, and are not very common. A power-on asynchronous reset is dual-rank
synchronized externally to the system clock and then brought into the FPGA. Inside
the FPGA, gate this reset with the data input to the registers to implement a
synchronous reset.
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Figure 16. Externally Synchronized Reset

por_n

clock
reset_n

data_a

INPUT
VCC

VCC
INPUT

VCC
INPUT

clock

VCC
INPUTdata_b

AND2

lc 1

AND2

lc 2

OUTPUT out_a

out_bOUTPUT

FPGA

The following example shows the Verilog HDL equivalent of the schematic. When you
use synchronous resets, the reset signal is not put in the sensitivity list.

The following example shows the necessary modifications that you should make to the
internally synchronized reset.

Example 6. Verilog HDL Code for Externally Synchronized Reset

module sync_reset_ext (
         input   clock,
         input   reset_n,
         input   data_a,
         input   data_b,
         output  out_a,
         output  out_b
         );
reg      reg1, reg2
assign   out_a  = reg1;
assign   out_b  = reg2;
always @ (posedge clock)
begin
     if (!reset_n)
     begin
         reg1     <= 1’b0;
         reg2     <= 1’b0;
    end
    else
    begin
         reg1     <= data_a;
         reg2     <= data_b;
    end
end
endmodule     //  sync_reset_ext

The following example shows the constraints for the externally synchronous reset.
Because the external reset is synchronous, you only need to constrain the reset_n
signal as a normal input signal with set_input_delay constraint for -max and -
min.

Example 7. SDC Constraints for Externally Synchronized Reset

# Input clock - 100 MHz
create_clock [get_ports {clock}] \
        -name {clock} \
        -period 10.0 \
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        -waveform {0.0 5.0}
# Input constraints on low-active reset
# and data
set_input_delay 7.0 \
        -max \
        -clock [get_clocks {clock}] \
        [get_ports {reset_n data_a data_b}]
set_input_delay 1.0 \
        -min \
        -clock [get_clocks {clock}] \
        [get_ports {reset_n data_a data_b}]

More often, resets coming into the device are asynchronous, and must be
synchronized internally before being sent to the registers.

Figure 17. Internally Synchronized Reset
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The following example shows the Verilog HDL equivalent of the schematic. Only the
clock edge is in the sensitivity list for a synchronous reset.

Example 8. Verilog HDL Code for Internally Synchronized Reset

module sync_reset (
        input clock,
        input reset_n,
        input data_a,
        input data_b,
        output out_a,
        output out_b
        );
reg     reg1, reg2
reg     reg3, reg4

assign     out_a = reg1;
assign     out_b = reg2;
assign     rst_n = reg4;

always @ (posedge clock)
begin
    if (!rst_n)
    begin
        reg1 <= 1’bo;
        reg2 <= 1’b0;
    end
    else
    begin
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        reg1 <= data_a;
        reg2 <= data_b;
    end
end

always @ (posedge clock)
begin
    reg3 <= reset_n;
    reg4 <= reg3;
end
endmodule // sync_reset

The SDC constraints are similar to the external synchronous reset, except that the
input reset cannot be constrained because it is asynchronous. Cut the input path with
a set_false_path statement to avoid these being considered as unconstrained
paths.

Example 9. SDC Constraints for Internally Synchronized Reset

# Input clock - 100 MHz
create_clock [get_ports {clock}] \
        -name {clock} \
        -period 10.0 \
        -waveform {0.0 5.0}
# Input constraints on data
set_input_delay 7.0 \
        -max \
        -clock [get_clocks {clock}] \
        [get_ports {data_a data_b}]
set_input_delay 1.0 \
        -min \
        -clock [get_clocks {clock}] \
        [get_ports {data_a data_b}]
# Cut the asynchronous reset input
set_false_path \
        -from [get_ports {reset_n}] \
        -to [all_registers]

An issue with synchronous resets is their behavior with respect to short pulses (less
than a period) on the asynchronous input to the synchronizer flipflops. This can be a
disadvantage because the asynchronous reset requires a pulse width of at least one
period wide to guarantee that it is captured by the first flipflop. However, this can also
be viewed as an advantage in that this circuit increases noise immunity. Spurious
pulses on the asynchronous input have a lower chance of being captured by the first
flipflop, so the pulses do not trigger a synchronous reset. In some cases, you might
want to increase the noise immunity further and reject any asynchronous input reset
that is less than n periods wide to debounce an asynchronous input reset.
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Figure 18. Internally Synchronized Reset with Pulse Extender
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Junction dots indicate the number of stages. You can have more flipflops to get a
wider pulse that spans more clock cycles.

Many designs have more than one clock signal. In these cases, use a separate reset
synchronization circuit for each clock domain in the design. When you create
synchronizers for PLL output clocks, these clock domains are not reset until you lock
the PLL and the PLL output clocks are stable. If you use the reset to the PLL, this reset
does not have to be synchronous with the input clock of the PLL. You can use an
asynchronous reset for this. Using a reset to the PLL further delays the assertion of a
synchronous reset to the PLL output clock domains when using internally synchronized
resets.

1.4.1.2. Using Asynchronous Resets

Asynchronous resets are the most common form of reset in circuit designs, as well as
the easiest to implement. Typically, you can insert the asynchronous reset into the
device, turn on the global buffer, and connect to the asynchronous reset pin of every
register in the device.

This method is only advantageous under certain circumstances—you do not need to
always reset the register. Unlike the synchronous reset, the asynchronous reset is not
inserted in the datapath, and does not negatively impact the data arrival times
between registers. Reset takes effect immediately, and as soon as the registers
receive the reset pulse, the registers are reset. The asynchronous reset is not
dependent on the clock.

However, when the reset is deasserted and does not pass the recovery (µtSU) or
removal (µtH) time check (the Timing Analyzer recovery and removal analysis checks
both times), the edge is said to have fallen into the metastability zone. Additional time
is required to determine the correct state, and the delay can cause the setup time to
fail to register downstream, leading to system failure. To avoid this, add a few follower
registers after the register with the asynchronous reset and use the output of these
registers in the design. Use the follower registers to synchronize the data to the clock
to remove the metastability issues. You should place these registers close to each
other in the device to keep the routing delays to a minimum, which decreases data
arrival times and increases MTBF. Ensure that these follower registers themselves are
not reset, but are initialized over a period of several clock cycles by “flushing out” their
current or initial state.
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Figure 19. Asynchronous Reset with Follower Registers
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The following example shows the equivalent Verilog HDL code. The active edge of the
reset is now in the sensitivity list for the procedural block, which infers a clock enable
on the follower registers with the inverse of the reset signal tied to the clock enable.
The follower registers should be in a separate procedural block as shown using non-
blocking assignments.

Example 10. Verilog HDL Code of Asynchronous Reset with Follower Registers

module async_reset (
        input   clock,
        input   reset_n,
        input   data_a,
        output   out_a,
        );
reg     reg1, reg2, reg3;
assign  out_a  = reg3;
always @ (posedge clock, negedge reset_n)
begin
    if (!reset_n)
        reg1    <= 1’b0;
    else
        reg1    <= data_a;
end
always @ (posedge clock)
begin
    reg2    <= reg1;
    reg3    <= reg2;
end
endmodule  //  async_reset

You can easily constrain an asynchronous reset. By definition, asynchronous resets
have a non-deterministic relationship to the clock domains of the registers they are
resetting. Therefore, static timing analysis of these resets is not possible and you can
use the set_false_path command to exclude the path from timing analysis.
Because the relationship of the reset to the clock at the register is not known, you
cannot run recovery and removal analysis in the Timing Analyzer for this path.
Attempting to do so even without the false path statement results in no paths
reported for recovery and removal.

Example 11. SDC Constraints for Asynchronous Reset

# Input clock - 100 MHz
create_clock [get_ports {clock}] \
        -name {clock} \
        -period 10.0 \
        -waveform {0.0 5.0}
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# Input constraints on data
set_input_delay 7.0 \
        -max \
        -clock [get_clocks {clock}]\
        [get_ports {data_a}]
set_input_delay 1.0 \
        -min \
        -clock [get_clocks {clock}] \
        [get_ports {data_a}]
# Cut the asynchronous reset input
set_false_path \
        -from [get_ports {reset_n}] \
        -to [all_registers]

The asynchronous reset is susceptible to noise, and a noisy asynchronous reset can
cause a spurious reset. You must ensure that the asynchronous reset is debounced
and filtered. You can easily enter into a reset asynchronously, but releasing a reset
asynchronously can lead to potential problems (also referred to as “reset removal”)
with metastability, including the hazards of unwanted situations with synchronous
circuits involving feedback.

1.4.1.3. Use Synchronized Asynchronous Reset

To avoid potential problems associated with purely synchronous resets and purely
asynchronous resets, you can use synchronized asynchronous resets. Synchronized
asynchronous resets combine the advantages of synchronous and asynchronous
resets.

These resets are asynchronously asserted and synchronously deasserted. This takes
effect almost instantaneously, and ensures that no datapath for speed is involved.
Also, the circuit is synchronous for timing analysis and is resistant to noise.

The following example shows a method for implementing the synchronized
asynchronous reset. You should use synchronizer registers in a similar manner as
synchronous resets. However, the asynchronous reset input is gated directly to the
CLRN pin of the synchronizer registers and immediately asserts the resulting reset.
When the reset is deasserted, logic “1” is clocked through the synchronizers to
synchronously deassert the resulting reset.
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Figure 20. Schematic of Synchronized Asynchronous Reset
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The following example shows the equivalent Verilog HDL code. Use the active edge of
the reset in the sensitivity list for the blocks.

Example 12. Verilog HDL Code for Synchronized Asynchronous Reset

module sync_async_reset (
        input    clock,
        input    reset_n,
        input    data_a,
        input    data_b,
        output   out_a,
        output   out_b
        );
reg     reg1, reg2;
reg     reg3, reg4;
assign  out_a    = reg1;
assign  out_b    = reg2;
assign  rst_n    = reg4;
always @ (posedge clock, negedge reset_n)
begin
    if (!reset_n)
    begin
       reg3     <= 1’b0;
       reg4     <= 1’b0;
    end
    else
    begin
       reg3     <= 1’b1;
       reg4     <= reg3;
    end
end
always @ (posedge clock, negedge rst_n)
begin
    if (!rst_n)
    begin
       reg1     <= 1’b0;
       reg2     <= 1;b0;
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    end
    else
    begin
       reg1     <= data_a;
       reg2     <= data_b;
    end
end
endmodule  // sync_async_reset

To minimize the metastability effect between the two synchronization registers, and to
increase the MTBF, the registers should be located as close as possible in the device to
minimize routing delay. If possible, locate the registers in the same logic array block
(LAB). The input reset signal (reset_n) must be excluded with a set_false_path
command:
set_false_path -from [get_ports {reset_n}] -to [all_registers]

The set_false_path command used with the specified constraint excludes
unnecessary input timing reports that would otherwise result from specifying an input
delay on the reset pin.

The instantaneous assertion of synchronized asynchronous resets is susceptible to
noise and runt pulses. If possible, you should debounce the asynchronous reset and
filter the reset before it enters the device. The circuit ensures that the synchronized
asynchronous reset is at least one full clock period in length. To extend this time to n
clock periods, you must increase the number of synchronizer registers to n + 1. You
must connect the asynchronous input reset (reset_n) to the CLRN pin of all the
synchronizer registers to maintain the asynchronous assertion of the synchronized
asynchronous reset.

1.4.2. Use Global Clock Network Resources

Intel FPGAs provide device-wide global clock routing resources and dedicated inputs.
Use the FPGA’s low-skew, high fan-out dedicated routing where available.

By assigning a clock input to one of these dedicated clock pins or with an Intel
Quartus Prime assignment to assign global routing, you can take advantage of the
dedicated routing available for clock signals.

In an ASIC design, you must balance the clock delay distributed across the device.
Because Intel FPGAs provide device-wide global clock routing resources and dedicated
inputs, there is no need to manually balance delays on the clock network.

Limit the number of clocks in the design to the number of dedicated global clock
resources available in the FPGA. Clocks feeding multiple locations that do not use
global routing may exhibit clock skew across the device leading to timing problems. In
addition, generating internal clocks with combinational logic adds delays on the clock
path. Delay on a clock line can result in a clock skew greater than the data path length
between two registers. If the clock skew is greater than the data delay, you violate the
timing parameters of the register (such as hold time requirements) and the design
does not function correctly.

FPGAs offer low-skew global routing resources to distribute high fan-out signals. These
resources help with the implementation of large designs with multiple clock domains.
Many large FPGA devices provide dedicated global clock networks, regional clock
networks, and dedicated fast regional clock networks. These clocks are organized into
a hierarchical clock structure that allows multiple clocks in each device region with low
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skew and delay. There are typically several dedicated clock pins to drive either global
or regional clock networks, and both PLL outputs and internal clocks can drive various
clock networks.

To reduce clock skew in a given clock domain and ensure that hold times are met in
that clock domain, assign each clock signal to one of the global high fan-out, low-skew
clock networks in the FPGA device. The Intel Quartus Prime software automatically
assigns global routing resources for high fan-out control signals, PLL outputs, and
signals feeding the global clock pins on the device. To direct the software to assign
global routing for a signal, turn on the Global Signal option in the Assignment Editor.

Note: Global Signal assignments only controls whether a signal is promoted using the
specified dedicated resources or not, but does not control which or how many
resources are used.

To take full advantage of the routing resources in a design, make sure that the
sources of clock signals (input clock pins or internally-generated clocks) drive only the
clock input ports of registers. In older Intel device families, if a clock signal feeds the
data ports of a register, the signal may not be able to use dedicated routing, which
can lead to decreased performance and clock skew problems. In general, allowing
clock signals to drive the data ports of registers is not considered synchronous design
and can complicate timing closure.

1.4.3. Use Clock Region Assignments to Optimize Clock Constraints

The Intel Quartus Prime software determines how clock regions are assigned. You can
override these assignments with Clock Region assignments to specify that a signal
routed with global routing paths must use the specified clock region.

Clock Region assignments allow you to control the placement of the clock region for
floorplanning reasons. For example, use a Clock Region assignment to ensure that a
certain area of the device has access to a global signal, throughout your design
iterations. A Clock Region assignment can also be used in cases of congestion
involving global signal resources. By specifying a smaller clock region size, the
assignment prevents a signal using spine clock resources in the excluded sectors that
may be encountering clock-related congestion.

You can specify Clock Region assignments in the assignment editor.

1.4.3.1. Clock Region Assignments in Intel Arria 10 and Older Device Families

In device families with dedicated clock network resources and predefined clock
regions, this assignment takes as its value the names of those Global, Regional,
Periphery or Spine Clock regions. These region names are visible in Chip Planner by
enabling the appropriate Clock Region layer in the Layers Settings dialog box.
Examples of valid values include Regional Clock Region 1 or Periphery Clock
Region 1.

When constraining a global signal to a smaller than normal region, for example, to
avoid clock congestion, you may specify a clock region of a different type than the
global resources being used. For example, a signal with a Global Signal assignment of
Global Clock, but a Clock Region assignment of Regional Clock Region 0,
constrains the clock to use global network routing resources, but only to the region
covered by Regional Clock Region 0. To provide a finer level of control, you can
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also list multiple smaller clock regions, separated by commas. For example:
Periphery Clock Region 0, Periphery Clock Region 1 constrains a signal
to only the area reachable by those two periphery clock networks.

1.4.4. Avoid Asynchronous Register Control Signals

Avoid using an asynchronous load signal if the design target device architecture does
not include registers with dedicated circuitry for asynchronous loads. Also, avoid using
both asynchronous clear and preset if the architecture provides only one of these
control signals.

Some Intel devices directly support an asynchronous clear function, but not a preset
or load function. When the target device does not directly support the signals, the
synthesis or placement and routing software must use combinational logic to
implement the same functionality. In addition, if you use signals in a priority other
than the inherent priority in the device architecture, combinational logic may be
required to implement the necessary control signals. Combinational logic is less
efficient and can cause glitches and other problems; it is best to avoid these
implementations.

1.5. Implementing Embedded RAM

Intel’s dedicated memory architecture offers many advanced features that you can
enable with Intel-provided IP cores. Use synchronous memory blocks for your design,
so that the blocks can be mapped directly into the device dedicated memory blocks.

You can use single-port, dual-port, or three-port RAM with a single- or dual-clocking
method. You should not infer the asynchronous memory logic as a memory block or
place the asynchronous memory logic in the dedicated memory block, but implement
the asynchronous memory logic in regular logic cells.

Intel memory blocks have different read-during-write behaviors, depending on the
targeted device family, memory mode, and block type. Read-during-write behavior
refers to read and write from the same memory address in the same clock cycle; for
example, you read from the same address to which you write in the same clock cycle.

You should check how you specify the memory in your HDL code when you use read-
during-write behavior. The HDL code that describes the read returns either the old
data stored at the memory location, or the new data being written to the memory
location.

In some cases, when the device architecture cannot implement the memory behavior
described in your HDL code, the memory block is not mapped to the dedicated RAM
blocks, or the memory block is implemented using extra logic in addition to the
dedicated RAM block. Implement the read-during-write behavior using single-port RAM
in Arria GX devices and the Cyclone and Stratix series of devices to avoid this extra
logic implementation.

In many synthesis tools, you can specify that the read-during-write behavior is not
important to your design; if, for example, you never read and write from the same
address in the same clock cycle. For Intel Quartus Prime integrated synthesis, add the
synthesis attribute ramstyle=”no_rw_check” to allow the software to choose the
read-during-write behavior of a RAM, rather than using the read-during-write behavior
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specified in your HDL code. Using this type of attribute prevents the synthesis tool
from using extra logic to implement the memory block and, in some cases, can allow
memory inference when it would otherwise be impossible.

Related Information

Inferring RAM functions from HDL Code on page 45

1.6. Recommended Design Practices Revision History

The following revision history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2018.09.24 18.1.0 • Initial release in Intel Quartus Prime Standard Edition User Guide.
• Created subtopic: Clock Region Assignments in Intel Arria 10 and Older

Device Families from content in topic: Use Clock Region Assignments to
Optimize Clock Constraints.

2017.11.06 17.1.0 • Updated topic: Optimizing Timing Closure.

2016.05.03 16.0.0 • Replaced Internally Synchronized Reset code sample with corrected
version.

• Stated limitations about deprecated physical synthesis options.
• Clarified limitations of support for Design Assistant.

2015.11.02 15.1.0 • Changed instances of Quartus II to Quartus Prime.

2014.12.15 14.1.0 Updated location of Fitter Settings, Analysis & Synthesis Settings, and
Physical Optimization Settings to Compiler Settings.

June 2014 14.0.0 Removed references to obsolete MegaWizard Plug-In Manager.

November 2013 13.1.0 Removed HardCopy device information.

May 2013 13.0.0 Removed PrimeTime support.

June 2012 12.0.0 Removed survey link.

November 2011 11.0.1 Template update.

May 2011 11.0.0 Added information to Reset Resources .

December 2010 10.1.0 • Title changed from Design Recommendations for Altera Devices and the
Quartus II Design Assistant.

• Updated to new template.
• Added references to Quartus II Help for “Metastability” on page 9–13

and “Incremental Compilation” on page 9–13.
• Removed duplicated content and added references to Help for “Custom

Rules” on page 9–15.

July 2010 10.0.0 • Removed duplicated content and added references to Quartus II Help
for Design Assistant settings, Design Assistant rules, Enabling and
Disabling Design Assistant Rules, and Viewing Design Assistant reports.

• Removed information from “Combinational Logic Structures” on page
5–4

• Changed heading from “Design Techniques to Save Power” to “Power
Optimization” on page 5–12

• Added new “Metastability” section
• Added new “Incremental Compilation” section
• Added information to “Reset Resources” on page 5–23
• Removed “Referenced Documents” section

November 2009 9.1.0 • Removed documentation of obsolete rules.
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Document Version Intel Quartus
Prime Version

Changes

March 2009 9.0.0 • No change to content.

November 2008 8.1.0 • Changed to 8-1/2 x 11 page size
• Added new section “Custom Rules Coding Examples” on page 5–18
• Added paragraph to “Recommended Clock-Gating Methods” on page 5–

11
• Added new section: “Design Techniques to Save Power” on page 5–12

May 2008 8.0.0 • Updated Figure 5–9 on page 5–13; added custom rules file to the flow
• Added notes to Figure 5–9 on page 5–13
• Added new section: “Custom Rules Report” on page 5–34
• Added new section: “Custom Rules” on page 5–34
• Added new section: “Targeting Embedded RAM Architectural Features”

on page 5–38
• Minor editorial updates throughout the chapter
• Added hyperlinks to referenced documents throughout the chapter

Related Information

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.
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2. Recommended HDL Coding Styles
This chapter provides Hardware Description Language (HDL) coding style
recommendations to ensure optimal synthesis results when targeting Intel FPGA
devices.

HDL coding styles have a significant effect on the quality of results for programmable
logic designs. Synthesis tools optimize HDL code for both logic utilization and
performance; however, synthesis tools cannot interpret the intent of your design.
Therefore, the most effective optimizations require conformance to recommended
coding styles.

Note: For style recommendations, options, or HDL attributes specific to your synthesis tool
(including other Quartus software products and other EDA tools), refer to the
synthesis tool vendor’s documentation.

Related Information

• Recommended Design Practices on page 4

• Advanced Synthesis Cookbook

• Design Examples

• Reference Designs

2.1. Using Provided HDL Templates

The Intel Quartus Prime software provides templates for Verilog HDL, SystemVerilog,
and VHDL templates to start your HDL designs. Many of the HDL examples in this
document correspond with the Full Designs examples in the Intel Quartus Prime
Templates. You can insert HDL code into your own design using the templates or
examples.

2.1.1. Inserting HDL Code from a Provided Template

1. Click File ➤ New.

2. In the New dialog box, select the HDL language for the design files:
SystemVerilog HDL File, VHDL File, or Verilog HDL File; and click OK.
A text editor tab with a blank file opens.

3. Right-click the blank file and click Insert Template.

4. In the Insert Template dialog box, expand the section corresponding to the
appropriate HDL, then expand the Full Designs section.

5. Select a template.
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The template now appears in the Preview pane.

6. To paste the HDL design into the blank Verilog or VHDL file you created, click
Insert.

7. Click Close to close the Insert Template dialog box.

Figure 21. Inserting a RAM Template

Note: Use the Intel Quartus Prime Text Editor to modify the HDL design or save the template
as an HDL file to edit in your preferred text editor.

2.2. Instantiating IP Cores in HDL

Intel provides parameterizable IP cores that are optimized for Intel FPGA device
architectures. Using IP cores instead of coding your own logic saves valuable design
time.

Additionally, the Intel-provided IP cores offer more efficient logic synthesis and device
implementation. Scale the IP core’s size and specify various options by setting
parameters. To instantiate the IP core directly in your HDL file code, invoke the IP core
name and define its parameters as you would do for any other module, component, or
sub design. Alternatively, you can use the IP Catalog (Tools ➤ IP Catalog) and
parameter editor GUI to simplify customization of your IP core variation. You can infer
or instantiate IP cores that optimize device architecture features, for example:

• Transceivers

• LVDS drivers

• Memory and DSP blocks

• Phase-locked loops (PLLs)

• Double-data rate input/output (DDIO) circuitry

For some types of logic functions, such as memories and DSP functions, you can infer
device-specific dedicated architecture blocks instead of instantiating an IP core. Intel
Quartus Prime synthesis recognizes certain HDL code structures and automatically
infers the appropriate IP core or map directly to device atoms.
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Related Information

Intel FPGA IP Core Literature

2.3. Inferring Multipliers and DSP Functions

The following sections describe how to infer multiplier and DSP functions from generic
HDL code, and, if applicable, how to target the dedicated DSP block architecture in
Intel FPGA devices.

Related Information

DSP Solutions Center

2.3.1. Inferring Multipliers

To infer multiplier functions, synthesis tools detect multiplier logic and implement this
in Intel FPGA IP cores, or map the logic directly to device atoms.

For devices with DSP blocks, Intel Quartus Prime synthesis can implement the function
in a DSP block instead of logic, depending on device utilization. The Intel Quartus
Prime fitter can also place input and output registers in DSP blocks (that is, perform
register packing) to improve performance and area utilization.

The following Verilog HDL and VHDL code examples show that synthesis tools can infer
signed and unsigned multipliers as IP cores or DSP block atoms. Each example fits
into one DSP block element. In addition, when register packing occurs, no extra logic
cells for registers are required.

Example 13. Verilog HDL Unsigned Multiplier

module unsigned_mult (out, a, b);
    output [15:0] out;
    input [7:0] a;
    input [7:0] b;
    assign out = a * b;
endmodule

Note: The signed declaration in Verilog HDL is a feature of the Verilog 2001 Standard.

Example 14. Verilog HDL Signed Multiplier with Input and Output Registers (Pipelining =
2)

module signed_mult (out, clk, a, b);
   output [15:0] out;
   input clk;
   input signed [7:0] a;
   input signed [7:0] b;

   reg signed [7:0] a_reg;
   reg signed [7:0] b_reg;
   reg signed [15:0] out;
   wire signed [15:0] mult_out;

   assign mult_out = a_reg * b_reg;

   always @ (posedge clk)
   begin
      a_reg <= a;
      b_reg <= b;
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      out <= mult_out;
   end
endmodule

Example 15. VHDL Unsigned Multiplier with Input and Output Registers (Pipelining = 2)

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY unsigned_mult IS
   PORT (
      a: IN UNSIGNED (7 DOWNTO 0);
      b: IN UNSIGNED (7 DOWNTO 0);
      clk: IN STD_LOGIC;
      aclr: IN STD_LOGIC;
      result: OUT UNSIGNED (15 DOWNTO 0)
   );
END unsigned_mult;

ARCHITECTURE rtl OF unsigned_mult IS
   SIGNAL a_reg, b_reg: UNSIGNED (7 DOWNTO 0);
BEGIN
   PROCESS (clk, aclr)
   BEGIN
      IF (aclr ='1') THEN
         a_reg <= (OTHERS => '0');
         b_reg <= (OTHERS => '0');
         result <= (OTHERS => '0');
      ELSIF (rising_edge(clk)) THEN
         a_reg <= a;
         b_reg <= b;
         result <= a_reg * b_reg;
      END IF;
   END PROCESS;
END rtl;

Example 16. VHDL Signed Multiplier

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY signed_mult IS
   PORT (
      a: IN SIGNED (7 DOWNTO 0);
      b: IN SIGNED (7 DOWNTO 0);
      result: OUT SIGNED (15 DOWNTO 0)
   );
END signed_mult;

ARCHITECTURE rtl OF signed_mult IS
BEGIN
   result <= a * b;
END rtl;

2.3.2. Inferring Multiply-Accumulator and Multiply-Adder Functions

Synthesis tools detect multiply-accumulator or multiply-adder functions, and either
implement them as Intel FPGA IP cores or map them directly to device atoms. During
placement and routing, the Intel Quartus Prime software places multiply-accumulator
and multiply-adder functions in DSP blocks.
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Note: Synthesis tools infer multiply-accumulator and multiply-adder functions only if the
Intel device family has dedicated DSP blocks that support these functions.

A simple multiply-accumulator consists of a multiplier feeding an addition operator.
The addition operator feeds a set of registers that then feeds the second input to the
addition operator. A simple multiply-adder consists of two to four multipliers feeding
one or two levels of addition, subtraction, or addition/subtraction operators. Addition
is always the second-level operator, if it is used. In addition to the multiply-
accumulator and multiply-adder, the Intel Quartus Prime Fitter also places input and
output registers into the DSP blocks to pack registers and improve performance and
area utilization.

Some device families offer additional advanced multiply-adder and accumulator
functions, such as complex multiplication, input shift register, or larger multiplications.

The Verilog HDL and VHDL code samples infer multiply-accumulator and multiply-
adder functions with input, output, and pipeline registers, as well as an optional
asynchronous clear signal. Using the three sets of registers provides the best
performance through the function, with a latency of three. To reduce latency, remove
the registers in your design.

Note: To obtain high performance in DSP designs, use register pipelining and avoid
unregistered DSP functions.

Example 17. Verilog HDL Multiply-Accumulator

module sum_of_four_multiply_accumulate
   #(parameter INPUT_WIDTH=18, parameter OUTPUT_WIDTH=44)
   (
      input clk, ena,
      input [INPUT_WIDTH-1:0] dataa, datab, datac, datad,
      input [INPUT_WIDTH-1:0] datae, dataf, datag, datah,
      output reg [OUTPUT_WIDTH-1:0] dataout
   );
   // Each product can be up to 2*INPUT_WIDTH bits wide.
   // The sum of four of these products can be up to 2 bits wider.
   wire [2*INPUT_WIDTH+1:0] mult_sum;

   // Store the results of the operations on the current inputs
   assign mult_sum = (dataa * datab + datac * datad) +
                     (datae * dataf + datag * datah);

   // Store the value of the accumulation
   always @ (posedge clk)
   begin
      if (ena == 1)
         begin
            dataout <= dataout + mult_sum;
         end
   end
endmodule

Example 18. Verilog HDL Signed Multiply-Adder

module sig_altmult_add (dataa, datab, datac, datad, clock, aclr, result);
   input signed [15:0] dataa, datab, datac, datad;
   input clock, aclr;
   output reg signed [32:0] result;

   reg signed [15:0] dataa_reg, datab_reg, datac_reg, datad_reg;
   reg signed [31:0] mult0_result, mult1_result;

   always @ (posedge clock or posedge aclr) begin
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       if (aclr) begin
           dataa_reg <= 16'b0;
           datab_reg <= 16'b0;
           datac_reg <= 16'b0;
           datad_reg <= 16'b0;
           mult0_result <= 32'b0; 
           mult1_result <= 32'b0; 
           result <= 33'b0;
        end
        else begin
           dataa_reg <= dataa;
           datab_reg <= datab;
           datac_reg <= datac;
           datad_reg <= datad;
           mult0_result <= dataa_reg * datab_reg;        
           mult1_result <= datac_reg * datad_reg; 
           result <= mult0_result + mult1_result;
       end
   end    
endmodule

Example 19. VHDL Signed Multiply-Accumulator

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY sig_altmult_accum IS
   PORT (
      a: IN SIGNED(7 DOWNTO 0);
      b: IN SIGNED (7 DOWNTO 0);
      clk: IN STD_LOGIC;
      aclr: IN STD_LOGIC;
      accum_out: OUT SIGNED (15 DOWNTO 0)
   ) ;
END sig_altmult_accum;

ARCHITECTURE rtl OF sig_altmult_accum IS
   SIGNAL a_reg, b_reg: SIGNED (7 DOWNTO 0);
   SIGNAL pdt_reg: SIGNED (15 DOWNTO 0);
   SIGNAL adder_out: SIGNED (15 DOWNTO 0);
BEGIN
   PROCESS (clk, aclr)
   BEGIN
      IF (aclr = '1') then
          a_reg <= (others => '0');
          b_reg <= (others => '0');
          pdt_reg <= (others => '0');
          adder_out <= (others => '0');
      ELSIF (rising_edge(clk)) THEN
          a_reg <= (a);
          b_reg <= (b);
          pdt_reg <= a_reg * b_reg;
          adder_out <= adder_out + pdt_reg;
      END IF;
   END process;
   accum_out <= adder_out;
END rtl;

Example 20. VHDL Unsigned Multiply-Adder

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY unsignedmult_add IS
   PORT (
      a: IN UNSIGNED (7 DOWNTO 0);
      b: IN UNSIGNED (7 DOWNTO 0);
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      c: IN UNSIGNED (7 DOWNTO 0);
      d: IN UNSIGNED (7 DOWNTO 0);
      clk: IN STD_LOGIC;
      aclr: IN STD_LOGIC;
      result: OUT UNSIGNED (15 DOWNTO 0)
   );
END unsignedmult_add;

ARCHITECTURE rtl OF unsignedmult_add IS
   SIGNAL a_reg, b_reg, c_reg, d_reg: UNSIGNED (7 DOWNTO 0);
   SIGNAL pdt_reg, pdt2_reg: UNSIGNED (15 DOWNTO 0);
   SIGNAL result_reg: UNSIGNED (15 DOWNTO 0);
BEGIN
   PROCESS (clk, aclr)
   BEGIN
      IF (aclr = '1') THEN
         a_reg <= (OTHERS => '0');
         b_reg <= (OTHERS => '0');
         c_reg <= (OTHERS => '0');
         d_reg <= (OTHERS => '0');
         pdt_reg <= (OTHERS => '0');
         pdt2_reg <= (OTHERS => '0');
         result_reg <= (OTHERS => '0');

      ELSIF (rising_edge(clk)) THEN
         a_reg <= a; 
         b_reg <= b; 
         c_reg <= c;
         d_reg <= d;
         pdt_reg <= a_reg * b_reg;
         pdt2_reg <= c_reg * d_reg;
         result_reg <= pdt_reg + pdt2_reg;
      END IF;
      END PROCESS;
   result <= result_reg;
END rtl;

Related Information

• DSP Design Examples

• AN639: Inferring Stratix® V DSP Blocks for FIR Filtering

2.4. Inferring Memory Functions from HDL Code

The following coding recommendations provide portable examples of generic HDL code
targeting dedicated Intel FPGA memory IP cores. However, if you want to use some of
the advanced memory features in Intel FPGA devices, consider using the IP core
directly so that you can customize the ports and parameters easily.

You can also use the Intel Quartus Prime templates provided in the Intel Quartus
Prime software as a starting point. Most of these designs can also be found on the
Design Examples page on the Altera website.

Table 2. Intel Memory HDL Language Templates

Language Full Design Name

VHDL Single-Port RAM
Single-Port RAM with Initial Contents
Simple Dual-Port RAM (single clock)
Simple Dual-Port RAM (dual clock)
True Dual-Port RAM (single clock)
True Dual-Port RAM (dual clock)

continued...   
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Language Full Design Name

Mixed-Width RAM
Mixed-Width True Dual-Port RAM
Byte-Enabled Simple Dual-Port RAM
Byte-Enabled True Dual-Port RAM
Single-Port ROM
Dual-Port ROM

Verilog HDL Single-Port RAM
Single-Port RAM with Initial Contents
Simple Dual-Port RAM (single clock)
Simple Dual-Port RAM (dual clock)
True Dual-Port RAM (single clock)
True Dual-Port RAM (dual clock)
Single-Port ROM
Dual-Port ROM

SystemVerilog Mixed-Width Port RAM
Mixed-Width True Dual-Port RAM
Mixed-Width True Dual-Port RAM (new data on same port read during write)
Byte-Enabled Simple Dual Port RAM
Byte-Enabled True Dual-Port RAM

Related Information

• Instantiating IP Cores in HDL
In Introduction to Intel FPGA IP Cores

• Design Examples

• Embedded Memory Blocks in Intel Arria 10 Devices
In Intel Arria 10 Core Fabric and General Purpose I/Os Handbook

2.4.1. Inferring RAM functions from HDL Code

To infer RAM functions, synthesis tools recognize certain types of HDL code and map
the detected code to technology-specific implementations. For device families that
have dedicated RAM blocks, the Intel Quartus Prime software uses an Intel FPGA IP
core to target the device memory architecture.

Synthesis tools typically consider all signals and variables that have a multi-
dimensional array type and then create a RAM block, if applicable. This is based on the
way the signals or variables are assigned or referenced in the HDL source description.

Standard synthesis tools recognize single-port and simple dual-port (one read port
and one write port) RAM blocks. Some synthesis tools (such as the Intel Quartus
Prime software) also recognize true dual-port (two read ports and two write ports)
RAM blocks that map to the memory blocks in certain Intel FPGA devices.

Some tools (such as the Intel Quartus Prime software) also infer memory blocks for
array variables and signals that are referenced (read/written) by two indexes, to
recognize mixed-width and byte-enabled RAMs for certain coding styles.

Note: If your design contains a RAM block that your synthesis tool does not recognize and
infer, the design might require a large amount of system memory that can potentially
cause compilation problems.
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2.4.1.1. Use Synchronous Memory Blocks

Memory blocks in Intel FPGA are synchronous. Therefore, RAM designs must be
synchronous to map directly into dedicated memory blocks. For these devices, Intel
Quartus Prime synthesis implements asynchronous memory logic in regular logic cells.

Synchronous memory offers several advantages over asynchronous memory, including
higher frequencies and thus higher memory bandwidth, increased reliability, and less
standby power. To convert asynchronous memory, move registers from the datapath
into the memory block.

A memory block is synchronous if it has one of the following read behaviors:

• Memory read occurs in a Verilog HDL always block with a clock signal or a VHDL
clocked process. The recommended coding style for synchronous memories is to
create your design with a registered read output.

• Memory read occurs outside a clocked block, but there is a synchronous read
address (that is, the address used in the read statement is registered). Synthesis
does not always infer this logic as a memory block, or may require external
bypass logic, depending on the target device architecture. Avoid this coding style
for synchronous memories.

Note: The synchronous memory structures in Intel FPGA devices can differ from the
structures in other vendors’ devices. For best results, match your design to the target
device architecture.

This chapter provides coding recommendations for various memory types. All the
examples in this document are synchronous to ensure that they can be directly
mapped into the dedicated memory architecture available in Intel FPGAs.

2.4.1.2. Avoid Unsupported Reset and Control Conditions

To ensure correct implementation of HDL code in the target device architecture, avoid
unsupported reset conditions or other control logic that does not exist in the device
architecture.

The RAM contents of Intel FPGA memory blocks cannot be cleared with a reset signal
during device operation. If your HDL code describes a RAM with a reset signal for the
RAM contents, the logic is implemented in regular logic cells instead of a memory
block. Do not place RAM read or write operations in an always block or process
block with a reset signal. To specify memory contents, initialize the memory or write
the data to the RAM during device operation.

In addition to reset signals, other control logic can prevent synthesis from inferring
memory logic as a memory block. For example, if you use a clock enable on the read
address registers, you can alter the output latch of the RAM, resulting in the
synthesized RAM result not matching the HDL description. Use the address stall
feature as a read address clock enable to avoid this limitation. Check the
documentation for your FPGA device to ensure that your code matches the hardware
available in the device.
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Example 21. Verilog RAM with Reset Signal that Clears RAM Contents: Not Supported in
Device Architecture

module clear_ram
(
    input clock, reset, we,
    input [7:0] data_in,
    input [4:0] address,
    output reg [7:0] data_out
);

    reg [7:0] mem [0:31];
    integer i;

    always @ (posedge clock or posedge reset)
    begin
        if (reset == 1'b1)
            mem[address] <= 0;
        else if (we == 1'b1)
            mem[address] <= data_in;

        data_out <= mem[address];
    end
endmodule

Example 22. Verilog RAM with Reset Signal that Affects RAM: Not Supported in Device
Architecture

module bad_reset
(
    input clock,
    input reset,
    input we,
    input [7:0] data_in,
    input [4:0] address,
    output reg [7:0] data_out,
    input d,
    output reg q
);

    reg [7:0] mem [0:31];
    integer i;

    always @ (posedge clock or posedge reset)
    begin
        if (reset == 1'b1)
            q <= 0;
        else
        begin
            if (we == 1'b1)
                mem[address] <= data_in;

            data_out <= mem[address];
            q <= d;
        end
    end
endmodule

Related Information

Specifying Initial Memory Contents at Power-Up on page 60

2.4.1.3. Check Read-During-Write Behavior

Ensure the read-during-write behavior of the memory block described in your HDL
design is consistent with your target device architecture.
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Your HDL source code specifies the memory behavior when you read and write from
the same memory address in the same clock cycle. The read returns either the old
data at the address, or the new data written to the address. This is referred to as the
read-during-write behavior of the memory block. Intel FPGA memory blocks have
different read-during-write behavior depending on the target device family, memory
mode, and block type.

Synthesis tools preserve the functionality described in your source code. Therefore, if
your source code specifies unsupported read-during-write behavior for the RAM
blocks, the Intel Quartus Prime software implements the logic in regular logic cells as
opposed to the dedicated RAM hardware.

Example 23. Continuous read in HDL code

One common problem occurs when there is a continuous read in the HDL code, as in
the following examples. Avoid using these coding styles:

//Verilog HDL concurrent signal assignment
assign q = ram[raddr_reg];

-- VHDL concurrent signal assignment
q <= ram(raddr_reg);

This type of HDL implies that when a write operation takes place, the read
immediately reflects the new data at the address independent of the read clock, which
is the behavior of asynchronous memory blocks. Synthesis cannot directly map this
behavior to a synchronous memory block. If the write clock and read clock are the
same, synthesis can infer memory blocks and add extra bypass logic so that the
device behavior matches the HDL behavior. If the write and read clocks are different,
synthesis cannot reliably add bypass logic, so it implements the logic in regular logic
cells instead of dedicated RAM blocks. The examples in the following sections discuss
some of these differences for read-during-write conditions.

In addition, the MLAB memories in certain device logic array blocks (LABs) does not
easily support old data or new data behavior for a read-during-write in the dedicated
device architecture. Implementing the extra logic to support this behavior significantly
reduces timing performance through the memory.

Note: For best performance in MLAB memories, ensure that your design does not depend on
the read data during a write operation.

In many synthesis tools, you can declare that the read-during-write behavior is not
important to your design (for example, if you never read from the same address to
which you write in the same clock cycle). In Intel Quartus Prime Standard Edition
integrated synthesis, set the synthesis attribute ramstyle to no_rw_check to allow
Intel Quartus Prime software to define the read-during-write behavior of a RAM, rather
than use the behavior specified by your HDL code. This attribute can prevent the
synthesis tool from using extra logic to implement the memory block, or can allow
memory inference when it would otherwise be impossible.

Synchronous RAM blocks require a synchronous read, so Intel Quartus Prime Standard
Edition integrated synthesis packs either data output registers or read address
registers into the RAM block. When the read address registers are packed into the
RAM block, the read address signals connected to the RAM block contain the next
value of the read address signals indexing the HDL variable, which impacts which
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clock cycle the read and the write occur, and changes the read-during-write
conditions. Therefore, bypass logic may still be added to the design to preserve the
read-during-write behavior, even if the no_rw_check attribute is set.

2.4.1.4. Controlling RAM Inference and Implementation

Intel Quartus Prime synthesis provides options to control RAM inference and
implementation for Intel FPGA devices with synchronous memory blocks. Synthesis
tools usually do not infer small RAM blocks because implementing small RAM blocks is
more efficient if using the registers in regular logic.

2.4.1.5. Single-Clock Synchronous RAM with Old Data Read-During-Write
Behavior

The code examples in this section show Verilog HDL and VHDL code that infers simple
dual-port, single-clock synchronous RAM. Single-port RAM blocks use a similar coding
style.

The read-during-write behavior in these examples is to read the old data at the
memory address. For best performance in MLAB memories, use the appropriate
attribute so that your design does not depend on the read data during a write
operation. The simple dual-port RAM code samples map directly into Intel synchronous
memory.

Single-port versions of memory blocks (that is, using the same read address and write
address signals) allow better RAM utilization than dual-port memory blocks, depending
on the device family. Refer to the appropriate device handbook for recommendations
on your target device.

Example 24. Verilog HDL Single-Clock, Simple Dual-Port Synchronous RAM with Old Data
Read-During-Write Behavior

module single_clk_ram( 
    output reg [7:0] q,
    input [7:0] d,
    input [4:0] write_address, read_address,
    input we, clk
);
    reg [7:0] mem [31:0];

    always @ (posedge clk) begin
        if (we)
            mem[write_address] <= d;
        q <= mem[read_address]; // q doesn't get d in this clock cycle
    end
endmodule

Example 25. VHDL Single-Clock, Simple Dual-Port Synchronous RAM with Old Data Read-
During-Write Behavior

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY single_clock_ram IS
    PORT (
        clock: IN STD_LOGIC;
        data: IN STD_LOGIC_VECTOR (7 DOWNTO 0);
        write_address: IN INTEGER RANGE 0 to 31;
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        read_address: IN INTEGER RANGE 0 to 31;
        we: IN STD_LOGIC;
        q: OUT STD_LOGIC_VECTOR (7 DOWNTO 0)
    );
END single_clock_ram;

ARCHITECTURE rtl OF single_clock_ram IS
    TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(7 DOWNTO 0);
    SIGNAL ram_block: MEM;
BEGIN
    PROCESS (clock)
    BEGIN
        IF (rising_edge(clock)) THEN
            IF (we = '1') THEN
                ram_block(write_address) <= data;
            END IF;
            q <= ram_block(read_address); 
            -- VHDL semantics imply that q doesn't get data 
            -- in this clock cycle
        END IF;
    END PROCESS;
END rtl;

2.4.1.6. Single-Clock Synchronous RAM with New Data Read-During-Write
Behavior

The examples in this section describe RAM blocks in which the read-during-write
behavior returns the new value being written at the memory address.

To implement this behavior in the target device, synthesis tools add bypass logic
around the RAM block. This bypass logic increases the area utilization of the design,
and decreases the performance if the RAM block is part of the design’s critical path. If
the device memory supports new data read-during-write behavior when in single-port
mode (same clock, same read address, and same write address), the Verilog memory
block doesn't require any bypass logic. Refer to the appropriate device handbook for
specifications on your target device.

For Intel Quartus Prime Standard Edition integrated synthesis, if you do not require
the read-through-write capability, add the synthesis attribute
ramstyle="no_rw_check" to allow the Intel Quartus Prime software to choose the
read-during-write behavior of a RAM, rather than using the behavior specified by your
HDL code. This attribute may prevent generation of extra bypass logic, but it is not
always possible to eliminate the requirement for bypass logic.

The following examples use a blocking assignment for the write so that the data is
assigned intermediately.

Example 26. Verilog HDL Single-Clock, Simple Dual-Port Synchronous RAM with New Data
Read-During-Write Behavior

module single_clock_wr_ram(
    output reg [7:0] q,
    input [7:0] d,
    input [6:0] write_address, read_address,
    input we, clk
);
    reg [7:0] mem [127:0];

    always @ (posedge clk) begin
        if (we)
            mem[write_address] = d;
        q = mem[read_address]; // q does get d in this clock 
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                               // cycle if we is high
    end
endmodule

Example 27. VHDL Single-Clock, Simple Dual-Port Synchronous RAM with New Data Read-
During-Write Behavior:

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY single_clock_ram IS
    PORT (
        clock: IN STD_LOGIC;
        data: IN STD_LOGIC_VECTOR (2 DOWNTO 0);
        write_address: IN INTEGER RANGE 0 to 31;
        read_address: IN INTEGER RANGE 0 to 31;
        we: IN STD_LOGIC;
        q: OUT STD_LOGIC_VECTOR (2 DOWNTO 0)
    );
END single_clock_ram;

ARCHITECTURE rtl OF single_clock_ram IS
    TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(2 DOWNTO 0);
    
BEGIN
    PROCESS (clock)
    VARIABLE ram_block: MEM;
    BEGIN
        IF (rising_edge(clock)) THEN
            IF (we = '1') THEN
                ram_block(write_address) := data;
            END IF;
            q <= ram_block(read_address); 
            -- VHDL semantics imply that q doesn't get data 
            -- in this clock cycle
        END IF;
    END PROCESS;
END rtl;

It is possible to create a single-clock RAM by using an assign statement to read the
address of mem and create the output q. By itself, the RTL describes new data read-
during-write behavior. However, if the RAM output feeds a register in another
hierarchy, a read-during-write results in the old data. Synthesis tools may not infer a
RAM block if the tool cannot determine which behavior is described, such as when the
memory feeds a hard hierarchical partition boundary. Avoid this type of RTL.

Example 28. Avoid Verilog Coding Style with Vague read-during-write Behavior

reg [7:0] mem [127:0];
reg [6:0] read_address_reg;

always @ (posedge clk) begin
    if (we)
        mem[write_address] <= d;
    read_address_reg <= read_address;
end
assign q = mem[read_address_reg];
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Example 29. Avoid VHDL Coding Style with Vague read-during-write Behavior

The following example uses a concurrent signal assignment to read from the RAM, and
presents a similar behavior.

ARCHITECTURE rtl OF single_clock_rw_ram IS
    TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(2 DOWNTO 0);
    SIGNAL ram_block: MEM;
    SIGNAL read_address_reg: INTEGER RANGE 0 to 31;
BEGIN
    PROCESS (clock)
    BEGIN
        IF (rising_edge(clock)) THEN
            IF (we = '1') THEN
                ram_block(write_address) <= data;
            END IF;
            read_address_reg <= read_address;
        END IF;
    END PROCESS;
    q <= ram_block(read_address_reg);
END rtl;

2.4.1.7. Simple Dual-Port, Dual-Clock Synchronous RAM

With dual-clock designs, synthesis tools cannot accurately infer the read-during-write
behavior because it depends on the timing of the two clocks within the target device.
Therefore, the read-during-write behavior of the synthesized design is undefined and
may differ from your original HDL code.

When Intel Quartus Prime integrated synthesis infers this type of RAM, it issues a
warning because of the undefined read-during-write behavior.

Example 30. Verilog HDL Simple Dual-Port, Dual-Clock Synchronous RAM

module simple_dual_port_ram_dual_clock
#(parameter DATA_WIDTH=8, parameter ADDR_WIDTH=6)
(
    input [(DATA_WIDTH-1):0] data,
    input [(ADDR_WIDTH-1):0] read_addr, write_addr,
    input we, read_clock, write_clock,
    output reg [(DATA_WIDTH-1):0] q
);

    // Declare the RAM variable
    reg [DATA_WIDTH-1:0] ram[2**ADDR_WIDTH-1:0];
    
    always @ (posedge write_clock)
    begin
        // Write
        if (we)
            ram[write_addr] <= data;
    end
    
    always @ (posedge read_clock)
    begin
        // Read 
        q <= ram[read_addr];
    end
    
endmodule
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Example 31. VHDL Simple Dual-Port, Dual-Clock Synchronous RAM

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY dual_clock_ram IS
    PORT (
        clock1, clock2: IN STD_LOGIC;
        data: IN STD_LOGIC_VECTOR (3 DOWNTO 0);
        write_address: IN INTEGER RANGE 0 to 31;
        read_address: IN INTEGER RANGE 0 to 31;
        we: IN STD_LOGIC;
        q: OUT STD_LOGIC_VECTOR (3 DOWNTO 0)
    );
END dual_clock_ram;
ARCHITECTURE rtl OF dual_clock_ram IS
    TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(3 DOWNTO 0);
    SIGNAL ram_block: MEM;
    SIGNAL read_address_reg : INTEGER RANGE 0 to 31;
BEGIN
    PROCESS (clock1)
    BEGIN
        IF (rising_edge(clock1)) THEN
            IF (we = '1') THEN
                ram_block(write_address) <= data;
            END IF;
        END IF;
    END PROCESS;
    PROCESS (clock2)
    BEGIN
        IF (rising_edge(clock2)) THEN
            q <= ram_block(read_address_reg);
            read_address_reg <= read_address;
        END IF;
    END PROCESS;
END rtl;

Related Information

Check Read-During-Write Behavior on page 47

2.4.1.8. True Dual-Port Synchronous RAM

The code examples in this section show Verilog HDL and VHDL code that infers true
dual-port synchronous RAM. Different synthesis tools may differ in their support for
these types of memories.

Intel FPGA synchronous memory blocks have two independent address ports, allowing
for operations on two unique addresses simultaneously. A read operation and a write
operation can share the same port if they share the same address.

The Intel Quartus Prime software infers true dual-port RAMs in Verilog HDL and VHDL,
with the following characteristics:

• Any combination of independent read or write operations in the same clock cycle.

• At most two unique port addresses.

• In one clock cycle, with one or two unique addresses, they can perform:

— Two reads and one write

— Two writes and one read

— Two writes and two reads
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In the synchronous RAM block architecture, there is no priority between the two ports.
Therefore, if you write to the same location on both ports at the same time, the result
is indeterminate in the device architecture. You must ensure your HDL code does not
imply priority for writes to the memory block, if you want the design to be
implemented in a dedicated hardware memory block. For example, if both ports are
defined in the same process block, the code is synthesized and simulated sequentially
so that there is a priority between the two ports. If your code does imply a priority,
the logic cannot be implemented in the device RAM blocks and is implemented in
regular logic cells. You must also consider the read-during-write behavior of the RAM
block to ensure that it can be mapped directly to the device RAM architecture.

When a read and write operation occurs on the same port for the same address, the
read operation may behave as follows:

• Read new data—This mode matches the behavior of synchronous memory
blocks.

• Read old data—This mode is supported only in device families that support
M144K and M9K memory blocks.

When a read and write operation occurs on different ports for the same address (also
known as mixed port), the read operation may behave as follows:

• Read new data—Intel Quartus Prime Standard Edition integrated synthesis
supports this mode by creating bypass logic around the synchronous memory
block.

• Read old data—Synchronous memory blocks support this behavior.

• Read don’t care—Synchronous memory blocks support this behavior in simple
dual-port mode.

The Verilog HDL single-clock code sample maps directly into synchronous Intel
memory . When a read and write operation occurs on the same port for the same
address, the new data being written to the memory is read. When a read and write
operation occurs on different ports for the same address, the old data in the memory
is read. Simultaneous writes to the same location on both ports results in
indeterminate behavior.

If you generate a dual-clock version of this design describing the same behavior, the
inferred memory in the target device presents undefined mixed port read-during-write
behavior, because it depends on the relationship between the clocks.

Example 32. Verilog HDL True Dual-Port RAM with Single Clock

module true_dual_port_ram_single_clock
#(parameter DATA_WIDTH = 8, ADDR_WIDTH = 6)
(
    input [(DATA_WIDTH-1):0] data_a, data_b,
    input [(ADDR_WIDTH-1):0] addr_a, addr_b,
    input we_a, we_b, clk,
    output reg [(DATA_WIDTH-1):0] q_a, q_b
);

    // Declare the RAM variable
    reg [DATA_WIDTH-1:0] ram[2**ADDR_WIDTH-1:0];

    always @ (posedge clk)
    begin // Port a
        if (we_a)
        begin
            ram[addr_a] <= data_a;
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            q_a <= data_a;
        end
        else
            q_a <= ram[addr_a];
    end
    always @ (posedge clk)
    begin // Port b
        if (we_b)
        begin
            ram[addr_b] <= data_b;
            q_b <= data_b;
        end
        else
            q_b <= ram[addr_b];
    end
endmodule

Example 33. VHDL Read Statement Example

-- Port A
process(clk)
    begin
    if(rising_edge(clk)) then 
        if(we_a = '1') then
            ram(addr_a) := data_a;
        end if;
        q_a <= ram(addr_a);
    end if;
end process;

-- Port B
process(clk)
    begin
    if(rising_edge(clk)) then 
        if(we_b = '1') then
            ram(addr_b) := data_b;
        end if;
        q_b <= ram(addr_b);
    end if;
end process;

The VHDL single-clock code sample maps directly into Intel FPGA synchronous
memory. When a read and write operation occurs on the same port for the same
address, the new data writing to the memory is read. When a read and write operation
occurs on different ports for the same address, the behavior is undefined.
Simultaneous write operations to the same location on both ports results in
indeterminate behavior.

If you generate a dual-clock version of this design describing the same behavior, the
memory in the target device presents undefined mixed port read-during-write
behavior because it depends on the relationship between the clocks.

Example 34. VHDL True Dual-Port RAM with Single Clock

LIBRARY ieee;
use ieee.std_logic_1164.all;

entity true_dual_port_ram_single_clock is
    generic (
        DATA_WIDTH : natural := 8;
        ADDR_WIDTH : natural := 6
    );

port (
    clk : in std_logic;
    addr_a : in natural range 0 to 2**ADDR_WIDTH - 1;
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    addr_b : in natural range 0 to 2**ADDR_WIDTH - 1;
    data_a : in std_logic_vector((DATA_WIDTH-1) downto 0);
    data_b : in std_logic_vector((DATA_WIDTH-1) downto 0);
    we_a : in std_logic := '1';
    we_b : in std_logic := '1';
    q_a : out std_logic_vector((DATA_WIDTH -1) downto 0);
    q_b : out std_logic_vector((DATA_WIDTH -1) downto 0)
);
end true_dual_port_ram_single_clock;

architecture rtl of true_dual_port_ram_single_clock is
    -- Build a 2-D array type for the RAM
    subtype word_t is std_logic_vector((DATA_WIDTH-1) downto 0);

    type memory_t is array((2**ADDR_WIDTH - 1) downto 0) of word_t;
    -- Declare the RAM signal.
    signal ram : memory_t;

begin
    process(clk)
    begin
        if(rising_edge(clk)) then -- Port A
            if(we_a = '1') then
                ram(addr_a) <= data_a;
                -- Read-during-write on same port returns NEW data
                q_a <= data_a;
            else
              -- Read-during-write on mixed port returns OLD 
data                 
                q_a <= ram(addr_a);
            end if;
        end if;
    end process;

    process(clk)
    begin
        if(rising_edge(clk)) then -- Port B
            if(we_b = '1') then
                ram(addr_b) <= data_b;
                -- Read-during-write on same port returns NEW data
                q_b <= data_b;
            else
              -- Read-during-write on mixed port returns OLD data
                q_b <= ram(addr_b);
            end if;
        end if;
    end process;
end rtl;

The port behavior inferred in the Intel Quartus Prime software for the above example
is:

PORT_A_READ_DURING_WRITE_MODE = "new_data_no_nbe_read"
PORT_B_READ_DURING_WRITE_MODE = "new_data_no_nbe_read"
MIXED_PORT_FEED_THROUGH_MODE = "old"

Related Information

Guideline: Customize Read-During-Write Behavior
In Intel Arria 10 Core Fabric and General Purpose I/Os Handbook

2.4.1.9. Mixed-Width Dual-Port RAM

The RAM code examples in this section show SystemVerilog and VHDL code that infers
RAM with data ports with different widths.
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Verilog-1995 doesn't support mixed-width RAMs because the standard lacks a multi-
dimensional array to model the different read width, write width, or both. Verilog-2001
doesn't support mixed-width RAMs because this type of logic requires multiple packed
dimensions. Different synthesis tools may differ in their support for these memories.
This section describes the inference rules for Intel Quartus Prime Standard Edition
integrated synthesis .

The first dimension of the multi-dimensional packed array represents the ratio of the
wider port to the narrower port. The second dimension represents the narrower port
width. The read and write port widths must specify a read or write ratio supported by
the memory blocks in the target device. Otherwise, the synthesis tool does not infer a
RAM.

Refer to the Intel Quartus Prime HDL templates for parameterized examples with
supported combinations of read and write widths. You can also find examples of true
dual port RAMs with two mixed-width read ports and two mixed-width write ports.

Example 35. SystemVerilog Mixed-Width RAM with Read Width Smaller than Write Width

module mixed_width_ram    // 256x32 write and 1024x8 read
(
        input [7:0] waddr,  
        input [31:0] wdata, 
        input we, clk,
        input [9:0] raddr,
        output logic [7:0] q
);
    logic [3:0][7:0] ram[0:255];
    always_ff@(posedge clk)
        begin
            if(we) ram[waddr] <= wdata;
            q <= ram[raddr / 4][raddr % 4];
        end
endmodule : mixed_width_ram

Example 36. SystemVerilog Mixed-Width RAM with Read Width Larger than Write Width

module mixed_width_ram     // 1024x8 write and 256x32 read    
(    
        input [9:0] waddr,    
        input [31:0] wdata,     
        input we, clk,     
        input [7:0] raddr,    
        output logic [9:0] q    
);    
    logic [3:0][7:0] ram[0:255];    
    always_ff@(posedge clk)    
         begin    
            if(we) ram[waddr / 4][waddr % 4] <= wdata;    
            q <= ram[raddr];    
         end    
endmodule : mixed_width_ram

Example 37. VHDL Mixed-Width RAM with Read Width Smaller than Write Width

library ieee;    
use ieee.std_logic_1164.all;    
    
package ram_types is    
    type word_t is array (0 to 3) of std_logic_vector(7 downto 0);    
    type ram_t is array (0 to 255) of word_t;    
end ram_types;    
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library ieee;    
use ieee.std_logic_1164.all;    
library work;    
use work.ram_types.all;    
    
entity mixed_width_ram is    
    port (    
        we, clk : in  std_logic;    
        waddr   : in  integer range 0 to 255;    
        wdata   : in  word_t;    
        raddr   : in  integer range 0 to 1023;    
        q       : out std_logic_vector(7 downto 0));    
end mixed_width_ram;    
    
architecture rtl of mixed_width_ram is    
    signal ram : ram_t;     
begin  -- rtl    
    process(clk, we)    
    begin    
        if(rising_edge(clk)) then     
            if(we = '1') then    
                ram(waddr) <= wdata;    
            end if;    
            q <= ram(raddr / 4 )(raddr mod 4);    
        end if;    
    end process;        
end rtl;

Example 38. VHDL Mixed-Width RAM with Read Width Larger than Write Width

library ieee;
use ieee.std_logic_1164.all;

package ram_types is
    type word_t is array (0 to 3) of std_logic_vector(7 downto 0);
    type ram_t is array (0 to 255) of word_t;
end ram_types;

library ieee;
use ieee.std_logic_1164.all;
library work;
use work.ram_types.all;

entity mixed_width_ram is
    port (
        we, clk : in  std_logic;
        waddr   : in  integer range 0 to 1023;
        wdata   : in  std_logic_vector(7 downto 0);
        raddr   : in  integer range 0 to 255;
        q       : out word_t);
end mixed_width_ram;

architecture rtl of mixed_width_ram is
    signal ram : ram_t; 
begin  -- rtl
    process(clk, we)
    begin
        if(rising_edge(clk)) then 
            if(we = '1') then
                ram(waddr / 4)(waddr mod 4) <= wdata;
            end if;
            q <= ram(raddr);
        end if;
    end process; 
end rtl;
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2.4.1.10. RAM with Byte-Enable Signals

The RAM code examples in this section show SystemVerilog and VHDL code that infers
RAM with controls for writing single bytes into the memory word, or byte-enable
signals.

Synthesis models byte-enable signals by creating write expressions with two indexes,
and writing part of a RAM "word." With these implementations, you can also write
more than one byte at once by enabling the appropriate byte enables.

Verilog-1995 doesn't support mixed-width RAMs because the standard lacks a multi-
dimensional array to model the different read width, write width, or both. Verilog-2001
doesn't support mixed-width RAMs because this type of logic requires multiple packed
dimensions. Different synthesis tools may differ in their support for these memories.
This section describes the inference rules for Intel Quartus Prime Standard Edition
integrated synthesis .

Refer to the Intel Quartus Prime HDL templates for parameterized examples that you
can use for different address widths, and true dual port RAM examples with two read
ports and two write ports.

Example 39. SystemVerilog Simple Dual-Port Synchronous RAM with Byte Enable

module byte_enabled_simple_dual_port_ram  
( 
    input we, clk,
    input [5:0] waddr, raddr, // address width = 6 
    input [3:0] be,         // 4 bytes per word
    input [31:0] wdata,      // byte width = 8, 4 bytes per word
    output reg [31:0] q      // byte width = 8, 4 bytes per word
);
    // use a multi-dimensional packed array
    //to model individual bytes within the word
   logic [3:0][7:0] ram[0:63];    // # words = 1 << address width

   always_ff@(posedge clk)
   begin
        if(we) begin
           if(be[0]) ram[waddr][0] <= wdata[7:0];
           if(be[1]) ram[waddr][1] <= wdata[15:8];
           if(be[2]) ram[waddr][2] <= wdata[23:16];
        if(be[3]) ram[waddr][3] <= wdata[31:24];
        end
        q <= ram[raddr];
   end
endmodule

Example 40. VHDL Simple Dual-Port Synchronous RAM with Byte Enable

library ieee;
use ieee.std_logic_1164.all;
library work;

entity byte_enabled_simple_dual_port_ram is
port (
    we, clk : in  std_logic;
    waddr, raddr : in  integer range 0 to 63 ;     -- address width = 6
    be      : in  std_logic_vector (3 downto 0);   -- 4 bytes per word
    wdata   : in  std_logic_vector(31 downto 0);   -- byte width = 8
    q       : out std_logic_vector(31 downto 0) ); -- byte width = 8
end byte_enabled_simple_dual_port_ram;

architecture rtl of byte_enabled_simple_dual_port_ram is
  --  build up 2D array to hold the memory
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    type word_t is array (0 to 3) of std_logic_vector(7 downto 0);
    type ram_t is array (0 to 63) of word_t;

    signal ram : ram_t;
    signal q_local : word_t;

    begin  -- Re-organize the read data from the RAM to match the output
        unpack: for i in 0 to 3 generate    
            q(8*(i+1) - 1 downto 8*i) <= q_local(i);
    end generate unpack;
        
    process(clk)
    begin
        if(rising_edge(clk)) then 
            if(we = '1') then
                if(be(0) = '1') then
                    ram(waddr)(0) <= wdata(7 downto 0);
                end if;
                if be(1) = '1' then
                    ram(waddr)(1) <= wdata(15 downto 8);
                end if;
                if be(2) = '1' then
                    ram(waddr)(2) <= wdata(23 downto 16);
                end if;
                if be(3) = '1' then
                    ram(waddr)(3) <= wdata(31 downto 24);
                end if;
            end if;
            q_local <= ram(raddr);
        end if;
    end process;  
end rtl;

2.4.1.11. Specifying Initial Memory Contents at Power-Up

Your synthesis tool may offer various ways to specify the initial contents of an inferred
memory. There are slight power-up and initialization differences between dedicated
RAM blocks and the MLAB memory, due to the continuous read of the MLAB.

Intel FPGA dedicated RAM block outputs always power-up to zero, and are set to the
initial value on the first read. For example, if address 0 is pre-initialized to FF, the RAM
block powers up with the output at 0. A subsequent read after power-up from address
0 outputs the pre-initialized value of FF. Therefore, if a RAM powers up and an enable
(read enable or clock enable) is held low, the power-up output of 0 maintains until the
first valid read cycle. The synthesis tool implements MLAB using registers that power-
up to 0, but initialize to their initial value immediately at power-up or reset. Therefore,
the initial value is seen, regardless of the enable status. The Intel Quartus Prime
software maps inferred memory to MLABs when the HDL code specifies an appropriate
ramstyle attribute.

In Verilog HDL, you can use an initial block to initialize the contents of an inferred
memory. Intel Quartus Prime Standard Edition integrated synthesis automatically
converts the initial block into a Memory Initialization File (.mif) for the inferred RAM.

Example 41. Verilog HDL RAM with Initialized Contents

module ram_with_init(
   output reg [7:0] q,
   input [7:0] d,
   input [4:0] write_address, read_address,
   input we, clk
);
   reg [7:0] mem [0:31];
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   integer i;

   initial begin
      for (i = 0; i < 32; i = i + 1)
         mem[i] = i[7:0];
   end

   always @ (posedge clk) begin
      if (we)
         mem[write_address] <= d;
      q <= mem[read_address];
   end
endmodule

Intel Quartus Prime Standard Edition integrated synthesis and other synthesis tools
also support the $readmemb and $readmemh attributes. These attributes allow RAM
initialization and ROM initialization work identically in synthesis and simulation.

Example 42. Verilog HDL RAM Initialized with the readmemb Command

reg [7:0] ram[0:15];
initial 
begin
    $readmemb("ram.txt", ram);
end

In VHDL, you can initialize the contents of an inferred memory by specifying a default
value for the corresponding signal. Intel Quartus Prime Standard Edition integrated
synthesis automatically converts the default value into a .mif file for the inferred
RAM.

Example 43. VHDL RAM with Initialized Contents

LIBRARY ieee;
USE ieee.std_logic_1164.all;
use ieee.numeric_std.all;

ENTITY ram_with_init IS
    PORT(
            clock: IN STD_LOGIC;
            data: IN UNSIGNED (7 DOWNTO 0);
            write_address: IN integer RANGE 0 to 31;
            read_address: IN integer RANGE 0 to 31;
            we: IN std_logic;
            q: OUT UNSIGNED (7 DOWNTO 0));
END;

ARCHITECTURE rtl OF ram_with_init IS

    TYPE MEM IS ARRAY(31 DOWNTO 0) OF unsigned(7 DOWNTO 0);
    FUNCTION initialize_ram
        return MEM is
        variable result : MEM;
    BEGIN 
        FOR i IN 31 DOWNTO 0 LOOP
            result(i) := to_unsigned(natural(i), natural'(8));
        END LOOP; 
        RETURN result;
    END initialize_ram;

    SIGNAL ram_block : MEM := initialize_ram;
BEGIN
    PROCESS (clock)
    BEGIN
        IF (rising_edge(clock)) THEN
            IF (we = '1') THEN
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            ram_block(write_address) <= data;
            END IF;
            q <= ram_block(read_address);
        END IF;
    END PROCESS;
END rtl;

2.4.2. Inferring ROM Functions from HDL Code

Synthesis tools infer ROMs when a CASE statement exists in which a value is set to a
constant for every choice in the CASE statement.

Because small ROMs typically achieve the best performance when they are
implemented using the registers in regular logic, each ROM function must meet a
minimum size requirement for inference and placement in memory.

Note: If you use Intel Quartus Prime Standard Edition integrated synthesis, you can direct
the Intel Quartus Prime software to infer ROM blocks for all sizes with the Allow Any
ROM Size for Recognition option in the Advanced Analysis & Synthesis Settings
dialog box.

Some synthesis tools provide options to control the implementation of inferred ROM
blocks for Intel FPGA devices with synchronous memory blocks. For example, Intel
Quartus Prime Standard Edition integrated synthesis provides the romstyle synthesis
attribute to specify the type of memory block or to specify the use of regular logic
instead of a dedicated memory block.

For device architectures with synchronous RAM blocks, such as the Arria series,
Cyclone® series, or Stratix® series devices, to infer a ROM block, synthesis must use
registers for either the address or the output. When your design uses output registers,
synthesis implements registers from the input registers of the RAM block without
affecting the functionality of the ROM. If you register the address, the power-up state
of the inferred ROM can be different from the HDL design. In this scenario, Intel
Quartus Prime synthesis issues a warning.

The following ROM examples map directly to the Intel FPGA memory architecture.

Example 44. Verilog HDL Synchronous ROM

module sync_rom (clock, address, data_out);
    input clock;
    input [7:0] address;
    output reg [5:0] data_out;
    reg [5:0] data_out;

    always @ (posedge clock)
    begin
        case (address)
            8'b00000000: data_out = 6'b101111;
            8'b00000001: data_out = 6'b110110;
            ...
            8'b11111110: data_out = 6'b000001;
            8'b11111111: data_out = 6'b101010;
        endcase
    end
endmodule
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Example 45. VHDL Synchronous ROM

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY sync_rom IS
    PORT (
        clock: IN STD_LOGIC;
        address: IN STD_LOGIC_VECTOR(7 downto 0);
        data_out: OUT STD_LOGIC_VECTOR(5 downto 0)
    );
END sync_rom;

ARCHITECTURE rtl OF sync_rom IS
BEGIN
PROCESS (clock)
    BEGIN
    IF rising_edge (clock) THEN
        CASE address IS
            WHEN "00000000" => data_out <= "101111";
            WHEN "00000001" => data_out <= "110110";
            ...
            WHEN "11111110" => data_out <= "000001";
            WHEN "11111111" => data_out <= "101010";
            WHEN OTHERS     => data_out <= "101111";
        END CASE;
    END IF;
    END PROCESS;
END rtl;

Example 46. Verilog HDL Dual-Port Synchronous ROM Using readmemb

module dual_port_rom
#(parameter data_width=8, parameter addr_width=8)
(
    input [(addr_width-1):0] addr_a, addr_b,
    input clk, 
    output reg [(data_width-1):0] q_a, q_b
);
    reg [data_width-1:0] rom[2**addr_width-1:0];

    initial // Read the memory contents in the file
             //dual_port_rom_init.txt. 
    begin
        $readmemb("dual_port_rom_init.txt", rom);
    end

    always @ (posedge clk)
    begin
        q_a <= rom[addr_a];
        q_b <= rom[addr_b];
    end
endmodule

Example 47. VHDL Dual-Port Synchronous ROM Using Initialization Function

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity dual_port_rom is
    generic (
        DATA_WIDTH : natural := 8;
        ADDR_WIDTH : natural := 8
    );
    port (
        clk     : in std_logic;
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        addr_a  : in natural range 0 to 2**ADDR_WIDTH - 1;
        addr_b  : in natural range 0 to 2**ADDR_WIDTH - 1;
        q_a     : out std_logic_vector((DATA_WIDTH -1) downto 0);
        q_b     : out std_logic_vector((DATA_WIDTH -1) downto 0)
    );
end entity;

architecture rtl of dual_port_rom is
    -- Build a 2-D array type for the ROM
    subtype word_t is std_logic_vector((DATA_WIDTH-1) downto 0);
    type memory_t is array(2**ADDR_WIDTH - 1 downto 0) of word_t;

    function init_rom
        return memory_t is 
        variable tmp : memory_t := (others => (others => '0'));
    begin 
        for addr_pos in 0 to 2**ADDR_WIDTH - 1 loop 
            -- Initialize each address with the address itself
            tmp(addr_pos) := std_logic_vector(to_unsigned(addr_pos, 
DATA_WIDTH));
        end loop;
        return tmp;
    end init_rom;     

    -- Declare the ROM signal and specify a default initialization value.
    signal rom : memory_t := init_rom;
begin
    process(clk)
    begin
    if (rising_edge(clk)) then
        q_a <= rom(addr_a);
        q_b <= rom(addr_b);
    end if;
    end process;
end rtl;

2.4.3. Inferring Shift Registers in HDL Code

To infer shift registers, synthesis tools detect a group of shift registers of the same
length, and convert them to an Intel FPGA shift register IP core.

For detection, all shift registers must have the following characteristics:

• Use the same clock and clock enable

• No other secondary signals

• Equally spaced taps that are at least three registers apart
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Synthesis recognizes shift registers only for device families with dedicated RAM blocks.
Intel Quartus Prime Standard Edition integrated synthesis uses the following
guidelines:

• The Intel Quartus Prime software determines whether to infer the Intel FPGA shift
register IP core based on the width of the registered bus (W), the length between
each tap (L), or the number of taps (N).

• If the Auto Shift Register Recognition option is set to Auto, Intel Quartus
Prime Standard Edition integrated synthesis determines which shift registers are
implemented in RAM blocks for logic by using:

— The Optimization Technique setting

— Logic and RAM utilization information about the design

— Timing information from Timing-Driven Synthesis

• If the registered bus width is one (W = 1), Intel Quartus Prime synthesis infers
shift register IP if the number of taps times the length between each tap is greater
than or equal to 64 (N x L > 64).

• If the registered bus width is greater than one (W > 1), and the registered bus
width times the number of taps times the length between each tap is greater than
or equal to 32 (W × N × L > 32), the Intel Quartus Prime synthesis infers Intel
FPGA shift register IP core.

• If the length between each tap (L) is not a power of two, Intel Quartus Prime
synthesis needs external logic (LEs or ALMs) to decode the read and write
counters, because of different sizes of shift registers. This extra decode logic
eliminates the performance and utilization advantages of implementing shift
registers in memory.

The registers that Intel Quartus Prime synthesis maps to the Intel FPGA shift register
IP core, and places in RAM are not available in a Verilog HDL or VHDL output file for
simulation tools, because their node names do not exist after synthesis.

Note: The Compiler cannot implement a shift register that uses a shift enable signal into
MLAB memory; instead, the Compiler uses dedicated RAM blocks. To control the type
of memory structure that implements the shift register, use the ramstyle attribute.

2.4.3.1. Simple Shift Register

The examples in this section show a simple, single-bit wide, 67-bit long shift register.

Intel Quartus Prime synthesis implements the register (W = 1 and M = 67) in an
ALTSHIFT_TAPS IP core for supported devices and maps it to RAM in supported
devices, which may be placed in dedicated RAM blocks or MLAB memory. If the length
of the register is less than 67 bits, Intel Quartus Prime synthesis implements the shift
register in logic.

Example 48. Verilog HDL Single-Bit Wide, 64-Bit Long Shift Register

module shift_1x67 (clk, shift, sr_in, sr_out);
    input clk, shift;
    input sr_in;
    output sr_out;

    reg [66:0] sr;

    always @ (posedge clk)
    begin
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        if (shift == 1'b1)
        begin
            sr[66:1] <= sr[65:0];
            sr[0] <= sr_in;
        end
    end
    assign sr_out = sr[65];
endmodule

Example 49. VHDL Single-Bit Wide, 64-Bit Long Shift Register

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.all;
ENTITY shift_1x67 IS
    PORT (
        clk: IN STD_LOGIC;
        shift: IN STD_LOGIC;
        sr_in: IN STD_LOGIC;
        sr_out: OUT STD_LOGIC
    );
END shift_1x67;

ARCHITECTURE arch OF shift_1x67 IS
    TYPE sr_length IS ARRAY (66 DOWNTO 0) OF STD_LOGIC;
    SIGNAL sr: sr_length;
BEGIN
    PROCESS (clk)
        BEGIN
        IF (rising_edge(clk)) THEN
            IF (shift = '1') THEN
            sr(66 DOWNTO 1) <= sr(65 DOWNTO 0);
            sr(0) <= sr_in;
            END IF;
        END IF;
    END PROCESS;
    sr_out <= sr(65);
END arch;

2.4.3.2. Shift Register with Evenly Spaced Taps

The following examples show a Verilog HDL and VHDL 8-bit wide, 64-bit long shift
register (W > 1 and M = 64) with evenly spaced taps at 15, 31, and 47.

The synthesis software implements this function in a single ALTSHIFT_TAPS IP core
and maps it to RAM in supported devices, which is allowed placement in dedicated
RAM blocks or MLAB memory.

Example 50. Verilog HDL 8-Bit Wide, 64-Bit Long Shift Register with Evenly Spaced Taps

module top (clk, shift, sr_in, sr_out, sr_tap_one, sr_tap_two,
                sr_tap_three );
    input clk, shift;
    input [7:0] sr_in;
    output [7:0] sr_tap_one, sr_tap_two, sr_tap_three, sr_out;
    reg [7:0] sr [64:0];
    integer n;
    always @ (posedge clk)
        begin
        if (shift == 1'b1)
            begin
            for (n = 64; n>0; n = n-1)
                begin
                sr[n] <= sr[n-1];
                end
            sr[0] <= sr_in;
        end
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    end
    assign sr_tap_one = sr[16];
    assign sr_tap_two = sr[32];
    assign sr_tap_three = sr[48];
    assign sr_out = sr[64];
endmodule

Example 51. VHDL 8-Bit Wide, 64-Bit Long Shift Register with Evenly Spaced Taps

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.all;
ENTITY shift_8x64_taps IS
    PORT (
        clk: IN STD_LOGIC;
        shift: IN STD_LOGIC;
        sr_in: IN STD_LOGIC_VECTOR(7 DOWNTO 0);
        sr_tap_one: OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
        sr_tap_two : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
        sr_tap_three: OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
        sr_out: OUT STD_LOGIC_VECTOR(7 DOWNTO 0)
    );
END shift_8x64_taps;

ARCHITECTURE arch OF shift_8x64_taps IS
    SUBTYPE sr_width IS STD_LOGIC_VECTOR(7 DOWNTO 0);
    TYPE sr_length IS ARRAY (63 DOWNTO 0) OF sr_width;
    SIGNAL sr: sr_length;
BEGIN
    PROCESS (clk)
    BEGIN
        IF (rising_edge(clk)) THEN
            IF (shift = '1') THEN
                sr(63 DOWNTO 1) <= sr(62 DOWNTO 0);
                sr(0) <= sr_in;
            END IF;
        END IF;
    END PROCESS;
    sr_tap_one <= sr(15);
    sr_tap_two <= sr(31);
    sr_tap_three <= sr(47);
    sr_out <= sr(63);
END arch;

2.5. Register and Latch Coding Guidelines

This section provides device-specific coding recommendations for Intel registers and
latches. Understanding the architecture of the target Intel device helps ensure that
your RTL produces the expected results and achieves the optimal quality of results.

2.5.1. Register Power-Up Values

Registers in the device core power-up to a low (0) logic level on all Intel FPGA devices.
However, for designs that specify a power-up level other than 0, synthesis tools can
implement logic that directs registers to behave as if they were powering up to a high
(1) logic level.

For designs that use preset signals, but the target device does not support presets in
the register architecture, synthesis may convert the preset signal to a clear signal,
which requires to perform a NOT gate push-back optimization. NOT gate push-back
adds an inverter to the input and the output of the register, so that the reset and
power-up conditions appear high, and the device operates as expected. In this case,
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the synthesis tool may issue a message about the power-up condition. The register
itself powers up low, but since the register output inverts, the signal that arrives at all
destinations is high.

Due to these effects, if you specify a non-zero reset value, the synthesis tool may use
the asynchronous clear (aclr) signals available on the registers to implement the
high bits with NOT gate push-back. In that case, the registers look as though they
power-up to the specified reset value.

When an asynchronous load (aload) signal is available in the device registers, the
synthesis tools can implement a reset of 1 or 0 value by using an asynchronous load
of 1 or 0. When the synthesis tool uses a load signal, it is not performing NOT gate
push-back, so the registers power-up to a 0 logic level. For additional details, refer to
the appropriate device family handbook.

Optionally you can force all registers into their appropriate values after reset through
an explicit reset signal. This technique allows to reset the device after power-up to
restore the proper state.

Synchronizing the device architecture's external or combinational logic before driving
the register's asynchronous control ports allows for more stable designs and avoids
potential glitches.

Related Information

Recommended Design Practices on page 4

2.5.1.1. Specifying a Power-Up Value

Options available in synthesis tools allow you to specify power-up conditions for the
design. Intel Quartus Prime Standard Edition integrated synthesis provides the
Power-Up Level logic option.

You can also specify the power-up level with an altera_attribute assignment in
the source code. This attribute forces synthesis to perform NOT gate push-back,
because synthesis tools cannot change the power-up states of core registers.

You can apply the Power-Up Level logic option to a specific register, or to a design
entity, module, or sub design. When you assign this option, every register in that
block receives the value. Registers power up to 0 by default. Therefore, you can use
this assignment to force all registers to power-up to 1 using NOT gate push-back.

Setting the Power-Up Level to a logic level of high for a large design entity could
degrade the quality of results due to the number of inverters that requires. In some
situations, this design style causes issues due to enable signal inference or
secondary control logic inference. It may also be more difficult to migrate this type of
designs.

Some synthesis tools can also read the default or initial values for registered signals
and implement this behavior in the device. For example, Intel Quartus Prime Standard
Edition integrated synthesis converts default values for registered signals into Power-
Up Level settings. When the Intel Quartus Prime software reads the default values,
the synthesized behavior matches the power-up state of the HDL code during a
functional simulation.
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Example 52. Verilog Register with High Power-Up Value

reg q = 1’b1; //q has a default value of ‘1’

always @ (posedge clk)
begin
    q <= d;
end

Example 53. VHDL Register with High Power-Up Level

SIGNAL q : STD_LOGIC := '1'; -- q has a default value of '1'

PROCESS (clk, reset)
BEGIN
    IF (rising_edge(clk)) THEN
        q <= d;
    END IF;
END PROCESS;

Your design may contain undeclared default power-up conditions based on signal type.
If you declare a VHDL register signal as an integer, Intel Quartus Prime synthesis uses
the left end of the integer range as the power-up value. For the default signed integer
type, the default power-up value is the highest magnitude negative integer (100…
001). For an unsigned integer type, the default power-up value is 0.

Note: If the target device architecture does not support two asynchronous control signals,
such as aclr and aload, you cannot set a different power-up state and reset state. If
the NOT gate push-back algorithm creates logic to set a register to 1, that register
powers-up high. If you set a different power-up condition through a synthesis
attribute or initial value, synthesis ignores the power-up level.

2.5.2. Secondary Register Control Signals Such as Clear and Clock Enable

The registers in Intel FPGAs provide a number of secondary control signals. Use these
signals to implement control logic for each register without using extra logic cells.
Intel FPGA device families vary in their support for secondary signals, so consult the
device family data sheet to verify which signals are available in your target device.

To make the most efficient use of the signals in the device, ensure that HDL code
matches the device architecture as closely as possible. The control signals have a
certain priority due to the nature of the architecture. Your HDL code must follow that
priority where possible.

Your synthesis tool can emulate any control signals using regular logic, so achieving
functionally correct results is always possible. However, if your design requirements
allow flexibility in controlling use and priority of control signals, match your design to
the target device architecture to achieve the most efficient results. If the priority of
the signals in your design is not the same as that of the target architecture, you may
require extra logic to implement the control signals. This extra logic uses additional
device resources, and can cause additional delays for the control signals.

In certain cases, using logic other than the dedicated control logic in the device
architecture can have a larger impact. For example, the clock enable signal has
priority over the synchronous reset or clear signal in the device architecture. The
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clock enable turns off the clock line in the LAB, and the clear signal is
synchronous. Therefore, in the device architecture, the synchronous clear takes effect
only when a clock edge occurs.

If you define a register with a synchronous clear signal that has priority over the
clock enable signal, Intel Quartus Prime synthesis emulates the clock enable
functionality using data inputs to the registers. You cannot apply a Clock Enable
Multicycle constraint, because the emulated functionality does not use the clock
enable port of the register. In this case, using a different priority causes unexpected
results with an assignment to the clock enable signal.

The signal order is the same for all Intel FPGA device families. However, not all device
families provide every signal. The priority order is:

1. Asynchronous Clear (aclr)—highest priority

2. Asynchronous Load (aload)—not available on Intel Arria 10 devices

3. Enable (ena)

4. Synchronous Clear (sclr)

5. Synchronous Load (sload)

6. Data In (data)—lowest priority

The priority order for secondary control signals in Intel FPGA devices differs from the
order for other vendors’ FPGA devices. If your design requirements are flexible
regarding priority, verify that the secondary control signals meet design performance
requirements when migrating designs between FPGA vendors. To achieve the best
results. try to match your target device architecture.

The following Verilog HDL and VHDL examples create a register with the aclr, aload,
and ena control signals.

Example 54. Verilog HDL D-Type Flipflop (Register) With ena, aclr, and aload Control
Signals

This example does not have adata on the sensitivity list. This is a limitation of the
Verilog HDL language—there is no way to describe an asynchronous load signal (in
which q toggles if adata toggles while aload is high). Despite this limitation, many
synthesis tools infer an aload signal from this construct. When they perform such
inference, you may see information or warning messages from the synthesis tool.

module dff_control(clk, aclr, aload, ena, data, adata, q);
    input clk, aclr, aload, ena, data, adata;
    output q;

    reg q;

    always @ (posedge clk or posedge aclr or posedge aload)
    begin
        if (aclr)
            q <= 1'b0;
        else if (aload)
            q <= adata;
        else if (ena)
            q <= data;
    end
endmodule
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Example 55. VHDL D-Type Flipflop (Register) With ena, aclr, and aload Control Signals

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY dff_control IS
    PORT (
        clk: IN STD_LOGIC;
        aclr: IN STD_LOGIC;
        aload: IN STD_LOGIC;
        adata: IN STD_LOGIC;
        ena: IN STD_LOGIC;
      data: IN STD_LOGIC;
q: OUT STD_LOGIC
    );
END dff_control;
ARCHITECTURE rtl OF dff_control IS
BEGIN
    PROCESS (clk, aclr, aload, adata)
    BEGIN
IF (aclr = '1') THEN
q <= '0';
ELSIF (aload = '1') THEN
q <= adata;
ELSE
            IF (rising_edge(clk)) THEN
                IF (ena     ='1') THEN
q <= data;
                END IF;
            END IF;
        END IF;
    END PROCESS;
END rtl;

Related Information

Clock Enable Multicycle
In Intel Quartus Prime Timing Analyzer Cookbook

2.5.3. Latches

A latch is a small combinational loop that holds the value of a signal until a new value
is assigned. Synthesis tools can infer latches from HDL code when you did not intend
to use a latch. If you do intend to infer a latch, it is important to infer it correctly to
guarantee correct device operation.

Note: Design without the use of latches whenever possible.

Related Information

Avoid Unintended Latch Inference on page 7

2.5.3.1. Avoid Unintentional Latch Generation

When you design combinational logic, certain coding styles can create an unintentional
latch. For example, when CASE or IF statements do not cover all possible input
conditions, synthesis tools can infer latches to hold the output if a new output value is
not assigned. Check your synthesis tool messages for references to inferred latches.
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If your code unintentionally creates a latch, modify your RTL to remove the latch:

• Synthesis infers a latch when HDL code assigns a value to a signal outside of a
clock edge (for example, with an asynchronous reset), but the code does not
assign a value in an edge-triggered design block.

• Unintentional latches also occur when HDL code assigns a value to a signal in an
edge-triggered design block, but synthesis optimizations remove that logic. For
example, when a CASE or IF statement tests a condition that only evaluates to
FALSE, synthesis removes any logic or signal assignment in that statement during
optimization. This optimization may result in the inference of a latch for the signal.

• Omitting the final ELSE or WHEN OTHERS clause in an IF or CASE statement can
also generate a latch. Don’t care (X) assignments on the default conditions are
useful in preventing latch generation. For the best logic optimization, assign the
default CASE or final ELSE value to don’t care (X) instead of a logic value.

In Verilog HDL designs, use the full_case attribute to treat unspecified cases as
don’t care values (X). However, since the full_case attribute is synthesis-only, it can
cause simulation mismatches, because simulation tools still treat the unspecified cases
as latches.

Example 56. VHDL Code Preventing Unintentional Latch Creation

Without the final ELSE clause, the following code creates unintentional latches to
cover the remaining combinations of the SEL inputs. When you are targeting a Stratix
series device with this code, omitting the final ELSE condition can cause synthesis
tools to use up to six LEs, instead of the three it uses with the ELSE statement.
Additionally, assigning the final ELSE clause to 1 instead of X can result in slightly
more LEs, because synthesis tools cannot perform as much optimization when you
specify a constant value as opposed to a don’t care value.

LIBRARY ieee;
USE IEEE.std_logic_1164.all;

ENTITY nolatch IS
    PORT (a,b,c: IN STD_LOGIC;
        sel: IN STD_LOGIC_VECTOR (4 DOWNTO 0);
        oput: OUT STD_LOGIC);
END nolatch;

ARCHITECTURE rtl OF nolatch IS
BEGIN
    PROCESS (a,b,c,sel) BEGIN
        IF sel = "00000" THEN
            oput <= a;
        ELSIF sel = "00001" THEN
            oput <= b;
        ELSIF sel = "00010" THEN
            oput <= c;
        ELSE                   --- Prevents latch inference
            oput <= 'X'; --/
        END IF;
    END PROCESS;
END rtl;

2.5.3.2. Inferring Latches Correctly

Synthesis tools can infer a latch that does not exhibit the glitch and timing hazard
problems typically associated with combinational loops. Intel Quartus Prime Standard
Edition software reports latches that synthesis inferred in the User-Specified and

2. Recommended HDL Coding Styles

UG-20175 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

72

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(UG-20175%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Inferred Latches section of the Compilation Report. This report indicates whether
the latch presents a timing hazard, and the total number of user-specified and inferred
latches.

Note: In some cases, timing analysis does not completely model latch timing . As a best
practice, avoid latches unless required by the design and you fully understand the
impact.

If latches or combinational loops in the design do not appear in the User Specified
and Inferred Latches section, then Intel Quartus Prime synthesis did not infer the
latch as a safe latch, so the latch is not considered glitch-free.

All combinational loops listed in the Analysis & Synthesis Logic Cells
Representing Combinational Loops table in the Compilation Report are at risk of
timing hazards. These entries indicate possible problems with the design that require
further investigation. However, correct designs can include combinational loops. For
example, it is possible that the combinational loop cannot be sensitized. This occurs
when there is an electrical path in the hardware, but either:

• The designer knows that the circuit never encounters data that causes that path to
be activated, or

• The surrounding logic is set up in a mutually exclusive manner that prevents that
path from ever being sensitized, independent of the data input.

For 4-input LUT-based devices, such as Stratix devices, the Cyclone series, and MAX®

II devices, all latches in the User Specified and Inferred Latches table with a
single LUT in the feedback loop are free of timing hazards when a single input
changes. Because of the hardware behavior of the LUT, the output does not glitch
when a single input toggles between two values that are supposed to produce the
same output value, such as a D-type input toggling when the enable input is inactive
or a set input toggling when a reset input with higher priority is active. This
hardware behavior of the LUT means that no cover term is required for a loop around
a single LUT. The Intel Quartus Prime software uses a single LUT in the feedback loop
whenever possible. A latch that has data, enable, set, and reset inputs in addition to
the output fed back to the input cannot be implemented in a single 4-input LUT. If the
Intel Quartus Prime software cannot implement the latch with a single-LUT loop
because there are too many inputs, the User Specified and Inferred Latches table
indicates that the latch is not free of timing hazards.

For 6-input LUT-based devices, Intel Quartus Prime synthesis implements all latch
inputs with a single adaptive look-up table (ALUT) in the combinational loop.
Therefore, all latches in the User-Specified and Inferred Latches table are free of
timing hazards when a single input changes.

If Intel Quartus Prime synthesis report lists a latch as a safe latch, other
optimizations, such as physical synthesis netlist optimizations in the Fitter, maintain
the hazard-free performance. To ensure hazard-free behavior, only one control input
can change at a time. Changing two inputs simultaneously, such as deasserting set
and reset at the same time, or changing data and enable at the same time, can
produce incorrect behavior in any latch.

Intel Quartus Prime synthesis infers latches from always blocks in Verilog HDL and
process statements in VHDL. However, Intel Quartus Prime synthesis does not infer
latches from continuous assignments in Verilog HDL, or concurrent signal assignments
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in VHDL. These rules are the same as for register inference. The Intel Quartus Prime
synthesis infers registers or flipflops only from always blocks and process
statements.

Example 57. Verilog HDL Set-Reset Latch

module simple_latch (
   input SetTerm,
   input ResetTerm,
   output reg LatchOut
   );
   always @ (SetTerm or ResetTerm) begin
      if (SetTerm)
         LatchOut = 1'b1;
      else if (ResetTerm)
         LatchOut = 1'b0;
   end
endmodule

Example 58. VHDL Data Type Latch

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
ENTITY simple_latch IS
    PORT (
        enable, data    : IN STD_LOGIC;
        q               : OUT STD_LOGIC
    );
END simple_latch;
ARCHITECTURE rtl OF simple_latch IS
BEGIN
    latch : PROCESS (enable, data)
        BEGIN
        IF (enable = '1') THEN
            q <= data;
        END IF;
    END PROCESS latch;
END rtl;

The following example shows a Verilog HDL continuous assignment that does not infer
a latch in the Intel Quartus Prime software:

Example 59. Verilog Continuous Assignment Does Not Infer Latch

assign latch_out = (~en & latch_out) | (en & data);

The behavior of the assignment is similar to a latch, but it may not function correctly
as a latch, and its timing is not analyzed as a latch. Intel Quartus Prime Standard
Edition integrated synthesis also creates safe latches when possible for instantiations
of an Altera latch IP core. Altera latch IPs allow you to define a latch with any
combination of data, enable, set, and reset inputs. The same limitations apply for
creating safe latches as for inferring latches from HDL code.

Inferring the Altera latch IP core in another synthesis tool ensures that Intel Quartus
Prime synthesis also recognizes the implementation as a latch. If a third-party
synthesis tool implements a latch using the Altera latch IP core, Intel Quartus Prime
Standard Edition integrated synthesis reports the latch in the User-Specified and
Inferred Latches table, in the same manner as it lists latches you define in HDL
source code. The coding style necessary to produce an Altera latch IP core
implementation depends on the synthesis tool. Some third-party synthesis tools list
the number of Altera latch IP cores that are inferred.
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The Fitter uses global routing for control signals, including signals that synthesis
identifies as latch enables. In some cases, the global insertion delay decreases timing
performance. If necessary, you can turn off the Intel Quartus Prime Global Signal
logic option to manually prevent the use of global signals. The Global & Other Fast
Signals table in the Compilation Report reports Global latch enables.

2.6. General Coding Guidelines

This section describes how coding styles impact synthesis of HDL code into the target
Intel FPGA devices. You can improve your design efficiency and performance by
following these recommended coding styles, and designing logic structures to match
the appropriate device architecture.

2.6.1. Tri-State Signals

Use tri-state signals only when they are attached to top-level bidirectional or output
pins.

Avoid lower-level bidirectional pins. Also avoid using the Z logic value unless it is
driving an output or bidirectional pin. Even though some synthesis tools implement
designs with internal tri-state signals correctly in Intel FPGA devices using multiplexer
logic, do not use this coding style for Intel FPGA designs.

Note: In hierarchical block-based design flows, a hierarchical boundary cannot contain any
bidirectional ports, unless the lower-level bidirectional port is connected directly
through the hierarchy to a top-level output pin without connecting to any other design
logic. If you use boundary tri-states in a lower-level block, synthesis software must
push the tri-states through the hierarchy to the top level to make use of the tri-state
drivers on output pins of Intel FPGA devices. Because pushing tri-states requires
optimizing through hierarchies, lower-level tri-states are restricted with block-based
design methodologies.

2.6.2. Clock Multiplexing

Clock multiplexing is sometimes used to operate the same logic function with different
clock sources. This type of logic can introduce glitches that create functional problems.
The delay inherent in the combinational logic can also lead to timing problems. Clock
multiplexers trigger warnings from a wide range of design rule check and timing
analysis tools.

Use dedicated hardware to perform clock multiplexing when it is available, instead of
using multiplexing logic. For example, you can use the Clock Switchover feature or the
Clock Control Block available in certain Intel FPGA devices. These dedicated hardware
blocks avoid glitches, ensure that you use global low-skew routing lines, and avoid any
possible hold time problems on the device due to logic delay on the clock line. Intel
FPGA devices also support dynamic PLL reconfiguration, which is the safest and most
robust method of changing clock rates during device operation.

If your design has too many clocks to use the clock control block, or if dynamic
reconfiguration is too complex for your design, you can implement a clock multiplexer
in logic cells. However, if you use this implementation, consider simultaneous toggling
inputs and ensure glitch-free transitions.
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Figure 22. Simple Clock Multiplexer in a 6-Input LUT
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Each device datasheet describes how LUT outputs can glitch during a simultaneous
toggle of input signals, independent of the LUT function. Even though the 4:1 MUX
function does not generate detectable glitches during simultaneous data input toggles,
some cell implementations of multiplexing logic exhibit significant glitches, so this
clock mux structure is not recommended. An additional problem with this
implementation is that the output behaves erratically during a change in the
clk_select signals. This behavior could create timing violations on all registers fed
by the system clock and result in possible metastability.

A more sophisticated clock select structure can eliminate the simultaneous toggle and
switching problems.

Figure 23. Glitch-Free Clock Multiplexer Structure

sel0

sel1

clk0

clk1

clk_out

DQ DQ DQ

DQDQDQ

You can generalize this structure for any number of clock channels. The design
ensures that no clock activates until all others are inactive for at least a few cycles,
and that activation occurs while the clock is low. The design applies a
synthesis_keep directive to the AND gates on the right side, which ensures there
are no simultaneous toggles on the input of the clk_out OR gate.

Note: Switching from clock A to clock B requires that clock A continue to operate for at least
a few cycles. If clock A stops immediately, the design sticks. The select signals are
implemented as a “one-hot” control in this example, but you can use other encoding if
you prefer. The input side logic is asynchronous and is not critical. This design can
tolerate extreme glitching during the switch process.
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Example 60. Verilog HDL Clock Multiplexing Design to Avoid Glitches

This example works with Verilog-2001.

module clock_mux (clk,clk_select,clk_out);

    parameter num_clocks = 4;

    input [num_clocks-1:0] clk;
    input [num_clocks-1:0] clk_select; // one hot
    output clk_out;

    genvar i;

    reg [num_clocks-1:0] ena_r0;
    reg [num_clocks-1:0] ena_r1;
    reg [num_clocks-1:0] ena_r2;
    wire [num_clocks-1:0] qualified_sel;

    // A look-up-table (LUT) can glitch when multiple inputs 
    // change simultaneously. Use the keep attribute to
    // insert a hard logic cell buffer and prevent 
    // the unrelated clocks from appearing on the same LUT.

    wire [num_clocks-1:0] gated_clks /* synthesis keep */;

    initial begin
        ena_r0 = 0;
        ena_r1 = 0;
        ena_r2 = 0;
    end

    generate
        for (i=0; i<num_clocks; i=i+1) 
        begin : lp0
            wire [num_clocks-1:0] tmp_mask;
            assign tmp_mask = {num_clocks{1'b1}} ^ (1 << i);

            assign qualified_sel[i] = clk_select[i] & (~|(ena_r2 & tmp_mask));

            always @(posedge clk[i]) begin
                ena_r0[i] <= qualified_sel[i];        
                ena_r1[i] <= ena_r0[i];        
            end

            always @(negedge clk[i]) begin
                ena_r2[i] <= ena_r1[i];        
            end

            assign gated_clks[i] = clk[i] & ena_r2[i];
        end
    endgenerate

    // These will not exhibit simultaneous toggle by construction
    assign clk_out = |gated_clks;

endmodule

Related Information

Intel FPGA IP Core Literature

2.6.3. Adder Trees

Structuring adder trees appropriately to match your targeted Intel FPGA device
architecture can provide significant improvements in your design's efficiency and
performance.
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A good example of an application using a large adder tree is a finite impulse response
(FIR) correlator. Using a pipelined binary or ternary adder tree appropriately can
greatly improve the quality of your results.

This section explains why coding recommendations are different for Intel 4-input LUT
devices and 6-input LUT devices.

2.6.3.1. Architectures with 4-Input LUTs in Logic Elements

Architectures such as Stratix devices and the Cyclone series of devices contain 4-input
LUTs as the standard combinational structure in the LE.

If your design can tolerate pipelining, the fastest way to add three numbers A, B, and
C in devices that use 4-input lookup tables is to addA + B, register the output, and
then add the registered output to C. Adding A + B takes one level of logic (one bit is
added in one LE), so this runs at full clock speed. This can be extended to as many
numbers as desired.

Adding five numbers in devices that use 4-input lookup tables requires four adders
and three levels of registers for a total of 64 LEs (for 16-bit numbers).

Example 61. Verilog HDL Pipelined Binary Tree

module binary_adder_tree (a, b, c, d, e, clk, out);
     parameter width = 16;
    input [width-1:0] a, b, c, d, e;
    input    clk;
    output [width-1:0] out;

    wire [width-1:0] sum1, sum2, sum3, sum4;
    reg [width-1:0] sumreg1, sumreg2, sumreg3, sumreg4;
    // Registers

    always @ (posedge clk)
        begin
            sumreg1 <= sum1;
            sumreg2 <= sum2;
            sumreg3 <= sum3;
            sumreg4 <= sum4;
        end

    // 2-bit additions
    assign sum1 = A + B;
    assign sum2 = C + D;
    assign sum3 = sumreg1 + sumreg2;
    assign sum4 = sumreg3 + E;                  
    assign out = sumreg4;
endmodule

2.6.3.2. Architectures with 6-Input LUTs in Adaptive Logic Modules

In Intel FPGA device families with 6-input LUT in their basic logic structure, ALMs can
simultaneously add three bits. Take advantage of this feature by restructuring your
code for better performance.

Although code targeting 4-input LUT architectures compiles successfully for 6-input
LUT devices, the implementation can be inefficient. For example, to take advantage of
the 6-input adaptive ALUT, you must rewrite large pipelined binary adder trees
designed for 4-input LUT architectures. By restructuring the tree as a ternary tree, the
design becomes much more efficient, significantly improving density utilization.

2. Recommended HDL Coding Styles

UG-20175 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

78

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(UG-20175%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Note: You cannot pack a LAB full when using this type of coding style because of the number
of LAB inputs. However, in a typical design, the Intel Quartus Prime Fitter can pack
other logic into each LAB to take advantage of the unused ALMs.

Example 62. Verilog HDL Pipelined Ternary Tree

The example shows a pipelined adder, but partitioning your addition operations can
help you achieve better results in non-pipelined adders as well. If your design is not
pipelined, a ternary tree provides much better performance than a binary tree. For
example, depending on your synthesis tool, the HDL code
sum = (A + B + C) + (D + E) is more likely to create the optimal
implementation of a 3-input adder for A + B + C followed by a 3-input adder for
sum1 + D + E than the code without the parentheses. If you do not add the
parentheses, the synthesis tool may partition the addition in a way that is not optimal
for the architecture.

module ternary_adder_tree (a, b, c, d, e, clk, out);
    parameter width = 16;
    input [width-1:0] a, b, c, d, e;
    input    clk;
    output [width-1:0] out;

    wire [width-1:0] sum1, sum2;
    reg [width-1:0] sumreg1, sumreg2;
    // registers

    always @ (posedge clk)
        begin
            sumreg1 <= sum1;
            sumreg2 <= sum2;
        end

    // 3-bit additions
    assign sum1 = a + b + c;
    assign sum2 = sumreg1 + d + e;
    assign out = sumreg2;
endmodule

2.6.4. State Machine HDL Guidelines

Synthesis tools can recognize and encode Verilog HDL and VHDL state machines
during synthesis. This section presents guidelines to secure the best results when you
use state machines.

Synthesis tools that can recognize a piece of code as a state machine can perform
optimizations that improve the design area and performance. For example, the tool
can recode the state variables to improve the quality of results, or optimize other
parts of the design through known properties of state machines.

To achieve the best results, synthesis tools often use one-hot encoding for FPGA
devices and minimal-bit encoding for CPLD devices, although the choice of
implementation can vary for different state machines and different devices. Refer to
the synthesis tool documentation for techniques to control the encoding of state
machines.
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To ensure proper recognition and inference of state machines and to improve the
quality of results, observe the following guidelines for both Verilog HDL and VHDL:

• Assign default values to outputs derived from the state machine so that synthesis
does not generate unwanted latches.

• Separate state machine logic from all arithmetic functions and datapaths,
including assigning output values.

• For designs in which more than one state perform the same operation, define the
operation outside the state machine, and direct the output logic of the state
machine to use this value.

• Ensure a defined power-up state with a simple asynchronous or synchronous
reset. In designs where the state machine contains more elaborate reset logic,
such as both an asynchronous reset and an asynchronous load, the Intel Quartus
Prime software infers regular logic rather than a state machine.

If a state machine enters an illegal state due to a problem with the device, the design
likely ceases to function correctly until the next reset of the state machine. Synthesis
tools do not provide for this situation by default. The same issue applies to any other
registers if there is some fault in the system. A default or when others clause
does not affect this operation, assuming that the design never deliberately enters this
state. Synthesis tools remove any logic generated by a default state if it is not
reachable by normal state machine operation.

Many synthesis tools (including Intel Quartus Primeintegrated synthesis) have an
option to implement a safe state machine. The Intel Quartus Prime software inserts
extra logic to detect illegal states and force the state machine’s transition to the
reset state. Safe state machines are useful when the state machine can enter an
illegal state, for example, when a state machine has control inputs that originate in
another clock domain, such as the control logic for a dual-clock FIFO.

This option protects state machines by forcing them into the reset state. All other
registers in the design are not protected this way. As a best practice for designs with
asynchronous inputs, use a synchronization register chain instead of relying on the
safe state machine option.

Related Information

Intel Quartus Prime Integrated Synthesis

2.6.4.1. Verilog HDL State Machines

To ensure proper recognition and inference of Verilog HDL state machines, observe the
following additional Verilog HDL guidelines.

Refer to your synthesis tool documentation for specific coding recommendations. If
the synthesis tool doesn't recognize and infer the state machine, the tool implements
the state machine as regular logic gates and registers, and the state machine doesn't
appear as a state machine in the Analysis & Synthesis section of the Intel Quartus
Prime Compilation Report. In this case, Intel Quartus Prime synthesis does not
perform any optimizations specific to state machines.
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• If you are using the SystemVerilog standard, use enumerated types to describe
state machines.

• Represent the states in a state machine with the parameter data types in
Verilog-1995 and Verilog-2001, and use the parameters to make state
assignments. This parameter implementation makes the state machine easier to
read and reduces the risk of errors during coding.

• Do not directly use integer values for state variables, such as next_state <= 0.
However, using an integer does not prevent inference in the Intel Quartus Prime
software.

• Intel Quartus Prime software doesn't infer a state machine if the state transition
logic uses arithmetic similar to the following example:

case (state)
    0: begin
        if (ena) next_state <= state + 2;
        else next_state <= state + 1;
        end
    1: begin
    ...
endcase

• Intel Quartus Prime software doesn't infer a state machine if the state variable is
an output.

• Intel Quartus Prime software doesn't infer a state machine for signed variables.

2.6.4.1.1. Verilog-2001 State Machine Coding Example

The following module verilog_fsm is an example of a typical Verilog HDL state
machine implementation. This state machine has five states.

The asynchronous reset sets the variable state to state_0. The sum of in_1 and
in_2 is an output of the state machine in state_1 and state_2. The difference
(in_1 – in_2) is also used in state_1 and state_2. The temporary variables
tmp_out_0 and tmp_out_1 store the sum and the difference of in_1 and in_2.
Using these temporary variables in the various states of the state machine ensures
proper resource sharing between the mutually exclusive states.

Example 63. Verilog-2001 State Machine

module verilog_fsm (clk, reset, in_1, in_2, out);
    input clk, reset;
    input [3:0] in_1, in_2;
    output [4:0] out;
    parameter state_0 = 3'b000;
    parameter state_1 = 3'b001;
    parameter state_2 = 3'b010;
    parameter state_3 = 3'b011;
    parameter state_4 = 3'b100;

    reg [4:0] tmp_out_0, tmp_out_1, tmp_out_2;
    reg [2:0] state, next_state;

    always @ (posedge clk or posedge reset)
    begin
        if (reset)
            state <= state_0;
        else
            state <= next_state;
    end
    always @ (*)
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    begin
        tmp_out_0 = in_1 + in_2;
        tmp_out_1 = in_1 - in_2;
        case (state)
            state_0: begin
               tmp_out_2 = in_1 + 5'b00001;
               next_state = state_1;
            end
            state_1: begin
                if (in_1 < in_2) begin
                    next_state = state_2;
                    tmp_out_2 = tmp_out_0;
                end
                else begin
                    next_state = state_3;
                    tmp_out_2 = tmp_out_1;
                end
            end    
            state_2: begin
                tmp_out_2 = tmp_out_0 - 5'b00001;
                next_state = state_3;
            end
            state_3: begin
                tmp_out_2 = tmp_out_1 + 5'b00001;
                next_state = state_0;
            end
            state_4:begin
                tmp_out_2 = in_2 + 5'b00001;
                next_state = state_0;
            end
            default:begin
                tmp_out_2 = 5'b00000;
                next_state = state_0;
            end
        endcase
    end
    assign out = tmp_out_2;
endmodule

You can achieve an equivalent implementation of this state machine by using
‘define instead of the parameter data type, as follows:

‘define state_0 3'b000
‘define state_1 3'b001
‘define state_2 3'b010
‘define state_3 3'b011
‘define state_4 3'b100

In this case, you assign `state_x instead of state_x to state and next_state,
for example:

next_state <= ‘state_3;        

Note: Although Intel supports the ‘define construct, use the parameter data type,
because it preserves the state names throughout synthesis.

2.6.4.1.2. SystemVerilog State Machine Coding Example

Use the following coding style to describe state machines in SystemVerilog.

Example 64. SystemVerilog State Machine Using Enumerated Types

The module enum_fsm is an example of a SystemVerilog state machine
implementation that uses enumerated types.
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In Intel Quartus Prime Standard Edition integrated synthesis, the enumerated type
that defines the states for the state machine must be of an unsigned integer type. If
you do not specify the enumerated type as int unsigned, synthesis uses a signed
int type by default. In this case, the Intel Quartus Prime software synthesizes the
design, but does not infer or optimize the logic as a state machine.

module enum_fsm (input clk, reset, input int data[3:0], output int o);
enum int unsigned { S0 = 0, S1 = 2, S2 = 4, S3 = 8 } state, next_state;
always_comb begin : next_state_logic
      next_state = S0;
      case(state)
        S0: next_state = S1;
        S1: next_state = S2;
        S2: next_state = S3;
        S3: next_state = S3;
      endcase
end
always_comb begin
      case(state)
         S0: o = data[3];
         S1: o = data[2];
         S2: o = data[1];
         S3: o = data[0];
      endcase
end
always_ff@(posedge clk or negedge reset) begin
      if(~reset)
         state <= S0;
      else
         state <= next_state;
end
endmodule

2.6.4.2. VHDL State Machines

To ensure proper recognition and inference of VHDL state machines, represent the
different states with enumerated types, and use the corresponding types to make
state assignments.

This implementation makes the state machine easier to read, and reduces the risk of
errors during coding. If your RTL does not represent states with an enumerated type,
Intel Quartus Prime synthesis (and other synthesis tools) do not recognize the state
machine. Instead, synthesis implements the state machine as regular logic gates and
registers. Consequently, and the state machine does not appear in the state machine
list of the Intel Quartus Prime Compilation Report, Analysis & Synthesis section.
Moreover, Intel Quartus Prime synthesis does not perform any of the optimizations
that are specific to state machines.

2.6.4.2.1. VHDL State Machine Coding Example

The following state machine has five states. The asynchronous reset sets the variable
state to state_0.

The sum of in1 and in2 is an output of the state machine in state_1 and state_2.
The difference (in1 - in2) is also used in state_1 and state_2. The temporary
variables tmp_out_0 and tmp_out_1 store the sum and the difference of in1 and
in2. Using these temporary variables in the various states of the state machine
ensures proper resource sharing between the mutually exclusive states.
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Example 65. VHDL State Machine

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;
ENTITY vhdl_fsm IS
   PORT(
      clk: IN STD_LOGIC;
      reset: IN STD_LOGIC;
      in1: IN UNSIGNED(4 downto 0);
      in2: IN UNSIGNED(4 downto 0);
      out_1: OUT UNSIGNED(4 downto 0)
      );
END vhdl_fsm;
ARCHITECTURE rtl OF vhdl_fsm IS
   TYPE Tstate IS (state_0, state_1, state_2, state_3, state_4);
   SIGNAL state: Tstate;
   SIGNAL next_state: Tstate;
BEGIN
   PROCESS(clk, reset)
   BEGIN
      IF reset = '1' THEN
            state <=state_0;
      ELSIF rising_edge(clk) THEN
            state <= next_state;
      END IF;
   END PROCESS;
PROCESS (state, in1, in2)
      VARIABLE tmp_out_0: UNSIGNED (4 downto 0);
      VARIABLE tmp_out_1: UNSIGNED (4 downto 0);
   BEGIN
      tmp_out_0 := in1 + in2;
      tmp_out_1 := in1 - in2;
      CASE state IS
         WHEN state_0 =>
            out_1 <= in1;
            next_state <= state_1;
         WHEN state_1 =>
            IF (in1 < in2) then
               next_state <= state_2;
               out_1 <= tmp_out_0;
            ELSE
               next_state <= state_3;
               out_1 <= tmp_out_1;
            END IF;
         WHEN state_2 =>
            IF (in1 < "0100") then
               out_1 <= tmp_out_0;
            ELSE
               out_1 <= tmp_out_1;
            END IF;
               next_state <= state_3;
         WHEN state_3 =>
               out_1 <= "11111";
               next_state <= state_4;
         WHEN state_4 =>
               out_1 <= in2;
               next_state <= state_0;
         WHEN OTHERS =>
               out_1 <= "00000";
               next_state <= state_0;
      END CASE;
   END PROCESS;
END rtl;
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2.6.5. Multiplexer HDL Guidelines

Multiplexers form a large portion of the logic utilization in many FPGA designs. By
optimizing your multiplexer logic, you ensure the most efficient implementation.

This section addresses common problems and provides design guidelines to achieve
optimal resource utilization for multiplexer designs. The section also describes various
types of multiplexers, and how they are implemented.

For more information, refer to the Advanced Synthesis Cookbook.

Related Information

Advanced Synthesis Cookbook

2.6.5.1. Intel Quartus Prime Software Option for Multiplexer Restructuring

Intel Quartus Prime Standard Edition integrated synthesis provides the Restructure
Multiplexers logic option that extracts and optimizes buses of multiplexers during
synthesis. The default Auto for this option setting uses the optimization whenever
beneficial for your design. You can turn the option on or off specifically to have more
control over use.

Even with this Intel Quartus Prime-specific option turned on, it is beneficial to
understand how your coding style can be interpreted by your synthesis tool, and avoid
the situations that can cause problems in your design.

2.6.5.2. Multiplexer Types

This section addresses how Intel Quartus Prime synthesis creates multiplexers from
various types of HDL code.

State machines, CASE statements, and IF statements are all common sources of
multiplexer logic in designs. These HDL structures create different types of
multiplexers, including binary multiplexers, selector multiplexers, and priority
multiplexers.

The first step toward optimizing multiplexer structures for best results is to
understand how Intel Quartus Prime infers and implements multiplexers from HDL
code.

2.6.5.2.1. Binary Multiplexers

Binary multiplexers select inputs based on binary-encoded selection bits.

Device families featuring 6-input look up tables (LUTs) are perfectly suited for 4:1
multiplexer building blocks (4 data and 2 select inputs). The extended input mode
facilitates implementing 8:1 blocks, and the fractured mode handles residual 2:1
multiplexer pairs.

For device families using 4-input LUTs, such as the Cyclone series and Stratix series
devices, Intel Quartus Prime implements the 4:1 binary multiplexer efficiently by
using two 4-input LUTs. Intel Quartus Prime decomposes larger binary multiplexers
into 4:1 multiplexer blocks, possibly with a residual 2:1 multiplexer at the head.
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Example 66. Verilog HDL Binary-Encoded Multiplexers

case (sel)
   2'b00: z = a;
   2'b01: z = b;
   2'b10: z = c;
   2'b11: z = d;
endcase

2.6.5.2.2. Selector Multiplexers

Selector multiplexers have a separate select line for each data input. The select lines
for the multiplexer are one-hot encoded. Intel Quartus Prime commonly builds selector
multiplexers as a tree of AND and OR gates.

Even though the implementation of a tree-shaped, N-input selector multiplexer is
slightly less efficient than a binary multiplexer, in many cases the select signal is the
output of a decoder. Intel Quartus Prime synthesis combines the selector and decoder
into a binary multiplexer.

Example 67. Verilog HDL One-Hot-Encoded CASE Statement

case (sel)
   4'b0001: z = a;
   4'b0010: z = b;
   4'b0100: z = c;
   4'b1000: z = d;
   default: z = 1'bx;
endcase

2.6.5.2.3. Priority Multiplexers

In priority multiplexers, the select logic implies a priority. The options to select the
correct item must be checked in a specific order based on signal priority.

Synthesis tools commonly infer these structures from IF, ELSE, WHEN, SELECT,
and ?: statements in VHDL or Verilog HDL.

Example 68. VHDL IF Statement Implying Priority

The multiplexers form a chain, evaluating each condition or select bit sequentially.

IF cond1 THEN z <= a;
ELSIF cond2 THEN z <= b;
ELSIF cond3 THEN z <= c;
ELSE z <= d;
END IF;
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Figure 24. Priority Multiplexer Implementation of an IF Statement
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Depending on the number of multiplexers in the chain, the timing delay through this
chain can become large, especially for device families with 4-input LUTs.

To improve the timing delay through the multiplexer, avoid priority multiplexers if
priority is not required. If the order of the choices is not important to the design, use a
CASE statement to implement a binary or selector multiplexer instead of a priority
multiplexer. If delay through the structure is important in a multiplexed design
requiring priority, consider recoding the design to reduce the number of logic levels to
minimize delay, especially along your critical paths.

2.6.5.3. Implicit Defaults in IF Statements

IF statements in Verilog HDL and VHDL can simplify expressing conditions that do not
easily lend themselves to a CASE-type approach. However, IF statements can result in
complex multiplexer trees that are not easy for synthesis tools to optimize. In
particular, all IF statements have an ELSE condition, even when not specified in the
code. These implicit defaults can cause additional complexity in multiplexed designs.

You can simplify multiplexed logic and remove unneeded defaults with multiple
methods. The optimal method is recoding the design, so the logic takes the structure
of a 4:1 CASE statement. Alternatively, if priority is important, you can restructure the
code to reduce default cases and flatten the multiplexer. Examine whether the default
"ELSE IF" conditions are don’t care cases. You can add a default ELSE statement to
make the behavior explicit. Avoid unnecessary default conditions in the multiplexer
logic to reduce the complexity and logic utilization that the design implementation
requires.

2.6.5.4. default or OTHERS CASE Assignment

To fully specify the cases in a CASE statement, include a default (Verilog HDL) or
OTHERS (VHDL) assignment.

This assignment is especially important in one-hot encoding schemes where many
combinations of the select lines are unused. Specifying a case for the unused select
line combinations gives the synthesis tool information about how to synthesize these
cases, and is required by the Verilog HDL and VHDL language specifications.
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For some designs you do not need to consider the outcome in the unused cases,
because these cases are unreachable. For these types of designs, you can specify any
value for the default or OTHERS assignment. However, the assignment value you
choose can have a large effect on the logic utilization required to implement the
design.

To obtain best results, explicitly define invalid CASE selections with a separate
default or OTHERS statement, instead of combining the invalid cases with one of the
defined cases.

If the value in the invalid cases is not important, specify those cases explicitly by
assigning the X (don’t care) logic value instead of choosing another value. This
assignment allows your synthesis tool to perform the best area optimizations.

2.6.6. Cyclic Redundancy Check Functions

CRC computations are used heavily by communications protocols and storage devices
to detect any corruption of data. These functions are highly effective; there is a very
low probability that corrupted data can pass a 32-bit CRC check

CRC functions typically use wide XOR gates to compare the data. The way synthesis
tools flatten and factor these XOR gates to implement the logic in FPGA LUTs can
greatly impact the area and performance results for the design. XOR gates have a
cancellation property that creates an exceptionally large number of reasonable
factoring combinations, so synthesis tools cannot always choose the best result by
default.

The 6-input ALUT has a significant advantage over 4-input LUTs for these designs.
When properly synthesized, CRC processing designs can run at high speeds in devices
with 6-input ALUTs.

The following guidelines help you improve the quality of results for CRC designs in
Intel FPGA devices.

2.6.6.1. If Performance is Important, Optimize for Speed

To minimize area and depth of levels of logic, synthesis tools flatten XOR gates.

By default, Intel Quartus Prime Standard Edition integrated synthesis targets area
optimization for XOR gates. Therefore, for more focus on depth reduction, set the
synthesis optimization technique to speed.

Note: Flattening for depth sometimes causes a significant increase in area.

2.6.6.2. Use Separate CRC Blocks Instead of Cascaded Stages

Some designs optimize CRC to use cascaded stages (for example, four stages of 8
bits). In such designs, Intel Quartus Prime synthesis uses intermediate calculations
(such as the calculations after 8, 24, or 32 bits) depending on the data width.

This design is not optimal for FPGA devices. The XOR cancellations that Intel Quartus
Prime synthesis performs in CRC designs mean that the function does not require all
the intermediate calculations to determine the final result. Therefore, forcing the use
of intermediate calculations increases the area required to implement the function, as
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well as increasing the logic depth because of the cascading. It is typically better to
create full separate CRC blocks for each data width that you require in the design, and
then multiplex them together to choose the appropriate mode at a given time

2.6.6.3. Use Separate CRC Blocks Instead of Allowing Blocks to Merge

Synthesis tools often attempt to optimize CRC designs by sharing resources and
extracting duplicates in two different CRC blocks because of the factoring options in
the XOR logic.

CRC logic allows significant reductions, but this works best when the Compiler
optimizes CRC function separately. Check for duplicate extraction behavior if for
designs with different CRC functions that are driven by common data signals or that
feed the same destination signals.

For designs with poor quality results that have two CRC functions sharing logic you
can ensure that the blocks are synthesized independently with one of the following
methods:

• Define each CRC block as a separate design partition in an incremental
compilation design flow.

• Synthesize each CRC block as a separate project in a third-party synthesis tool
and then write a separate Verilog Quartus Mapping (.vqm) or EDIF netlist file for
each.

2.6.6.4. Take Advantage of Latency if Available

If your design can use more than one cycle to implement the CRC functionality, adding
registers and retiming the design can help reduce area, improve performance, and
reduce power utilization.

If your synthesis tool offers a retiming feature (such as the Intel Quartus Prime
software Perform gate-level register retiming option), you can insert an extra
bank of registers at the input and allow the retiming feature to move the registers for
better results. You can also build the CRC unit half as wide and alternate between
halves of the data in each clock cycle.

2.6.6.5. Save Power by Disabling CRC Blocks When Not in Use

CRC designs are heavy consumers of dynamic power because the logic toggles
whenever there is a change in the design.

To save power, use clock enables to disable the CRC function for every clock cycle that
the logic is not required. Some designs don’t check the CRC results for a few clock
cycles while other logic is performing. It is valuable to disable the CRC function even
for this short amount of time.

2.6.6.6. Initialize the Device with the Synchronous Load (sload) Signal

CRC designs often require the data to be initialized to 1’s before operation. In devices
that support the sload signal, you can use this signal to set all registers in the design
to 1’s before operation.

To enable the sload signal, follow the coding guidelines in this chapter. After
compilation you can check the register equations in the Chip Planner to ensure that
the signal behaves as expected.
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If you must force a register implementation using an sload signal, refer to Designing
with Low-Level Primitives User Guide to see how you can use low-level device
primitives.

Related Information

• Secondary Register Control Signals Such as Clear and Clock Enable on page 69

• Designing with Low-Level Primitives User Guide

2.6.7. Comparator HDL Guidelines

This section provides information about the different types of implementations
available for comparators (<, >, or ==), and provides suggestions on how you can
code the design to encourage a specific implementation. Synthesis tools, including
Intel Quartus Prime Standard Edition integrated synthesis, use device and context-
specific implementation rules, and select the best one for the design.

Synthesis tools implement the == comparator in general logic cells and the <
comparison in either the carry chain or general logic cells. In devices with 6-input
ALUTs, the carry chain can compare up to three bits per cell.In devices with 4-input
LUTs, the capacity is one bit of comparison per cell, similar to an add/subtract chain.
Carry chain implementation tends to be faster than general logic on standalone
benchmark test cases, but can result in lower performance on larger designs due to
increased restrictions on the Fitter. The area requirement is similar for most input
patterns. The synthesis tools select an appropriate implementation based on the input
pattern.

You can guide the Intel Quartus Prime Synthesis engine by choosing specific coding
styles. To select a carry chain implementation explicitly, rephrase the comparison in
terms of addition.

For example, the following coding style allows the synthesis tool to select the
implementation, which is most likely using general logic cells in modern device
families:

wire [6:0] a,b;
wire alb = a<b;

In the following coding style, the synthesis tool uses a carry chain (except for a few
cases, such as when the chain is very short, or the signals a and b minimize to the
same signal):

wire [6:0] a,b;
wire [7:0] tmp = a - b;
wire alb = tmp[7]

This second coding style uses the top bit of the tmp signal, which is 1 in two's
complement logic if a is less than b, because the subtraction a - b results in a negative
number.

If you have any information about the range of the input, you can use “don’t care”
values to optimize the design. This information is not available to the synthesis tool,
so specific hand implementation of the logic can reduce the device area required to
implement the comparator.
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The following logic structure, which occurs frequently in address decoders, allows you
to check whether a bus value is within a constant range with a small amount of logic
area:

Figure 25. Example Logic Structure for Using Comparators to Check a Bus Value Range

Address[ ]

Select[0]Select[3] Select[2] Select[1]

< 200< 2f00 < 1a0 < 100

2.6.8. Counter HDL Guidelines

The Intel Quartus Prime synthesis engine implements counters in HDL code as an
adder followed by registers, and makes available register control signals such as
enable (ena), synchronous clear (sclr), and synchronous load (sload). For best
area utilization, ensure that the up and down control or controls are expressed in
terms of one addition operator, instead of two separate addition operators.

If you use the following coding style, your synthesis engine may implement two
separate carry chains for addition:

out <= count_up ? out + 1 : out - 1;

For simple designs, the synthesis engine identifies this coding style and optimizes the
logic. However, in complex designs, or designs with preserve pragmas, the Compiler
cannot optimize all logic, so more careful coding becomes necessary.

The following coding style requires only one adder along with some other logic:

out <= out + (count_up ? 1 : -1);

This style makes more efficient use of resources and area, since it uses only one carry
chain adder, and the –1 constant logic is implemented in the LUT before the adder.

2.7. Designing with Low-Level Primitives

Low-level HDL design is the practice of using low-level primitives and assignments to
dictate a particular hardware implementation for a piece of logic. Low-level primitives
are small architectural building blocks that assist you in creating your design.

With the Intel Quartus Prime software, you can use low-level HDL design techniques
to force a specific hardware implementation that can help you achieve better resource
utilization or faster timing results.
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Note: Using low-level primitives is an optional advanced technique to help with specific
design challenges. For many designs, synthesizing generic HDL source code and Intel
FPGA IP cores give you the best results.

Low-level primitives allow you to use the following types of coding techniques:

• Instantiate the logic cell or LCELL primitive to prevent Intel Quartus Prime
Standard Edition integrated synthesis from performing optimizations across a logic
cell

• Create carry and cascade chains using CARRY, CARRY_SUM, and CASCADE
primitives

• Instantiate registers with specific control signals using DFF primitives

• Specify the creation of LUT functions by identifying the LUT boundaries

• Use I/O buffers to specify I/O standards, current strengths, and other I/O
assignments

• Use I/O buffers to specify differential pin names in your HDL code, instead of using
the automatically-generated negative pin name for each pair

For details about and examples of using these types of assignments, refer to the
Designing with Low-Level Primitives User Guide.

Related Information

Designing with Low-Level Primitives User Guide

2.8. Recommended HDL Coding Styles Revision History

The following revisions history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2018.09.24 18.1.0 • Initial release in Intel Quartus Prime Standard Edition User Guide.
• Renamed topic: "Use the Device Synchronous Load (sload) Signal to

Initialize" to "Initialize the Device with the Synchronous Load (sload)
Signal"

2017.05.08 17.0.0 • Updated example: Verilog HDL Multiply-Accumulator
• Revised Check Read-During-Write Behavior.
• Revised Controlling RAM Inference and Implementation.
• Revised Single-Clock Synchronous RAM with Old Data Read-During-

Write Behavior.
• Revised Single-Clock Synchronous RAM with New Data Read-During-

Write Behavior.
• Updated and moved template for VHDL Single-Clock Simple Dual Port

Synchronous RAM with New Data Read-During-Write Behavior.
• Revised Inferring ROM Functions from HDL Code.
• Created example: Avoid this VHDL Coding Style.

2016.05.03 16.0.0 • Updated example code templates with latest coding styles.

2015.11.02 15.1.0 • Changed instances of Quartus II to Intel Quartus Prime.

2015.05.04 15.0.0 Added information and reference about ramstyle attribute for sift register
inference.

2014.12.15 14.1.0 Updated location of Fitter Settings, Analysis & Synthesis Settings, and
Physical Optimization Settings to Compiler Settings.
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Document Version Intel Quartus
Prime Version

Changes

2014.08.18 14.0.a10.0 • Added recommendation to use register pipelining to obtain high
performance in DSP designs.

2014.06.30 14.0.0 Removed obsolete MegaWizard Plug-In Manager support.

November 2013 13.1.0 Removed HardCopy device support.

June 2012 12.0.0 • Revised section on inserting Altera templates.
• Code update for Example 11-51.
• Minor corrections and updates.

November 2011 11.1.0 • Updated document template.
• Minor updates and corrections.

December 2010 10.1.0 • Changed to new document template.
• Updated Unintentional Latch Generation content.
• Code update for Example 11-18.

July 2010 10.0.0 • Added support for mixed-width RAM
• Updated support for no_rw_check for inferring RAM blocks
• Added support for byte-enable

November 2009 9.1.0 • Updated support for Controlling Inference and Implementation in
Device RAM Blocks

• Updated support for Shift Registers

March 2009 9.0.0 • Corrected and updated several examples
• Added support for Arria II GX devices
• Other minor changes to chapter

November 2008 8.1.0 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 8.0.0 Updates for the Intel Quartus Prime software version 8.0 release,
including:
• Added information to “RAM
• Functions—Inferring ALTSYNCRAM and ALTDPRAM Megafunctions from

HDL Code” on page 6–13
• Added information to “Avoid Unsupported Reset and Control Conditions”

on page 6–14
• Added information to “Check Read-During-Write Behavior” on page 6–

16
• Added two new examples to “ROM Functions—Inferring ALTSYNCRAM

and LPM_ROM Megafunctions from HDL Code” on page 6–28:
Example 6–24 and Example 6–25

• Added new section: “Clock Multiplexing” on page 6–46
• Added hyperlinks to references within the chapter
• Minor editorial updates

Related Information

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.
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3. Managing Metastability with the Intel Quartus Prime
Software

You can use the Intel Quartus Prime software to analyze the average mean time
between failures (MTBF) due to metastability caused by synchronization of
asynchronous signals, and optimize the design to improve the metastability MTBF.

All registers in digital devices, such as FPGAs, have defined signal-timing requirements
that allow each register to correctly capture data at its input ports and produce an
output signal. To ensure reliable operation, the input to a register must be stable for a
minimum amount of time before the clock edge (register setup time or tSU) and a
minimum amount of time after the clock edge (register hold time or tH). The register
output is available after a specified clock-to-output delay (tCO).

If the data violates the setup or hold time requirements, the output of the register
might go into a metastable state. In a metastable state, the voltage at the register
output hovers at a value between the high and low states, which means the output
transition to a defined high or low state is delayed beyond the specified tCO. Different
destination registers might capture different values for the metastable signal, which
can cause the system to fail.

In synchronous systems, the input signals must always meet the register timing
requirements, so that metastability does not occur. Metastability problems commonly
occur when a signal is transferred between circuitry in unrelated or asynchronous
clock domains, because the signal can arrive at any time relative to the destination
clock.

The MTBF due to metastability is an estimate of the average time between instances
when metastability could cause a design failure. A high MTBF (such as hundreds or
thousands of years between metastability failures) indicates a more robust design. You
should determine an acceptable target MTBF in the context of your entire system and
taking in account that MTBF calculations are statistical estimates.

The metastability MTBF for a specific signal transfer, or all the transfers in a design,
can be calculated using information about the design and the device characteristics.
Improving the metastability MTBF for your design reduces the chance that signal
transfers could cause metastability problems in your device.

The Intel Quartus Prime software provides analysis, optimization, and reporting
features to help manage metastability in Intel designs. These metastability features
are supported only for designs constrained with the Intel Quartus Prime Timing
Analyzer. Both typical and worst-case MBTF values are generated for select device
families.

Related Information

• Understanding Metastability in FPGAs
For more information about metastability due to signal synchronization, its
effects in FPGAs, and how MTBF is calculated
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• Reliability Report
For information about Intel device reliability

3.1. Metastability Analysis in the Intel Quartus Prime Software

When a signal transfers between circuitry in unrelated or asynchronous clock domains,
the first register in the new clock domain acts as a synchronization register.

To minimize the failures due to metastability in asynchronous signal transfers, circuit
designers typically use a sequence of registers (a synchronization register chain or
synchronizer) in the destination clock domain to resynchronize the signal to the new
clock domain and allow additional time for a potentially metastable signal to resolve to
a known value. Designers commonly use two registers to synchronize a new signal,
but a standard of three registers provides better metastability protection.

The timing analyzer can analyze and report the MTBF for each identified synchronizer
that meets its timing requirements, and can generate an estimate of the overall
design MTBF. The software uses this information to optimize the design MTBF, and you
can use this information to determine whether your design requires longer
synchronizer chains.

Related Information

• Metastability and MTBF Reporting on page 97

• MTBF Optimization on page 100

3.1.1. Synchronization Register Chains

A synchronization register chain, or synchronizer, is defined as a sequence of registers
that meets the following requirements:

• The registers in the chain are all clocked by the same clock or phase-related
clocks.

• The first register in the chain is driven asynchronously or from an unrelated clock
domain.

• Each register fans out to only one register, except the last register in the chain.

The length of the synchronization register chain is the number of registers in the
synchronizing clock domain that meet the above requirements. The figure shows a
sample two-register synchronization chain.

Figure 26. Sample Synchronization Register Chain
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The path between synchronization registers can contain combinational logic if all
registers of the synchronization register chain are in the same clock domain. The
figure shows an example of a synchronization register chain that includes logic
between the registers.

Figure 27. Sample Synchronization Register Chain Containing Logic
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The timing slack available in the register-to-register paths of the synchronizer allows a
metastable signal to settle, and is referred to as the available settling time. The
available settling time in the MTBF calculation for a synchronizer is the sum of the
output timing slacks for each register in the chain. Adding available settling time with
additional synchronization registers improves the metastability MTBF.

Related Information

How Timing Constraints Affect Synchronizer Identification and Metastability Analysis
on page 96

3.1.2. Identify Synchronizers for Metastability Analysis

The first step in enabling metastability MTBF analysis and optimization in the Intel
Quartus Prime software is to identify which registers are part of a synchronization
register chain. You can apply synchronizer identification settings globally to
automatically list possible synchronizers with the Synchronizer identification option
on the Timing Analyzer page in the Settings dialog box.

Synchronization chains are already identified within most Intel FPGA intellectual
property (IP) cores.

Related Information

Identify Synchronizers for Metastability Analysis on page 96

3.1.3. How Timing Constraints Affect Synchronizer Identification and
Metastability Analysis

The timing analyzer can analyze metastability MTBF only if a synchronization chain
meets its timing requirements. The metastability failure rate depends on the timing
slack available in the synchronizer’s register-to-register connections, because that
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slack is the available settling time for a potential metastable signal. Therefore, you
must ensure that your design is correctly constrained with the real application
frequency requirements to get an accurate MTBF report.

In addition, the Auto and Forced If Asynchronous synchronizer identification
options use timing constraints to automatically detect the synchronizer chains in the
design. These options check for signal transfers between circuitry in unrelated or
asynchronous clock domains, so clock domains must be related correctly with timing
constraints.

The timing analyzer views input ports as asynchronous signals unless they are
associated correctly with a clock domain. If an input port fans out to registers that are
not acting as synchronization registers, apply a set_input_delay constraint to the
input port; otherwise, the input register might be reported as a synchronization
register. Constraining a synchronous input port with a set_max_delay constraint for
a setup (tSU) requirement does not prevent synchronizer identification because the
constraint does not associate the input port with a clock domain.

Instead, use the following command to specify an input setup requirement associated
with a clock:

set_input_delay -max -clock <clock name> <latch – launch – tsu
requirement> <input port name>

Registers that are at the end of false paths are also considered synchronization
registers because false paths are not timing-analyzed. Because there are no timing
requirements for these paths, the signal may change at any point, which may violate
the tSU and tH of the register. Therefore, these registers are identified as
synchronization registers. If these registers are not used for synchronization, you can
turn off synchronizer identification and analysis. To do so, set Synchronizer
Identification to Off for the first synchronization register in these register chains.

3.2. Metastability and MTBF Reporting

The Intel Quartus Prime software reports the metastability analysis results in the
Compilation Report and Timing Analyzer reports.

The MTBF calculation uses timing and structural information about the design, silicon
characteristics, and operating conditions, along with the data toggle rate.

If you change the Synchronizer Identification settings, you can generate new
metastability reports by rerunning the timing analyzer. However, you should rerun the
Fitter first so that the registers identified with the new setting can be optimized for
metastability MTBF.

Related Information

• Metastability Reports on page 98

• MTBF Optimization on page 100

• Synchronizer Data Toggle Rate in MTBF Calculation on page 100

• Understanding Metastability in FPGAs
For more information about how metastability MTBF is calculated
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3.2.1. Metastability Reports

Metastability reports summarize the results of the metastability analysis. In addition
to the MTBF Summary and Synchronizer Summary reports, the Timing Analyzer tool
reports additional statistics for each synchronizer chain.

If the design uses only the Auto Synchronizer Identification setting, the reports
list likely synchronizers but do not report MTBF. To obtain an MTBF for each register
chain you must force identification of synchronization registers.

If the synchronizer chain does not meet its timing requirements, the reports list
identified synchronizers but do not report MTBF. To obtain MTBF calculations, ensure
that the design is constrained correctly, and that the synchronizer meets its timing
requirements.

Related Information

• Identify Synchronizers for Metastability Analysis on page 96

• How Timing Constraints Affect Synchronizer Identification and Metastability
Analysis on page 96

3.2.1.1. MTBF Summary Report

The MTBF Summary reports an estimate of the overall robustness of cross-clock
domain and asynchronous transfers in the design. This estimate uses the MTBF results
of all synchronization chains in the design to calculate an MTBF for the entire design.

3.2.1.1.1. Typical and Worst-Case MTBF of Design

The MTBF Summary Report shows the Typical MTBF of Design and the Worst-Case
MTBF of Design for supported fully-characterized devices. The typical MTBF result
assumes typical conditions, defined as nominal silicon characteristics for the selected
device speed grade, as well as nominal operating conditions. The worst-case MTBF
result uses the worst case silicon characteristics for the selected device speed grade.

When you analyze multiple timing corners in the timing analyzer, the MTBF calculation
may vary because of changes in the operating conditions, and the timing slack or
available metastability settling time. Intel recommends running multi-corner timing
analysis to ensure that you analyze the worst MTBF results, because the worst timing
corner for MTBF does not necessarily match the worst corner for timing performance.

Related Information

Timing Analyzer
In Intel Quartus Prime Help

3.2.1.1.2.  Synchronizer Chains

The MTBF Summary report also lists the Number of Synchronizer Chains Found
and the length of the Shortest Synchronizer Chain, which can help you identify
whether the report is based on accurate information.

If the number of synchronizer chains found is different from what you expect, or if the
length of the shortest synchronizer chain is less than you expect, you might have to
add or change Synchronizer Identification settings for the design. The report also
provides the Worst Case Available Settling Time, defined as the available settling
time for the synchronizer with the worst MTBF.
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You can use the reported Fraction of Chains for which MTBFs Could Not be
Calculated to determine whether a high proportion of chains are missing in the
metastability analysis. A fraction of 1, for example, means that MTBF could not be
calculated for any chains in the design. MTBF is not calculated if you have not
identified the chain with the appropriate Synchronizer identification option, or if
paths are not timing-analyzed and therefore have no valid slack for metastability
analysis. You might have to correct your timing constraints to enable complete
analysis of the applicable register chains.

3.2.1.1.3.  Increasing Available Settling Time

The MTBF Summary report specifies how an increase of 100ps in available settling
time increases the MTBF values. If your MTBF is not satisfactory, this metric can help
you determine how much extra slack would be required in your synchronizer chain to
allow you to reach the desired design MTBF.

3.2.1.2. Synchronizer Summary Report

The Synchronizer Summary lists the synchronization register chains detected in the
design depending on the Synchronizer Identification setting.

The Source Node is the register or input port that is the source of the asynchronous
transfer. The Synchronization Node is the first register of the synchronization chain.
The Source Clock is the clock domain of the source node, and the Synchronization
Clock is the clock domain of the synchronizer chain.

This summary reports the calculated Worst-Case MTBF, if available, and the Typical
MTBF, for each appropriately identified synchronization register chain that meets its
timing requirement.

Related Information

Synchronizer Chain Statistics Report in the Timing Analyzer on page 99

3.2.1.3. Synchronizer Chain Statistics Report in the Timing Analyzer

The timing analyzer provides an additional report for each synchronizer chain.

The Chain Summary tab matches the Synchronizer Summary information described
in the Synchronizer Summary Report, while the Statistics tab adds more details.
These details include whether the Method of Synchronizer Identification was User
Specified (with the Forced if Asynchronous or Forced settings for the
Synchronizer Identification setting), or Automatic (with the Auto setting). The
Number of Synchronization Registers in Chainreport provides information about
the parameters that affect the MTBF calculation, including the Available Settling
Time for the chain and the Data Toggle Rate Used in MTBF Calculation.

The following information is also included to help you locate the chain in your design:

• Source Clock and Asynchronous Source node of the signal.

• Synchronization Clockin the destination clock domain.

• Node names of the Synchronization Registers in the chain.

Related Information

Synchronizer Data Toggle Rate in MTBF Calculation on page 100
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3.2.2. Synchronizer Data Toggle Rate in MTBF Calculation

The MTBF calculations assume the data being synchronized is switching at a toggle
rate of 12.5% of the source clock frequency. That is, the arriving data is assumed to
switch once every eight source clock cycles.

If multiple clocks apply, the highest frequency is used. If no source clocks can be
determined, the data rate is taken as 12.5% of the synchronization clock frequency.

If you know an approximate rate at which the data changes, specify it with the
Synchronizer Toggle Rate assignment in the Assignment Editor. You can also apply
this assignment to an entity or the entire design. Set the data toggle rate, in number
of transitions per second, on the first register of a synchronization chain. The timing
analyzer takes the specified rate into account when computing the MTBF of that
register chain. If a data signal never toggles and does not affect the reliability of the
design, you can set the Synchronizer Toggle Rate to 0 for the synchronization chain
so the MTBF is not reported. To apply the assignment with Tcl, use the following
command:

set_instance_assignment -name SYNCHRONIZER_TOGGLE_RATE <toggle rate in 
transitions/second> -to <register name>

In addition to Synchronizer Toggle Rate, there are two other assignments
associated with toggle rates, which are not used for metastability MTBF calculations.
The I/O Maximum Toggle Rate is only used for pins, and specifies the worst-case
toggle rates used for signal integrity purposes. The Power Toggle Rate assignment is
used to specify the expected time-averaged toggle rate, and is used by the Power
Analyzer to estimate time-averaged power consumption.

3.3. MTBF Optimization

In addition to reporting synchronization register chains and MTBF values found in the
design, the Intel Quartus Prime software can also protect these registers from
optimizations that might negatively impact MTBF and can optimize the register
placement and routing if the MTBF is too low.

Synchronization register chains must first be explicitly identified as synchronizers.
Intel recommends that you set Synchronizer Identification to Forced If
Asynchronous for all registers that are part of a synchronizer chain.

Optimization algorithms, such as register duplication and logic retiming in physical
synthesis, are not performed on identified synchronization registers. The Fitter
protects the number of synchronization registers specified by the Synchronizer
Register Chain Length option.

In addition, the Fitter optimizes identified synchronizers for improved MTBF by placing
and routing the registers to increase their output setup slack values. Adding slack in
the synchronizer chain increases the available settling time for a potentially
metastable signal, which improves the chance that the signal resolves to a known
value, and exponentially increases the design MTBF. The Fitter optimizes the number
of synchronization registers specified by the Synchronizer Register Chain Length
option.
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Metastability optimization is on by default. To view or change the Optimize Design
for Metastability option, click Assignments ➤ Settings ➤ Compiler Settings ➤
Advanced Settings (Fitter). To turn the optimization on or off with Tcl, use the
following command:

set_global_assignment -name OPTIMIZE_FOR_METASTABILITY <ON|OFF>

Related Information

Identify Synchronizers for Metastability Analysis on page 96

3.3.1. Synchronization Register Chain Length

The Synchronization Register Chain Length option specifies how many registers
should be protected from optimizations that might reduce MTBF for each register
chain, and controls how many registers should be optimized to increase MTBF with the
Optimize Design for Metastability option.

For example, if the Synchronization Register Chain Length option is set to 2,
optimizations such as register duplication or logic retiming are prevented from being
performed on the first two registers in all identified synchronization chains. The first
two registers are also optimized to improve MTBF when the Optimize Design for
Metastability option is turned on.

The default setting for the Synchronization Register Chain Length option is 3. The
first register of a synchronization chain is always protected from operations that might
reduce MTBF, but you should set the protection length to protect more of the
synchronizer chain. Intel recommends that you set this option to the maximum length
of synchronization chains you have in your design so that all synchronization registers
are preserved and optimized for MTBF.

Click Assignments ➤ Settings ➤ Compiler Settings ➤ Advanced Settings
(Synthesis) to change the global Synchronization Register Chain Length option.

You can also set the Synchronization Register Chain Length on a node or an entity
in the Assignment Editor. You can set this value on the first register in a
synchronization chain to specify how many registers to protect and optimize in this
chain. This individual setting is useful if you want to protect and optimize extra
registers that you have created in a specific synchronization chain that has low MTBF,
or optimize less registers for MTBF in a specific chain where the maximum frequency
or timing performance is not being met. To make the global setting with Tcl, use the
following command:

set_global_assignment -name SYNCHRONIZATION_REGISTER_CHAIN_LENGTH <number of 
registers>

To apply the assignment to a design instance or the first register in a specific chain
with Tcl, use the following command:

set_instance_assignment -name SYNCHRONIZATION_REGISTER_CHAIN_LENGTH <number 
of registers> -to <register or instance name>
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3.4. Reducing Metastability Effects

You can check your design's metastability MTBF in the Metastability Summary report,
and determine an acceptable target MTBF given the context of your entire system and
the fact that MTBF calculations are statistical estimates. A high metastability MTBF
(such as hundreds or thousands of years between metastability failures) indicates a
more robust design.

This section provides guidelines to ensure complete and accurate metastability
analysis, and some suggestions to follow if the Intel Quartus Prime metastability
reports calculate an unacceptable MTBF value. The Timing Optimization Advisor
(available from the Tools menu) gives similar suggestions in the Metastability
Optimization section.

Related Information

Metastability Reports on page 98

3.4.1. Apply Complete System-Centric Timing Constraints for the Timing
Analyzer

To enable the Intel Quartus Prime metastability features, make sure that the timing
analyzer is used for timing analysis.

Ensure that the design is fully timing constrained and that it meets its timing
requirements. If the synchronization chain does not meet its timing requirements,
MTBF cannot be calculated. If the clock domain constraints are set up incorrectly, the
signal transfers between circuitry in unrelated or asynchronous clock domains might
be identified incorrectly.

Use industry-standard system-centric I/O timing constraints instead of using FPGA-
centric timing constraints.

You should use set_input_delay constraints in place of set_max_delay
constraints to associate each input port with a clock domain to help eliminate false
positives during synchronization register identification.

Related Information

How Timing Constraints Affect Synchronizer Identification and Metastability Analysis
on page 96

3.4.2. Force the Identification of Synchronization Registers

Use the guidelines in Identifying Synchronizers for Metastability Analysis to ensure the
software reports and optimizes the appropriate register chains.

Identify synchronization registers by setting Synchronizer Identification to Forced
If Asynchronous in the Assignment Editor. If there are any registers that the
software detects as synchronous, but you want to analyze for metastability, apply the
Forced setting to the first synchronizing register. Set Synchronizer Identification
to Off for registers that are not synchronizers for asynchronous signals or unrelated
clock domains.
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To help you find the synchronizers in your design, you can set the global
Synchronizer Identification setting on theTiming Analyzer page of the Settings
dialog box to Auto to generate a list of all the possible synchronization chains in your
design.

Related Information

Identify Synchronizers for Metastability Analysis on page 96

3.4.3. Set the Synchronizer Data Toggle Rate

The MTBF calculations assume the data being synchronized is switching at a toggle
rate of 12.5% of the source clock frequency.

To obtain a more accurate MTBF for a specific chain or all chains in your design, set
the Synchronizer Toggle Rate.

Related Information

Synchronizer Data Toggle Rate in MTBF Calculation on page 100

3.4.4. Optimize Metastability During Fitting

Ensure that the Optimize Design for Metastability setting is turned on.

Related Information

MTBF Optimization on page 100

3.4.5. Increase the Length of Synchronizers to Protect and Optimize

Increase the Synchronizer Chain Length parameter to the maximum length of
synchronization chains in your design. If you have synchronization chains longer than
2 identified in your design, you can protect the entire synchronization chain from
operations that might reduce MTBF and allow metastability optimizations to improve
the MTBF.

Related Information

Synchronization Register Chain Length on page 101

3.4.6. Set Fitter Effort to Standard Fit instead of Auto Fit

If your design MTBF is too low after following the other guidelines, you can try
increasing the Fitter effort to perform more metastability optimization. The default
Auto Fit setting reduces the Fitter’s effort after meeting the design’s timing and
routing requirements to reduce compilation time.

This effort reduction can result in less metastability optimization if the timing
requirements are easy to meet. If Auto Fit reduces the Fitter’s effort during your
design compilation, setting the Fitter effort to Standard Fit might improve the
design’s MTBF results. To modify the Fitter Effort, click Assignments ➤ Settings ➤
Compiler Settings ➤ Advanced Settings (Fitter).
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3.4.7. Increase the Number of Stages Used in Synchronizers

Designers commonly use two registers in a synchronization chain to minimize the
occurrence of metastable events, and a standard of three registers provides better
metastability protection. However, synchronization chains with two or even three
registers may not be enough to produce a high enough MTBF when the design runs at
high clock and data frequencies.

If a synchronization chain is reported to have a low MTBF, consider adding an
additional register stage to your synchronization chain. This additional stage increases
the settling time of the synchronization chain, allowing more opportunity for the signal
to resolve to a known state during a metastable event. Additional settling time
increases the MTBF of the chain and improves the robustness of your design. However,
adding a synchronization stage introduces an additional stage of latency on the signal.

If you use the Altera FIFO IP core with separate read and write clocks to cross clock
domains, increase the metastability protection (and latency) for better MTBF. In the
DCFIFO parameter editor, choose the Best metastability protection, best fmax,
unsynchronized clocks option to add three or more synchronization stages. You can
increase the number of stages to more than three using the How many sync
stages? setting.

3.4.8. Select a Faster Speed Grade Device

The design MTBF depends on process parameters of the device used. Faster devices
are less susceptible to metastability issues. If the design MTBF falls significantly below
the target MTBF, switching to a faster speed grade can improve the MTBF
substantially.

3.5. Scripting Support

You can run procedures and make settings described in this chapter in a Tcl script. You
can also run procedures at a command prompt.

For detailed information about scripting command options, refer to the Intel Quartus
Prime Command-Line and Tcl API Help browser. To run the Help browser, type the
following command at the command prompt and then press Enter:

quartus_sh --qhelp

Related Information

• Intel Quartus Prime Standard Edition Settings File Reference Manual
For information about all settings and constraints in the Intel Quartus Prime
software.

• Tcl Scripting
In Intel Quartus Prime Standard Edition User Guide: Scripting

• Command Line Scripting
In Intel Quartus Prime Standard Edition User Guide: Scripting

3. Managing Metastability with the Intel Quartus Prime Software

UG-20175 | 2018.09.24

Intel Quartus Prime Standard Edition User Guide: Design Recommendations Send Feedback

104

https://www.intel.com/content/www/us/en/programmable/documentation/mwh1429917749112.html#aiz1489537673225
https://www.intel.com/content/www/us/en/programmable/documentation/jeb1529967983176.html#mwh1410471013439
https://www.intel.com/content/www/us/en/programmable/documentation/jeb1529967983176.html#mwh1410470998554
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20User%20Guide%20Design%20Recommendations%20(UG-20175%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


3.5.1. Identifying Synchronizers for Metastability Analysis

To apply the global Synchronizer Identification assignment, use the following
command:

set_global_assignment -name SYNCHRONIZER_IDENTIFICATION <OFF|AUTO|"FORCED IF 
ASYNCHRONOUS">

To apply the Synchronizer Identification assignment to a specific register or
instance, use the following command:

set_instance_assignment -name SYNCHRONIZER_IDENTIFICATION <AUTO|"FORCED IF 
ASYNCHRONOUS"|FORCED|OFF> -to <register or instance name>

3.5.2. Synchronizer Data Toggle Rate in MTBF Calculation

To specify a toggle rate for MTBF calculations as described on page “R**Synchronizer
Data Toggle Rate in MTBF Calculation”, use the following command:

set_instance_assignment -name SYNCHRONIZER_TOGGLE_RATE <toggle rate in 
transitions/second> -to <register name>

Related Information

Synchronizer Data Toggle Rate in MTBF Calculation on page 100

3.5.3. report_metastability and Tcl Command

If you use a command-line or scripting flow, you can generate the metastability
analysis reports described in “C**Metastability Reports” outside of the Intel Quartus
Prime and user interfaces.

The table describes the options for the report_metastability and Tcl command.

Table 3.   report_metastabilty Command Options

Option Description

-append If output is sent to a file, this option appends the result to
that file. Otherwise, the file is overwritten.

-file <name> Sends the results to an ASCII or HTML file. The extension
specified in the file name determines the file type — either
*.txt or *.html.

-panel_name <name> Sends the results to the panel and specifies the name of the
new panel.

-stdout Indicates the report be sent to the standard output, via
messages. This option is required only if you have selected
another output format, such as a file, and would also like to
receive messages.

Related Information

Metastability Reports on page 98
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3.5.4. MTBF Optimization

To ensure that metastability optimization described on page “C**MTBF Optimization”
is turned on (or to turn it off), use the following command:

set_global_assignment -name OPTIMIZE_FOR_METASTABILITY <ON|OFF>

Related Information

MTBF Optimization on page 100

3.5.5. Synchronization Register Chain Length

To globally set the number of registers in a synchronization chain to be protected and
optimized as described on page “C**Synchronization Register Chain Length”, use the
following command:

set_global_assignment -name SYNCHRONIZATION_REGISTER_CHAIN_LENGTH <number of 
registers>

To apply the assignment to a design instance or the first register in a specific chain,
use the following command:

set_instance_assignment -name SYNCHRONIZATION_REGISTER_CHAIN_LENGTH <number 
of registers> -to <register or instance name>

Related Information

Synchronization Register Chain Length on page 101

3.6. Managing Metastability

Intel’s Intel Quartus Prime software provides industry-leading analysis and
optimization features to help you manage metastability in your FPGA designs. Set up
your Intel Quartus Prime project with the appropriate constraints and settings to
enable the software to analyze, report, and optimize the design MTBF. Take advantage
of these features in the Intel Quartus Prime software to make your design more robust
with respect to metastability.

3.7. Managing Metastability with the Intel Quartus Prime Software
Revision History

The following revisions history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2018.09.24 18.1.0 Initial release in Intel Quartus Prime Standard Edition User Guide.

2017.11.06 17.1.0 • Corrected broken links to other documents.

2015.11.02 15.1.0 • Changed instances of Quartus II to Intel Quartus Prime.

2014.12.15 14.1.0 Updated location of Fitter Settings, Analysis & Synthesis Settings, and
Physical Optimization Settings to Compiler Settings.

June 2014 14.0.0 Updated formatting.

June 2012 12.0.0 Removed survey link.

continued...   
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Document Version Intel Quartus
Prime Version

Changes

November 2011 10.0.2 Template update.

December 2010 10.0.1 Changed to new document template.

July 2010 10.0.0 Technical edit.

November 2009 9.1.0 Clarified description of synchronizer identification settings.
Minor changes to text and figures throughout document.

March 2009 9.0.0 Initial release.

Related Information

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.
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A. Intel Quartus Prime Standard Edition User Guides
Refer to the following user guides for comprehensive information on all phases of the
Intel Quartus Prime Standard Edition FPGA design flow.

Related Information

• Intel Quartus Prime Standard Edition User Guide: Getting Started
Introduces the basic features, files, and design flow of the Intel Quartus Prime
Standard Edition software, including managing Intel Quartus Prime Standard
Edition projects and IP, initial design planning considerations, and project
migration from previous software versions.

• Intel Quartus Prime Standard Edition User Guide: Platform Designer
Describes creating and optimizing systems using Platform Designer (Standard),
a system integration tool that simplifies integrating customized IP cores in your
project. Platform Designer (Standard) automatically generates interconnect
logic to connect intellectual property (IP) functions and subsystems.

• Intel Quartus Prime Standard Edition User Guide: Design Recommendations
Describes best design practices for designing FPGAs with the Intel Quartus
Prime Standard Edition software. HDL coding styles and synchronous design
practices can significantly impact design performance. Following recommended
HDL coding styles ensures that Intel Quartus Prime Standard Edition synthesis
optimally implements your design in hardware.

• Intel Quartus Prime Standard Edition User Guide: Design Compilation
Describes set up, running, and optimization for all stages of the Intel Quartus
Prime Standard Edition Compiler. The Compiler synthesizes, places, and routes
your design before generating a device programming file.

• Intel Quartus Prime Standard Edition User Guide: Design Optimization
Describes Intel Quartus Prime Standard Edition settings, tools, and techniques
that you can use to achieve the highest design performance in Intel FPGAs.
Techniques include optimizing the design netlist, addressing critical chains that
limit retiming and timing closure, and optimization of device resource usage.

• Intel Quartus Prime Standard Edition User Guide: Programmer
Describes operation of the Intel Quartus Prime Standard Edition Programmer,
which allows you to configure Intel FPGA devices, and program CPLD and
configuration devices, via connection with an Intel FPGA download cable.

• Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration
Describes Partial Reconfiguration, an advanced design flow that allows you to
reconfigure a portion of the FPGA dynamically, while the remaining FPGA
design continues to function. Define multiple personas for a particular design
region, without impacting operation in other areas.
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• Intel Quartus Prime Standard Edition User Guide: Third-party Simulation
Describes RTL- and gate-level design simulation support for third-party
simulation tools by Aldec*, Cadence*, Mentor Graphics*, and Synopsys* that
allow you to verify design behavior before device programming. Includes
simulator support, simulation flows, and simulating Intel FPGA IP.

• Intel Quartus Prime Standard Edition User Guide: Third-party Synthesis
Describes support for optional synthesis of your design in third-party synthesis
tools by Mentor Graphics*, and Synopsys*. Includes design flow steps,
generated file descriptions, and synthesis guidelines.

• Intel Quartus Prime Standard Edition User Guide: Debug Tools
Describes a portfolio of Intel Quartus Prime Standard Edition in-system design
debugging tools for real-time verification of your design. These tools provide
visibility by routing (or “tapping”) signals in your design to debugging logic.
These tools include System Console, Signal Tap logic analyzer, Transceiver
Toolkit, In-System Memory Content Editor, and In-System Sources and Probes
Editor.

• Intel Quartus Prime Standard Edition User Guide: Timing Analyzer
Explains basic static timing analysis principals and use of the Intel Quartus
Prime Standard Edition Timing Analyzer, a powerful ASIC-style timing analysis
tool that validates the timing performance of all logic in your design using an
industry-standard constraint, analysis, and reporting methodology.

• Intel Quartus Prime Standard Edition User Guide: Power Analysis and Optimization
Describes the Intel Quartus Prime Standard Edition Power Analysis tools that
allow accurate estimation of device power consumption. Estimate the power
consumption of a device to develop power budgets and design power supplies,
voltage regulators, heat sink, and cooling systems.

• Intel Quartus Prime Standard Edition User Guide: Design Constraints
Describes timing and logic constraints that influence how the Compiler
implements your design, such as pin assignments, device options, logic
options, and timing constraints. Use the Pin Planner to visualize, modify, and
validate all I/O assignments in a graphical representation of the target device.

• Intel Quartus Prime Standard Edition User Guide: PCB Design Tools
Describes support for optional third-party PCB design tools by Mentor
Graphics* and Cadence*. Also includes information about signal integrity
analysis and simulations with HSPICE and IBIS Models.

• Intel Quartus Prime Standard Edition User Guide: Scripting
Describes use of Tcl and command line scripts to control the Intel Quartus
Prime Standard Edition software and to perform a wide range of functions,
such as managing projects, specifying constraints, running compilation or
timing analysis, or generating reports.
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