DER FORSCHUNG \| DER LEHRE \| DER BILDUNG

Introduction to Robotics

Lecture 1

Lasse Einig, Jianwei Zhang
[einig, zhang]@informatik.uni-hamburg.de

University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences
Department of Informatics
Technical Aspects of Multimodal Systems

July 12, 2018

General Information

Lecture:
Room:
Web:
Name:
Office:
E-mail:
Consultation:
Secretary:
Office:
Tel.:
E-mail:

Friday $10: 00$ c.t. $-12: 00$ c.t.
F-334
http://tams.inf...burg.de/lectures/
Prof. Dr. Jianwei Zhang
F-330a
zhang@informatik.uni-hamburg.de by arrangement

Tatjana Tetsis
F-311
+49 40 42883-2430
tetsis@informatik.uni-hamburg.de

General Information (cont.)

Exercises	Friday 8:00 c.t. - 10:00 c.t. /
/RPC:	Friday 10:00 c.t. - 12:00 c.t. (alternating)
	see website for dates
Room:	F-334/F-304
Web:	http://tams.inf...burg.de/lectures/
Name:	Lasse Einig
Office:	F-324
Tel.:	$+494042883-2504$
E-mail:	einig@informatik. uni-hamburg.de Consultation: by arrangement (eMail)

General Information (cont.)

- See website for more information http://tams.informatik.uni-hamburg.de/lectures/ 2019ss/vorlesung/itr

Exercises/RPC

Criteria for Course Certificate:

- min. 50% of points in the exercises
- min. 33% in each exercise
- regular presence in exercises and RPC
- presentation of two (sub-)tasks
- solutions in groups of 2-3
- no solo submission
- each member of a group must be able to present the tasks
- failure to present results in 0 points

Previous Knowledge

- Basics in physics
- basics of electrical engineering
- Linear algebra
- Elementary algebra of matrices
- Related computer skills
- git (RPC)
- Linux (RPC)
- access to mafiasi.de and pool computers
- Python (RPC and Excercises)
- Matlab (Excercises, recommended)

Own Hardware

You may use your own laptop for the RPC (but not recommended). If you do, you require a Ubuntu 16.04 (Live or Virtual Machine) and fully installed ros-kinetic-desktop-full

- Mathematic concepts
- description of space and coordinate transformations
- kinematics
- dynamics
- Control concepts
- movement execution
- Programming aspects
- ROS, URDF, Kinematics Simulator
- Task-oriented movement and planning

Outline

Introduction
Basic terms
Robot Classification
Coordinate systems
Kinematic Equations
Robot Description
Inverse Kinematics for Manipulators
Differential motion with homogeneous transformations
Jacobian
Trajectory planning
Trajectory generation
Dynamics
Principles of Walking

Outline (cont.)

Robot Control
Task-Level Programming and Trajectory Generation
Task-level Programming and Path Planning
Task-level Programming and Path Planning
Architectures of Sensor-based Intelligent Systems
Summary
Conclusion and Outlook

Components of a robot

Robotics

Intelligent combination of computers, sensors and actuators.

An Interdisciplinary Field

Definition of Industry Robots

According to RIA 1, a robot is:
...a reprogrammable and multifunctional manipulator, devised for the transport of materials, parts, tools or specialized systems, with varied and programmed movements, with the aim of carrying out varied tasks.

Intelligent System

Is such a robot also an intelligent system?

[^0]
Background of Some Terms

Robot became popular through a stage play by Karel Čapek in 1923, being a capable servant.
Robotics was invented by Isaac Asimov in 1942.
Autonomous (literally) (gr.) "living by one's own laws" (Auto: Self; nomos: Law)
Personal Robot a small, mobile robot system with simple skills regarding vision system, speech, movement, etc. (from 1980).

Service Robot a mobile handling system featuring sensors for sophisticated operations in service areas (from 1989).
Intelligent Robot, Cognitive Robot, Intelligent System ...

The number of independent coordinate planes or orientations on which a joint or end-point of a robot can move. The DOF are determined by the number of independent variables of the control system.

- Point on a line
- Point on a plane
- Point in space
- Rigid body
- one a surface
- on a plane
- in space
- Non-rigid body
- Manipulator
- number of independently controllable joints
- a robot should have at least two

DOF Examples

80's toy robot (Quickshot) 4-DOF + 1-DOF gripper

DOF Examples (cont.)

KUKA LWR 4+ arm with Schunk gripper 7-DOF + 1-DOF gripper

DOF Examples (cont.)

Shadow C5 Air Muscle hand
20-DOF +4 unactuated joints

PR2 service robot with Shadow C6 electrical hand 19-DOF + 20-DOF gripper

Robot classification

by input power source

- electrical
- hydraulic
- pneumatic
by field of work
- stationary
- arms with 2 DOF
- arms with 3 DOF
- ...
- arms with 6 DOF
- redundant arms (>6 DOF)
- multi-finger hand
- mobile
- automated guided vehicles
- portal robot
- mobile platform
- running machines and flying robots
- anthropomorphic robots (humanoids)

Robot Classification (cont.)

by type of joint

- translatory
- linear
- prismatic
- rotatory
- revolute
- combinations
- ball
- cylindrical
- polar
- cartesian
by robot coordinate system
- cartesian
- cylindrical
- spherical / polar
- SCARA
- joint-arm
by usage
- object manipulation
- object modification
- object processing
- transport
- assembly
- quality testing
- deployment in non-accessible areas
- agriculture and forestry
- underwater
- building industry
- service robot in medicine, housework, ...
by intelligence
- manual control
- programmable for repeated movements
- featuring cognitive ability and responsiveness
- adaptive on task level

Robotics is Fun!

- robots move - computers don't
- interdisciplinarity
- soft- and hardware technology
- sensor technology
- mechatronics
- control engineering
- multimedia,...
- A dream of mankind:

Computers are the most ingenious product of human laziness to date.

$$
\text { computers } \Rightarrow \text { robots }
$$

Literature

Slides and literature references ©
http://tams.informatik.uni-hamburg.de/lectures/

- K. Fu, R. González, and C. Lee, Robotics: Control, Sensing, Vision, and Intelligence. McGraw-Hill series in CAD/CAM robotics and computer vision, McGraw-Hill, 1987
- R. Paul, Robot Manipulators: Mathematics, Programming, and Control: the Computer Control of Robot Manipulators. Artificial Intelligence Series, MIT Press, 1981
- J. Craig, Introduction to Robotics: Pearson New International Edition: Mechanics and Control. Always learning, Pearson Education, Limited, 2013

Outline

Introduction
Coordinate systems
Concatenation of rotation matrices
Inverse transformation
Transformation equation
Summary of homogeneous transformations
Outlook
Kinematic Equations
Robot Description
Inverse Kinematics for Manipulators
Differential motion with homogeneous transformations
Jacobian
Trajectory planning
Trajectory generation

Outline (cont.)

Dynamics
Principles of Walking
Robot Control
Task-Level Programming and Trajectory Generation
Task-level Programming and Path Planning
Task-level Programming and Path Planning
Architectures of Sensor-based Intelligent Systems
Summary
Conclusion and Outlook

Coordinate systems

The pose of objects, in other words their location and orientation in Euclidian space can be described through specification of a cartesian coordinate system (CS) in relation to a base coordinate system (B).

Specification of location and orientation

Position (object coordinates):

- translation along the axes of the base coordinate system (B)

- given by $\mathbf{p}=\left[p_{x}, p_{y}, p_{z}\right]^{T} \in \mathcal{R}^{3}$

Specification of location and orientation (cont.)

Orientation (in space):

- Euler-angles φ, θ, ψ
- rotations are performed successively around the axes, e.g. $Z Y^{\prime} X^{\prime \prime}$ or $Z X^{\prime} Z^{\prime \prime}$ (12 possibilities!)
- order depends on reference coordinates
- object (right), world (left)

- Gimbal lock!
- Roll-Pitch-Yaw
- specific case of Euler-angles (used in aviation and maritime)
- rotation with respect to object axes (x -Roll, y -Pitch, z -Yaw)
- given by Rotationmatrix $R \in \mathcal{R}^{3 \times 3}$
- redundant; 9 parameters for 3 DOF

Specification of location and orientation (cont.)

- Position:
- given through $\vec{p} \in \mathcal{R}^{3}$
- Orientation:
- given through projection $\vec{n}, \vec{o}, \vec{a} \in \mathcal{R}^{3}$ of the axes of the CS to the origin system
- summarized to rotation matrix $R=\left[\begin{array}{ccc}\vec{n} & \vec{o} & \vec{a}\end{array}\right] \in \mathcal{R}^{3 \times 3}$
- redundant, since there are 9 parameters for 3 degrees of freedom
- other kinds of representation possible, e.g. roll, pitch, yaw angle, quaternions etc.

Coordinate transformations

- Transform of Coordinate systems: frame: a reference CS typical frames:
- robot base
- end-effector
- table (world)
- object
- camera
- screen
- ...

Frame-transformations transform one frame into another. ${ }^{A} T_{B}$ transforms frame A to frame B (Latex: $\$^{\wedge}\{\mathrm{A}\} \mathrm{T}_{-}\{\mathrm{B}\} \$$)

- Combination of \vec{p} and R to $T=\left[\begin{array}{ll}R & \vec{p} \\ \overrightarrow{0} & 1\end{array}\right] \in \mathcal{R}^{4 \times 4}$
- Concatenation of several T through matrix multiplication
- ${ }^{A} T_{B}{ }^{B} T_{C}={ }^{A} T_{C}$
- not commutative, in other words ${ }^{B} T_{C}{ }^{A} T_{B} \neq{ }^{A} T_{B}{ }^{B} T_{C}$
- Homogeneous transformation matrices:

$$
T=\left[\begin{array}{ll}
R & \vec{p} \\
P & S
\end{array}\right]
$$

where P depicts the perspective transformation and S the scaling.

- In robotics, $P=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$ and $S=1$. Other values are used for computer graphics.

Translatory transformation

A translation with a vector $\left[p_{x}, p_{y}, p_{z}\right]^{T}$ is expressed through a transformation H :

$$
H=T_{\left(p_{x}, p_{y}, p_{z}\right)}=\left[\begin{array}{cccc}
1 & 0 & 0 & p_{x} \\
0 & 1 & 0 & p_{y} \\
0 & 0 & 1 & p_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Rotatory transformation

(shortened representation: $S: \sin , C: \cos$)
The transformation corresponding to a rotation around the x-axis with angle $\varphi(p h i)$:

$$
R_{x, \varphi}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & C \varphi & -S \varphi & 0 \\
0 & S \varphi & C \varphi & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Rotatory transformation (cont.)

> Coordinates of a circle $x=r \sin \theta, y=r \cos \theta$

Rotatory transformation (cont.)

The transformation corresponding to a rotation around the y-axis with angle θ (theta):

$$
R_{y, \theta}=\left[\begin{array}{cccc}
C \theta & 0 & S \theta & 0 \\
0 & 1 & 0 & 0 \\
-S \theta & 0 & C \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Rotatory transformation (cont.)

The transformation corresponding to a rotation around the z-axis with angle $\psi(p s i)$:

$$
R_{z, \psi}=\left[\begin{array}{cccc}
C \psi & -S \psi & 0 & 0 \\
S \psi & C \psi & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Signs of transformations:

$$
R=\left[\begin{array}{cccc}
+ & - & + & 0 \\
+ & + & - & 0 \\
- & + & + & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Multiple rotations

Sequential multiplication of the transformation matrices by order of rotation.

1. rotation φ around the x-axis

Z $R_{x, \varphi}-$ Roll
2. rotation θ around the y-axis $R_{y, \theta}$ - Pitch
3. rotation ψ around the z-axis

$$
R_{z, \psi}-\mathrm{Yaw}
$$

Concatenation of rotation matrices

$$
\begin{gathered}
R_{\psi, \theta, \varphi}=R_{z, \psi} R_{y, \theta} R_{x, \varphi} \\
=\left[\begin{array}{cccc}
C \psi & -S \psi & 0 & 0 \\
S \psi & C \psi & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
C \theta & 0 & S \theta & 0 \\
0 & 1 & 0 & 0 \\
-S \theta & 0 & C \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & C \varphi & -S \varphi & 0 \\
0 & S \varphi & C \varphi & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
=\left[\begin{array}{ccc}
C \psi C \theta & C \psi S \theta S \varphi-S \psi C \varphi & C \psi S \theta C \varphi+S \psi S \varphi \\
S \psi C \theta & S \psi S \theta S \varphi+C \psi C \varphi & S \psi S \theta C \varphi-C \psi S \varphi \\
-S \theta & C \theta S \varphi & 0 \\
0 & 0 & C \theta C \varphi \\
0 \\
- & 0 & 1
\end{array}\right]
\end{gathered}
$$

Remark: Matrix multiplication is not commutative:

$$
A B \neq B A
$$

Coordinate frames

They are represented as four vectors using the elements of homogeneous transformation.

$$
H=\left[\begin{array}{cccc}
\mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{r}_{3} & \mathbf{p} \tag{1}\\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
r_{11} & r_{21} & r_{31} & p_{x} \\
r_{12} & r_{22} & r_{32} & p_{y} \\
r_{13} & r_{23} & r_{33} & p_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Inverse transformation

The inverse of a rotation matrix is simply its transpose:

$$
R^{-1}=R^{T} \text { and } R R^{T}=l
$$

whereas / is the identity matrix.
The inverse of (1) is:

$$
H^{-1}=\left[\begin{array}{cccc}
r_{11} & r_{12} & r_{13} & -\mathbf{p}^{\mathbf{T}} \cdot \mathbf{r}_{1} \\
r_{21} & r_{22} & r_{23} & -\mathbf{p}^{\mathbf{T}} \cdot \mathbf{r}_{2} \\
r_{31} & r_{32} & r_{33} & -\mathbf{p}^{\mathbf{T}} \cdot \mathbf{r}_{3} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

whereas $\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}$ and \mathbf{p} are the four column vectors of (1) and \cdot represents the scalar product of vectors.

Relative transformations

One has the following transformations:

- Z:

World \rightarrow Manipulator base

- T_{6} :

Manipulator base \rightarrow Manipulator end

- E:

Manipulator end \rightarrow Endeffector

- B:

World \rightarrow Object

- G:

Object \rightarrow Endeffector

There are two descriptions for the desired endeffector position, one in relation to the object and the other in relation to the manipulator. Both descriptions should equal to each other for grasping:

$$
Z T_{6} E=B G
$$

In order to find the manipulator transformation:

$$
T_{6}=Z^{-1} B G E^{-1}
$$

In order to determine the position of the object:

$$
B=Z T_{6} E G^{-1}
$$

This is also called kinematic chain.

Example: coordinate transformation

- A homogeneous transformation depicts the position and orientation of a coordinate frame in space.
- If the coordinate frame is defined in relation to a solid object, the position and orientation of the solid object is unambiguously specified.
- The depiction of an object A can be derived from a homogeneous transformation relating to object A^{\prime}. This is also possible the other way around using inverse transformation.
- Several translations and rotations can be multiplied. The following applies:
- If the rotations / translations are performed in relation to the current, newly defined (or changed) coordinate system, the newly added transformation matrices need to be multiplicatively appended on the right-hand side.
- If all of them are performed in relation to the fixed reference coordinate system, the transformation matrices need to be multiplicatively appended on the left-hand side.
- A homogeneous transformation can be segmented into a rotational and a translational part.

Robot kinematics

Reduction to area of interest

For grasping, position and orientation of the robot gripper are of interest.

The robot itself is reduced to a single transformation and treated as a solid object.

Coordinates of a manipulator

- Joint coordinates:

A vector $\mathbf{q}(t)=\left(q_{1}(t), q_{2}(t), \ldots, q_{n}(t)\right)^{T}$
(a robot configuration)

- Endeffector coordinates (Object coordinates):
A Vector $\mathbf{p}=\left[p_{x}, p_{y}, p_{z}\right]^{T}$
- Description of orientations:
- Euler angle φ, θ, ψ
- Rotation matrix:

$$
R=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]
$$

Outlook: Denavit-Hartenberg Convention

- Definition of one coordinate system per segment $i=1 . . n$
- Definition of 4 parameters per segment $i=1$..n
- Definition of one transformation A_{i} per segment $i=1$..n
- $T_{6}=\prod_{i=1}^{n} A_{i}$

Outlook

Later Denavit Hartenberg Convention will be presented in more detail!

Outlook: Kinematics

- The direct kinematic problem:

Given the joint values and geometrical parameters of all joints of a manipulator, how is it possible to determine the position and orientation of the manipulator's endeffector?

- The inverse kinematic problem:

Given a desired position and orientation of the manipulator's endeffector and the geometrical parameters of all joints, is it possible for the manipulator to reach this position / orientation? If it is, how many manipulator configurations are capable of matching these conditions?

Example

A two-joint-manipulator moving on a plane

Outlook: Kinematics solving

T_{6} defines, how the n joint angles are supposed to be consolidated to 12 non-linear formulas in order to describe 6 cartesian degrees of freedom.

- Forward kinematics K defined as:
- $K: \vec{\theta} \in \mathcal{R}^{n} \rightarrow \vec{x} \in \mathcal{R}^{6}$
- Joint angle \rightarrow Position + Orientation
- Inverse kinematics K^{-1} defined as:
- $K^{-1}: \vec{x} \in \mathcal{R}^{6} \rightarrow \vec{\theta} \in \mathcal{R}^{n}$
- Position + Orientation \rightarrow Joint angle
- non-trivial, since K is usually not unambiguously invertible

Outlook: Differential movement

Non-linear kinematics K can be linearized through the Taylor series $f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}$.

- The Jacobian matrix J as factor for $n=1$ of the multi-dimensional Taylor series is defined as:
- J $J \vec{\theta}): \dot{\vec{\theta}} \in \mathcal{R}^{n} \rightarrow \dot{\vec{x}} \in \mathcal{R}^{6}$
- Joint speed \rightarrow cartesian speed
- Inverse Jacobian matrix J^{-1} defined as:
- $J^{-1}(\vec{\theta}): \dot{\vec{x}} \in \mathcal{R}^{6} \rightarrow \dot{\vec{\theta}} \in \mathcal{R}^{n}$
- cartesian speed \rightarrow Joint speed
- non-trivial, since J not necessarily invertible (e.g. not quadratic)

Outlook: Motion planning

Since T_{6} describes only the target position, explicit generation of a trajectory is necessary.
Depending on constraints different for:

- joint angle space
- cartesian space

Interpolation through:

- piecewise straight lines
- piecewise polynoms
- B-Splines

Suggestions

- Read (available on google \& library):
- J. F. Engelberger, Robotics in service. MIT Press, 1989
- K. Fu, R. González, and C. Lee, Robotics: Control, Sensing, Vision, and Intelligence. McGraw-Hill series in CAD/CAM robotics and computer vision, McGraw-Hill, 1987
- R. Paul, Robot Manipulators: Mathematics, Programming, and Control: the Computer Control of Robot Manipulators. Artificial Intelligence Series, MIT Press, 1981
- J. Craig, Introduction to Robotics: Pearson New International Edition: Mechanics and Control. Always learning, Pearson Education, Limited, 2013
- Repeat your linear algebra knowledge, especially regarding elementary algebra of matrices.

DER FORSCHUNG \| DER LEHRE \| DER BILDUNG

Introduction to Robotics

Lecture 2

Lasse Einig, Jianwei Zhang
[einig, zhang]@informatik.uni-hamburg.de

University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences
Department of Informatics
Technical Aspects of Multimodal Systems

July 12, 2018

Outline

Introduction

Coordinate systems

Kinematic Equations

Denavit-Hartenberg convention
Parameters for describing two arbitrary links
Example DH-Parameter of a single joint
Example DH-Parameter for a manipulator
Example featuring PUMA 560
Example featuring Mitsubishi PA10-7C
Robot Description
Inverse Kinematics for Manipulators
Differential motion with homogeneous transformations
Jacobian
Trajectory planning

Outline (cont.)

Trajectory generation
Dynamics
Principles of Walking
Robot Control
Task-Level Programming and Trajectory Generation
Task-level Programming and Path Planning
Task-level Programming and Path Planning
Architectures of Sensor-based Intelligent Systems
Summary
Conclusion and Outlook

Forward kinematics

- Movement depiction of mechanical systems
- Here, only position is addressed
- Translate a series of joint parameter to cartesian position
- Depiction of the mechanical system as fixed body chain
- Serial robots
- Types of joints
- rotational joints
- prismatic joints

Mitsubishi PA10-6C

Kinematics

- Transformation regulation, which describes the relation between joint coordinates of a robot \mathbf{q} and the environment coordinates of the endeffector \mathbf{x}
- Solely determined by the geometry of the robot
- Base frame
- Relation of frames to one another
\Longrightarrow Formation of a recursive chain
- Joint coordinates:

$$
q_{i}=\left\{\begin{array}{l}
\theta_{i}: \text { rotational joint } \\
d_{i}: \text { translation joint }
\end{array}\right.
$$

Purpose

Absolute determination of the position of the endeffector (TCP) in the cartesian coordinate system

Kinematic equations

- Manipulator is considered as set of links connected by joints
- In each link, a coordinate frame is defined
- A homogeneous matrix ${ }^{i-1} A_{i}$ depicts the relative translation and rotation between two consecutive joints
- Joint transition

Kinematic equations (cont.)

For a manipulator consisting of six joints:

- ${ }^{0} A_{1}$: depicts position and orientation of the first link
- ${ }^{1} A_{2}$: position/orientation of the 2 nd link with respect to link 1
- ${ }^{5} A_{6}$: depicts position and orientation of the 6th link in regard to link 5

The resulting product is defined as:

$$
T_{6}={ }^{0} A_{1}{ }^{1} A_{2}{ }^{2} A_{3}{ }^{3} A_{4}{ }^{4} A_{5}{ }^{5} A_{6}
$$

Kinematic description

- Calculation of $T_{6}=\prod_{i=1}^{n} A_{i} A_{i}$ short for ${ }^{i-1} A_{i}$
- T_{6} defines, how n joint transitions describe 6 cartesian DOF
- Definition of one coordinate system (CS) per segment i
- generally arbitrary definition
- Determination of one transformation A_{i} per segment $i=1$..n
- generally 6 parameters (3 rotational +3 translational) required
- different sets of parameters and transformation orders possible

Solution

Denavit-Hartenberg (DH) convention

Right-Handed Coordinate System

Tool Center Point (TCP) description

Using a vector \vec{p}, the TCP position is depicted.

Three unit vectors:

- $\vec{a}:$ (approach vector),
- \vec{o} : (orientation vector),
- \vec{n} : (normal vector)
specify the orientation of the TCP.

Tool Center Point (TCP) description (cont.)

Thus, the transformation T consists of the following elements:

$$
T=\left[\begin{array}{cccc}
\vec{n} & \vec{o} & \vec{a} & \vec{p} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Denavit-Hartenberg convention

- first published by Denavit and Hartenberg in 1955
- established principle
- determination of a transformation matrix A_{i} using four parameter
- joint length, joint twist, joint offset and joint angle $\left(a_{i}, \alpha_{i}, d_{i}, \theta_{i}\right)$
- complex transformation matrix A_{i} results from four atomic transformations

Transformation order

Classic:

$$
A_{i}=R_{z_{i-1}}\left(\theta_{i}\right) \cdot T_{z_{i-1}}\left(d_{i}\right) \cdot T_{x_{i}}\left(a_{i}\right) \cdot R_{x_{i}}\left(\alpha_{i}\right) \rightarrow C S_{i}
$$

Modified:

$$
A_{i}=R_{x_{i-1}}\left(\alpha_{i-1}\right) \cdot T_{x_{i-1}}\left(a_{i-1}\right) \cdot R_{z_{i}}\left(\theta_{i}\right) \cdot T_{x_{i}}\left(d_{i}\right) \rightarrow C S_{i}
$$

Classic Parameters

Transformation order

$$
A_{i}=R_{z_{i-1}}\left(\theta_{i}\right) \cdot T_{z_{i-1}}\left(d_{i}\right) \cdot T_{x_{i}}\left(a_{i}\right) \cdot R_{x_{i}}\left(\alpha_{i}\right) \rightarrow C S_{i}
$$

Modified Parameters

Kinematic Equations - Denavit-Hartenberg convention

Transformation order

$$
A_{i}=R_{x_{i-1}}\left(\alpha_{i-1}\right) \cdot T_{x_{i-1}}\left(a_{i-1}\right) \cdot R_{z_{i}}\left(\theta_{i}\right) \cdot T_{x_{i}}\left(d_{i}\right) \rightarrow C S_{i}
$$

DH-Parameters and -Preconditions (classic)

Idea: Determination of the transformation matrix A_{i} using four joint parameters ($a_{i}, \alpha_{i}, d_{i}, \theta_{i}$) and two preconditions
$\mathrm{DH}_{1} x_{i}$ is perpendicular to z_{i-1}
DH2 x_{i} intersects z_{i-1}

- $C S_{0}$ is the stationary origin at the base of the manipulator
- axis z_{i-1} is set along the axis of motion of the $i^{t h}$ joint
- axis x_{i} is parallel to the common normal of z_{i-1} and z_{i} $\left(x_{i} \|\left(z_{i-1} \times z_{i}\right)\right)$.
- axis y_{i} concludes a right-handed coordinate system

Frame transformation for two links (classic)

Creation of the relation between frame i and frame $(i-1)$ through the following rotations and translations:

- Rotate around z_{i-1} by angle θ_{i}
- Translate along z_{i-1} by d_{i}
- Translate along x_{i} by a_{i}
- Rotate around x_{i} by angle α_{i}

Using the product of four homogeneous transformations, which transform the coordinate frame $i-1$ into the coordinate frame i, the matrix A_{i} can be calculated as follows:

$$
A_{i}=R_{z_{i-1}}\left(\theta_{i}\right) \cdot T_{z_{i-1}}\left(d_{i}\right) \cdot T_{x_{i}}\left(a_{i}\right) \cdot R_{x_{i}}\left(\alpha_{i}\right) \rightarrow C S_{i}
$$

Frame transformation for two links (classic) (cont.)

$$
\begin{gathered}
A_{i}=\left[\begin{array}{cccc}
C \theta_{i} & -S \theta_{i} & 0 & 0 \\
S \theta_{i} & C \theta_{i} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cc}
\cdots & 0 \\
\cdots & 0 \\
\cdots & d_{i} \\
\cdots & 1
\end{array}\right]\left[\begin{array}{cc}
\cdots & a_{i} \\
\cdots & 0 \\
\cdots & 0 \\
\cdots & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & C \alpha_{i} & -S \alpha_{i} & 0 \\
0 & S \alpha_{i} & C \alpha_{i} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
\\
=\left[\begin{array}{cccc}
C \theta_{i} & -S \theta_{i} C \alpha_{i} & S \theta_{i} S \alpha_{i} & a_{i} C \theta_{i} \\
S \theta_{i} & C \theta_{i} C \alpha_{i} & -C \theta_{i} S \alpha_{i} & a_{i} S \theta_{i} \\
0 & S \alpha_{i} & C \alpha_{i} & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

Background of DH-convention

- using $\mathrm{DH}_{1} x_{1} \cdot z_{0}=0$

$$
\begin{align*}
0 & ={ }^{0} x_{1} \cdot{ }^{0} z_{0} \tag{2}\\
0 & =\left({ }^{0} A_{1} x_{1}\right)^{T} \cdot z_{0} \tag{3}\\
& =\left(\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)^{T} \cdot\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \tag{4}\\
& =\left[\begin{array}{lll}
r_{11} & r_{21} & r_{31}
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \tag{5}\\
& =r_{31} \tag{6}
\end{align*}
$$

$$
\Longrightarrow\left[\begin{array}{ccc}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
0 & r_{32} & r_{33}
\end{array}\right]
$$

- with ${ }^{i-1} R_{i}$ being orthogonal and orthonormal

$$
\begin{align*}
& r_{11}^{2}+r_{21}^{2}=1 \tag{7}\\
& r_{32}^{2}+r_{33}^{2}=1 \tag{8}
\end{align*}
$$

$$
\begin{aligned}
& \left(r_{11}, r_{21}\right)=(\cos \theta, \sin \theta) \text { and } \\
& \left(r_{32}, r_{33}\right)=(\sin \alpha, \cos \alpha) \\
& \text { fulfill the constraint; }
\end{aligned} \Rightarrow\left[\begin{array}{ccc}
\cos \theta & r_{12} & r_{13} \\
\sin \theta & r_{22} & r_{23} \\
0 & \sin \alpha & \cos \alpha
\end{array}\right]
$$

- r_{12}, r_{13}, r_{22} and r_{23} can complete the rotational matrix

$$
\Rightarrow\left[\begin{array}{ccc}
\cos \theta_{i} & -\sin \theta_{i} \cos \alpha_{i} & \sin \theta_{i} \sin \alpha_{i} \\
\sin \theta_{i} & \cos \theta_{i} \cos \alpha_{i} & -\cos \theta_{i} \sin \alpha_{i} \\
0 & \sin \alpha_{i} & \cos \alpha_{i}
\end{array}\right]
$$

Background of DH-convention (cont.)

- with DH_{2} and DH_{1} : the positional vector d_{d} from O_{0} to O_{1} may be represented as a linear combination of vectors z_{0} and x_{1}

$$
{ }^{0} d_{d}=d z_{0}+a{ }^{0} A_{1} x_{1}
$$

$$
\begin{aligned}
& =d\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]+a{ }^{0} R_{1}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \\
& =d\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]+a\left[\begin{array}{c}
\cos \theta \\
\sin \theta \\
0
\end{array}\right] d_{1}\left[\begin{array}{c}
a \\
\cos \theta \\
a \sin \theta \\
d
\end{array}\right]
\end{aligned}
$$

- homogeneous transformation A_{i} fulfills DH_{2} and DH_{1}

$$
\begin{aligned}
& A_{i}=R_{z}\left(\theta_{i}\right) \cdot T_{z}\left(d_{i}\right) \cdot T_{x}\left(a_{i}\right) \cdot R_{x}\left(\alpha_{i}\right) \\
& =\left[\begin{array}{cccc}
\cos \theta_{i} & -\sin \theta_{i} & 0 & 0 \\
\sin \theta_{i} & \cos \theta_{i} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & a_{i} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \alpha_{i} & -\sin \alpha_{i} & 0 \\
0 & \sin \alpha_{i} & \cos \alpha_{i} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cccc}
\cos \theta_{i} & -\sin \theta_{i} \cos \alpha_{i} & \sin \theta_{i} \sin \alpha_{i} & a_{i} \cos \theta_{i} \\
\sin \theta_{i} & \cos \theta_{i} \cos \alpha_{i} & -\cos \theta_{i} \sin \alpha_{i} & a_{i} \sin \theta_{i} \\
0 & \sin \alpha_{i} & \cos \alpha_{i} & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Partial order of transformation

Calculation of homogeneous transformation matrix A_{1} from the partial transformations $R_{z}\left(\theta_{i}\right), T_{z}\left(d_{i}\right), T_{x}\left(a_{i}\right)$ and $R_{x}\left(\alpha_{i}\right)$

- transition $C S_{0}$ to $C S_{1}$ using local axes
- invariances
- T_{x} invariant to $R_{x}\left(T_{x} R_{x}=R_{x} T_{x}\right)$
- T_{z} invariant to $R_{z}\left(T_{z} R_{z}=R_{z} T_{z}\right)$

- order of transformations
- rotation around z_{1} after rotation around x_{0} violates DH_{2}
- thus, possible rotation orders which do not violate DH_{2} and DH_{1} :

$$
\begin{align*}
A_{i} & =R_{x_{1}^{\prime \prime \prime}}\left(\alpha_{1}\right) \cdot T_{x_{1}^{\prime \prime}}\left(a_{1}\right) \cdot T_{z_{0}^{\prime}}\left(d_{1}\right) \cdot R_{z_{0}}\left(\theta_{1}\right) \tag{9}\\
& =R_{z_{0}}\left(\theta_{i}\right) \cdot T_{z_{0}}\left(d_{i}\right) \cdot T_{x_{1}}\left(a_{i}\right) \cdot R_{x_{1}}\left(\alpha_{i}\right) \tag{10}
\end{align*}
$$

(9) is a possible valid transformation order
(10) is the standard transformation order

Beware

The Denavit-Hartenberg convention is not unambiguous!

- z_{i-1} is parallel to z_{i}
- arbitrary shortest normal
- usually $d_{i}=0$ is chosen
- z_{i-1} intersects z_{i}
- usually $a_{i}=0$ such that CS lies in the intersection point

- orientation of CS_{n} ambigous, as no joint $n+1$ exists
- x_{n} must be a normal to z_{n-1}
- usually z_{n} chosen to point in the direction of the approach vector \vec{a} of the tcp

Parameters for description of two arbitrary links

Two parameters for the description of the link structure i

- a_{i} : shortest distance between the z_{i-1}-axis and the z_{i}-axis
- α_{i} : rotation angle around the x_{i}-axis, which aligns the z_{i-1}-axis to the z_{i}-axis
a_{i} and α_{i} are constant values due to construction

Parameters for describing two arbitrary links (cont.)

Two for relative distance and angle of adjacent links

- d_{i} : distance origin O_{i-1} of the $(i-1)^{\text {st }} \mathrm{CS}$ to intersection of z_{i-1}-axis with x_{i}-axis
- θ_{i} : joint angle around
z_{i-1}-axis to align x_{i-1-} parallel to x_{i}-axis into x_{i-1}, y_{i-1}-plane
θ_{i} and d_{i} are variable
- rotational: θ_{i} variable, d_{i} fixed
- translational: d_{i} variable, θ_{i} fixed

Example DH-Parameter of a single joint

Determination of DH-Parameter (θ, d, a, α) for calculation of joint transformation: $A_{1}=R_{z}\left(\theta_{1}\right) T_{z}\left(d_{1}\right) T_{x}\left(a_{1}\right) R_{x}\left(\alpha_{1}\right)$ joint angle rotate by θ_{1} around z_{0}, such that x_{0} is parallel to x_{1}

$$
R_{z}\left(\theta_{1}\right)=\left[\begin{array}{cccc}
\cos \theta_{1} & -\sin \theta_{1} & 0 & 0 \\
\sin \theta_{1} & \cos \theta_{1} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

for the shown joint configuration $\theta_{1}=0^{\circ}$

Example DH-Parameter of a single joint (cont.)

joint offset translate by d_{1} along z_{0} until the intersection of z_{0} and x_{1}

$$
T_{z}\left(d_{1}\right)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d_{1} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Example DH-Parameter of a single joint (cont.)

joint length translate by a_{1} along x_{1} such that the origins of both CS are congruent

$$
T_{x}\left(a_{1}\right)=\left[\begin{array}{cccc}
1 & 0 & 0 & a_{1} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Example DH-Parameter of a single joint (cont.)

joint twist rotate z_{0} by α_{1} around x_{1}, such that z_{0} lines up with z_{1}

$$
R_{x\left(\alpha_{1}\right)}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \left(\alpha_{1}\right) & -\sin \left(\alpha_{1}\right) & 0 \\
0 & \sin \left(\alpha_{1}\right) & \cos \left(\alpha_{1}\right) & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

for the shown joint configuration, $\alpha_{1}=-90^{\circ}$ due to construction

Example DH-Parameter of a single joint (cont.)

- total transformation of $C S_{0}$ to $C S_{1}$ (general case)

$$
\begin{aligned}
{ }^{0} A_{1} & =R_{z}\left(\theta_{1}\right) \cdot T_{z}\left(d_{1}\right) \cdot T_{x}\left(a_{1}\right) \cdot R_{x}\left(\alpha_{1}\right) \\
& =\left[\begin{array}{cccc}
\cos \theta_{1} & -\sin \theta_{1} \cos \alpha_{1} & \sin \theta_{1} \sin \alpha_{1} & a_{1} \cos \theta_{1} \\
\sin \theta_{1} & \cos \theta_{1} \cos \alpha_{1} & -\cos \theta_{1} \sin \alpha_{1} & a_{1} \sin \theta_{1} \\
0 & \sin \alpha_{1} & \cos \alpha_{1} & d_{1} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

- rotary case: variable θ_{1} and fixed d_{1}, a_{1} und $\left(\alpha_{1}=-90^{\circ}\right)$

$$
\begin{aligned}
{ }^{0} A_{1} & =R_{z}\left(\theta_{1}\right) \cdot T_{z}\left(d_{1}\right) \cdot T_{x}\left(a_{1}\right) \cdot R_{x}\left(-90^{\circ}\right) \\
& =\left[\begin{array}{cccc}
\cos \theta_{1} & 0 & -\sin \theta_{1} & a_{1} \cos \theta_{1} \\
\sin \theta_{1} & 0 & \cos \theta_{1} & a_{1} \sin \theta_{1} \\
0 & -1 & 0 & d_{1} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Procedure for predefined structure

- Fixed origin: $C S_{0}$ is the fixed frame at the base of the manipulator
- Determination of axes and consecutive numbering from 1 to n
- Positioning O_{i} on rotation- or shear-axis i, z_{i} points aways from z_{i-1}
- Determination of normal between the axes; setting x_{i} (in direction to the normal)
- Determination of y_{i} (right-hand system)
- Read off Denavit-Hartenberg parameter
- Calculation of overall transformation

Example DH-Parameter for Quickshot

- Definition of CS corresponding to DH convention
- Determination of DH-Parameter

Example Transformation matrix T_{6}

$$
\begin{aligned}
& T_{6}=A_{1} \cdot A_{2} \cdot A_{3} \cdot A_{4} \\
& =\left[\begin{array}{cccc}
\cos \theta_{1} & 0 & -\sin \theta_{1} & 20 \cos \theta_{1} \\
\sin \theta_{1} & 0 & \cos \theta_{1} & 20 \sin \theta_{1} \\
0 & -1 & 0 & 100 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
\cos \theta_{2} & -\sin \theta_{2} & 0 & 160 \cos \theta_{2} \\
\sin \theta_{2} & \cos \theta_{2} & 0 & 160 \sin \theta_{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& {\left[\begin{array}{cccc}
\cos \theta_{3} & 0 & \sin \theta_{3} & 0 \\
\sin \theta_{3} & 0 & -\cos \theta_{3} & 0 \\
0 & 1 & 0 & 28 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
\cos \theta_{4} & -\sin \theta_{4} & 0 & 0 \\
\sin \theta_{4} & \cos \theta_{4} & 0 & 0 \\
0 & 0 & 1 & 250 \\
0 & 0 & 0 & 1
\end{array}\right]} \\
& =\left[\begin{array}{cccc}
\cos \theta_{1} \cos \theta_{4}\left(\cos \theta_{2} \cos \theta_{3}-\sin \theta_{2} \sin \theta_{3}\right)-\sin \theta_{1} \sin \theta_{4} & \ldots & \ldots & \ldots \\
\sin \theta_{1} \cos \theta_{4}\left(\sin \theta_{2} \cos \theta_{3}+\cos \theta_{2} \sin \theta_{3}\right)+\cos \theta_{1} \sin \theta_{4} & \ldots & \ldots & \ldots \\
-\cos \theta_{4}\left(\sin \theta_{2} \cos \theta_{3}+\cos \theta_{2} \sin \theta_{3}\right) & \ldots & \ldots & \ldots \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Example featuring PUMA 560

In order to transfer the manipulator-endpoint into the base coordinate system, T_{6} is calculated as follows:

$$
T_{6}=A_{1} A_{2} A_{3} A_{4} A_{5} A_{6}
$$

Z: Transformation manipulator base \rightarrow reference coordinate system
E: Manipulator endpoint \rightarrow TCP ("tool center point")
X : The position and orientation of the TCP in relation of the reference coordinate system

$$
X=Z T_{6} E
$$

The following applies as well:

$$
T_{6}=Z^{-1} X E^{-1}
$$

Example featuring PUMA 560 (cont.)

$$
\begin{gathered}
T_{6}^{0}={ }^{0} T_{1}^{1} T_{2}^{2} T_{3}^{3} T_{4}^{4} T_{5}^{5} T_{6} \\
{ }^{0} T_{1}=\left[\begin{array}{cccc}
C \theta_{1} & -S \theta_{1} & 0 & 0 \\
S \theta_{1} & C \theta_{1} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
{ }^{1} T_{2}=\left[\begin{array}{cccc}
C \theta_{2} & -S \theta_{2} & 0 & 0 \\
0 & 0 & 1 & 0 \\
-S \theta_{2} & -C \theta_{2} & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
& { }^{2} T_{3}=\left[\begin{array}{cccc}
C \theta_{3} & -S \theta_{3} & 0 & a_{2} \\
S \theta_{3} & C \theta_{3} & 0 & 0 \\
0 & 0 & 1 & d_{3} \\
0 & 0 & 0 & 1
\end{array}\right] \\
& { }^{3} T_{4}=\left[\begin{array}{cccc}
C \theta_{4} & -S \theta_{4} & 0 & a_{3} \\
0 & 0 & 1 & d_{4} \\
-S \theta_{4} & -C \theta_{4} & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Link Transformations (cont.)

$$
\begin{aligned}
& { }^{4} T_{5}=\left[\begin{array}{cccc}
C \theta_{5} & -S \theta_{5} & 0 & 0 \\
0 & 0 & -1 & 0 \\
-S \theta_{5} & -C \theta_{5} & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& { }^{4} T_{5}=\left[\begin{array}{cccc}
C \theta_{6} & -S \theta_{6} & 0 & 0 \\
0 & 0 & 1 & 0 \\
-S \theta_{6} & -C \theta_{6} & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

The solution using the example of PUMA 560

Sum-of-Angle formula

$$
\begin{aligned}
& C_{23}=C_{2} C_{3}-S_{2} S_{3}, \\
& S_{23}=C_{2} S_{3}+S_{2} C_{3}
\end{aligned}
$$

$$
T_{6}^{0}=T_{1}^{0} T_{2}^{1} T_{3}^{2} T_{4}^{3} T_{5}^{4} T_{6}^{5}=\left[\begin{array}{cccc}
n_{x} & o_{x} & a_{x} & p_{x} \\
n_{y} & o_{y} & a_{y} & p_{y} \\
n_{z} & o_{z} & a_{z} & p_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The solution using the example of PUMA 560 (cont.)

$$
\begin{aligned}
n_{x} & =C_{1}\left[C_{23}\left(C_{4} C_{5} C_{6}-S_{4} S_{5}\right)-S_{23} S_{5} C_{5}\right]-S_{1}\left(S_{4} C_{5} C_{6}+C_{4} S_{6}\right) \\
n_{y} & =S_{1}\left[C_{23}\left(C_{4} C_{5} C_{6}-S_{4} S_{6}\right)-S_{23} S_{5} C_{6}\right]+C_{1}\left(S_{4} C_{5} C_{6}+C_{4} S_{6}\right) \\
n_{z} & =-S_{23}\left[C_{4} C_{5} C_{6}-S_{4} S_{6}\right]-C_{23} S_{5} C_{6} \\
& o_{x}, o_{y}, o_{z}=\ldots \\
& a_{x}, a_{y}, a_{z}=\ldots \\
p_{x} & =C_{1}\left[a_{2} C_{2}+a_{3} C_{23}-d_{4} S_{23}\right]-d_{3} S_{1} \\
p_{y} & =S_{1}\left[a_{2} C_{2}+a_{3} C_{23}-d_{4} S_{23}\right]+d_{3} C_{1} \\
p_{z} & =-a_{3} S_{23}-a_{2} S_{2}-d_{4} C_{23}
\end{aligned}
$$

DER FORSCHUNG \| DER LEHRE \| DER BILDUNG

Introduction to Robotics
 Lecture 3

Lasse Einig, Jianwei Zhang
[einig, zhang]@informatik.uni-hamburg.de

University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences
Department of Informatics
Technical Aspects of Multimodal Systems

July 12, 2018

Outline

Introduction
Coordinate systems
Kinematic Equations
Robot Description
Recapitulation of DH-Parameter URDF

Inverse Kinematics for Manipulators
Differential motion with homogeneous transformations
Jacobian
Trajectory planning
Trajectory generation
Dynamics
Principles of Walking

Outline (cont.)

Robot Description
Robot Control
Task-Level Programming and Trajectory Generation
Task-level Programming and Path Planning
Task-level Programming and Path Planning
Architectures of Sensor-based Intelligent Systems
Summary
Conclusion and Outlook

Recapitulation of DH-Parameter

- universal minimal robot description
- based on frame transformations
- four parameters per frame transformation
- serial chain of transformations
- unique description of T_{6}

Drawbacks

- ambiguous convention
- only kinematic chain described
- missing information on geometry, physical constraints, dynamics, collisions, inertia, sensors, ...

- CS_{0} is the stationary origin at the base of the manipulator
- axis z_{i-1} is set along the axis of motion of the $i^{t} h$ joint
- axis x_{i} is the common normal of $z_{i-1} \times z_{i}$
- axis y_{i} concludes a right-handed coordinate system

Parameters for description of two arbitrary links

Two parameters for the description of the link structure i

- a_{i} : shortest distance between the z_{i-1}-axis and the z_{i}-axis
- α_{i} : rotation angle around the x_{i}-axis, which aligns the z_{i-1}-axis to the z_{i}-axis
a_{i} and α_{i} are constant values due to construction

Parameters for description of two arbitrary links (cont.)

Two for relative distance and angle of adjacent links

- d_{i} : distance origin O_{i-1} of the $(i-1)^{\text {st }} \mathrm{CS}$ to intersection of z_{i-1}-axis with x_{i}-axis
- θ_{i} : joint angle around z_{i-1}-axis to align x_{i-1-} parallel to x_{i}-axis into x_{i-1}, y_{i-1}-plane
θ_{i} and d_{i} are variable
- rotational: θ_{i} variable, d_{i} fixed
- translational: d_{i} variable, θ_{i} fixed

Universal Robot Description Format

Documentation

http://wiki.ros.org/urdf
http://wiki.ros.org/urdf/XML

- robot description format used in ROS^{2}
- hierarchical description of components
- XML format representing robot model
- kinematics and dynamics
- visual
- collision
- configuration

URDF: Structure

links geometrical properties

- visual
- inertial
- collision
joints geometrical connections
- geometry
- structure
- config
sensors attached sensors
transmissions transmission properties
gazebo simulation properties
model_state robot state

URDF: XML Tree Structure

- Filename: robotname.urdf
- XML prolog:
<?xml version="1.0" encoding="utf-8"?>
- XML element types
<tag attribute="value"/>
<tag attribute="value">
text or element (s)
</tag>
- XML comments
<!-- Comments are placed within these tags -->
- $1^{\text {st }}$-level structure
<robot name="samplerobot">
</robot>
- $2^{\text {nd }}$-level structure
link, joints, sensors, transmissions, gazebo, model_state
- $3^{\text {rd }}$-level structure
visual, inertia, collision, origin, parent,...
- $4^{\text {th }}$-level structure

URDF: Link

<link name="sample_link">
<!-- describes the mass and inertial properties of the link -->
<inertial/>
<!-- describes the visual appearance of the link. can be describe using geometric primitives or meshes -->
<visual/>
<!-- describes the collision space of the link. is described like the visual appearance -->
<collision/>
</link>

URDF: Link - visual - primitives

Geometric primitives for describing visual appearance of the link

```
<link name="base_link">
    <visual>
        <origin xyz="0 0 0.01" rpy="0 0 0"/>
        <geometry>
            <box size="0.2 0.2 0.02"/>
        </geometry>
        <material name="cyan">
            <color rgba="0 1.0 1.0 1.0"/>
        </material>
    </visual>
</link>
```

- Geometric primitives: <box>, <cylinder>, <sphere>
- Materials: <color>, <texture>

URDF: Link - visual - meshes

3D meshes for describing visual appearance of the link

```
<link name="base_link">
    <visual>
        <origin \(x y z=" 000.01 "\) rpy="0 0 0 "/>
        <geometry>
            <mesh filename="meshes/base_link.dae"
        </geometry>
    </visual>
</link>
```

- the <collision> element is described identically to the <visual> element
- an additional <collision_checking> primitive can be used to approximate

URDF: Link - inertial

Parameters describing the physical properties of the link

```
<link name="base_link">
    <inertial>
        <origin xyz="0 0 0" rpy="0 0 0"/>
        <mass value="1">
        <inertia ixx="100" ixy="0" ixz="0"
        iyy="100" iyz="0" izz="100" />
    </inertial>
</link>
```

- center of gravity <origin xyz>
- object mass <mass value>
- inertia tensor <intertia>

URDF: Inertia

Inertial tensor describes the dynamic physical properties of the link

- orientation and position of the inertia CS described by <origin> tag
- tensor is a symmetric 3×3 matrix
- diagonal values describe main inertial axes ixx, iyy, izz
- ixy, ixz, iyz are 0 for geometric primitives
- rotations around largest and smallest inertial axis are most stable

URDF: Joint

```
<joint name="base_link_to_cyl" type="revolute">
    \(<!--\) describes joint position and orientation \(-->\)
    <origin \(x y z=" 000.07 "\) rpy="0 0 0 "/>
    <!-- describes the related links -->
    <parent link="base_link"/>
    <child link="base_cyl"/>
    <!-- describes the axis of rotation-->
    <axis xyz="0 0 1"/>
    <!-- describes the joint limits-->
    <limit velocity="1.5707963267"
        lower="-3.1415926535" upper="3.1415926535 " / >
</joint>
```

type revolute, continuous, prismatic, fixed, floating, planar
parent_link link which the joint is connected to child_link link which is connected to the joint
axis joint axis relative to the joint CS. Represented using a normalized vector
limit joint limits for motion (lower, upper), velocity and effort
dynamics damping, friction
calibration rising, falling
mimic joint, multiplier, offset
safety_controller soft_lower_limit, soft_upper_limit,
k_position, k_velocity

URDF: Other elements

- sensor
- position and orientation relative to link
- sensor properties
- update rate
- resolution
- minimum / maximum angle
- transmissions
- relation of motor to joint motion
- gazebo
- simulation properties
- model state
- description of different robot configurations

Complex Hierachy

Full URDF hierarchy of the TAMS PR2 with the Shadow Hand.

Outline

Introduction

Coordinate systems
Kinematic Equations
Robot Description
Inverse Kinematics for Manipulators
Analytical solvability of manipulator Example: a planar 3 DOF manipulator
The algebraical solution using the example of PUMA 560
The solution for Orientation of PUMA560
Solution for arm configurations
Technical difficulties during the development of control software A Framework for robots under UNIX: RCCL
Differential motion with homogeneous transformations
Jacobian

Outline (cont.)

Trajectory planning
Trajectory generation
Dynamics
Principles of Walking
Robot Control
Task-Level Programming and Trajectory Generation
Task-level Programming and Path Planning
Task-level Programming and Path Planning
Architectures of Sensor-based Intelligent Systems
Summary
Conclusion and Outlook

Inverse kinematics for manipulators

Set of problems

- In the majority of cases the control of robot manipulators takes place in the joint space,
- The informations about objects are mostly given in the cartesian space.

For getting a specific tool frame T related to the world, joint values $\theta(t)=\left(\theta_{1}(t), \theta_{2}(t), \ldots, \theta_{n}(t)\right)^{T}$ should be calculated in two steps:

1. Calculation of $T_{6}=Z^{-1} B G E^{-1}$;
2. Calculation of $\theta_{1}, \theta_{2}, \ldots, \theta_{n}$ via T_{6}.
\Longrightarrow In this case the inverse kinematics is more important than the forward kinematics.

The solution using the example of PUMA 560

$$
T_{6}=T^{\prime} T^{\prime \prime}=\left[\begin{array}{cccc}
n_{x} & o_{x} & a_{x} & p_{x} \\
n_{y} & o_{y} & a_{y} & p_{y} \\
n_{z} & o_{z} & a_{z} & p_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

where

$$
\begin{align*}
& n_{x}=C_{1}\left[C_{23}\left(C_{4} C_{5} C_{6}-S_{4} S_{6}\right)-S_{23} S_{5} C_{6}\right]-S_{1}\left(S_{4} C_{5} C_{6}+C_{4} S_{6}\right) \tag{11}\\
& n_{y}=S_{1}\left[C_{23}\left(C_{4} C_{5} C_{6}-S_{4} S_{6}-S_{23} S_{5} S_{6}\right]+C_{1}\left(S_{4} C_{5} C_{6}+C_{4} S_{6}\right)\right. \tag{12}\\
& n_{z}=-S_{23}\left[C_{4} C_{5} C_{6}-S_{4} S_{6}\right]-C_{23} S_{5} C_{6} \tag{13}
\end{align*}
$$

$$
\begin{align*}
& o_{x}=\ldots \\
& o_{y}=\ldots \\
& o_{z}=\ldots \\
& a_{x}=\ldots \\
& a_{y}=\ldots \\
& a_{z}=\ldots \\
& p_{x}=C_{1}\left[d_{6}\left(C_{23} C_{4} S_{5}+S_{23} C_{5}\right)+S_{23} d_{4}+a_{3} C_{23}+a_{2} C_{2}\right]-S_{1}\left(d_{6} S_{4} S_{5}+d_{2}\right) \\
& p_{y}=S_{1}\left[d_{6}\left(C_{23} C_{4} S_{5}+S_{23} C_{5}\right)+S_{23} d_{4}+s_{3} C_{23}+a_{2} C_{2}\right]+C_{1}\left(d_{6} S_{4} S_{5}+d_{2}\right) \\
& p_{z}=d_{6}\left(C_{23} C_{5}-S_{23} C_{4} S_{5}\right)+C_{23} d_{4}-a_{3} S_{23}-a_{2} S_{2} \tag{21}
\end{align*}
$$

Remark

- Non-linear equations
- Existence of solutions Workspace: the volume of space that is reachable for the tool of the manipulator.
- dexterous workspace
- reachable workspace
- Many joint positions produce a similar TCP position using the example of PUMA 560
- Ambiguity of solutions for $\theta_{1}, \theta_{2}, \theta_{3}$ related to given \mathbf{p}.
- For each solution of $\theta_{4}, \theta_{5}, \theta_{6}$ the alternative solution exists

$$
\begin{aligned}
\theta_{4}^{\prime} & =\theta_{4}+180^{\circ} \\
\theta_{5}^{\prime} & =-\theta_{5} \\
\theta_{6}^{\prime} & =\theta_{6}+180^{\circ}
\end{aligned}
$$

- Different solution strategy: closed solutions vs. numerical solutions

Different methods for solution finding

Closed form (analytical):

- algebraic solution
+ accurate solution by means of equations
- solution is not geometrically representative
- geometrical solution
+ case-by-case analysis of possible robot configurations
- robot specific

Numerical form:

- iterative methods
+ the methods are transferable
- computationally intensive, for several exceptions the convergence can not be guaranteed

Methods for solution finding

Solvability

"The inverse kinematics for all systems with 6 DOF (translational or rotational joints) in a simple serial chain is always numerical solvable."

Analytical solvability of manipulator

The closed solution exists if specific constraints (sufficient constraints) for the arm geometry are satisfied:

If 3 sequent axes intersect in a given point or if 3 sequent axes are parallel to each other

- manipulators should be designed regarding these constraints
- most of them are
- PUMA 560: axes 4, 5 \& 6 intersect in a single point
- Mitsubishi PA10, KUKA LWR, PR2
- 3-DOF planar (RPC)

Example: a planar 3 DOF manipulator

Example: a planar 3 DOF manipulator (cont.)

Joint	α_{i-1}	a_{i-1}	d_{i}	θ_{i}
1	0	0	0	θ_{1}
2	0	I_{1}	0	θ_{2}
3	0	I_{2}	0	θ_{3}

$$
T_{6}={ }^{0} T_{3}=\left[\begin{array}{cccc}
C_{123} & -S_{123} & 0 & I_{1} C_{1}+I_{2} C_{12} \\
S_{123} & C_{123} & 0 & I_{1} S_{1}+I_{2} S_{12} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Specification for the TCP: (x, y, ϕ). For such kind of vectors applies:

$$
{ }^{0} T_{3}=\left[\begin{array}{cccc}
C_{\phi} & -S_{\phi} & 0 & x \\
S_{\phi} & C_{\phi} & 0 & y \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Resultant, four equations can be derived:

$$
\begin{align*}
C_{\phi} & =C_{123} \tag{23}\\
S_{\phi} & =S_{123} \tag{24}\\
x & =I_{1} C_{1}+I_{2} C_{12} \tag{25}\\
y & =I_{1} S_{1}+I_{2} S_{12} \tag{26}
\end{align*}
$$

We define the function $\operatorname{atan} 2_{m}$ as:

$$
\theta=\operatorname{atan} 2(y, x)= \begin{cases}\operatorname{atan}\left(\frac{y}{x}\right) & \text { for }+x \\ \operatorname{atan}\left(\frac{y}{x}\right)+\pi & \text { for }-x,+y_{0} \\ \operatorname{atan}\left(\frac{y}{x}\right)-\pi & \text { for }-x,-y \\ \frac{\pi}{2} & \text { for } x=0,+y \\ \frac{-\pi}{2} & \text { for } x=0,-y \\ \operatorname{NaN} & \text { for } x=0, y=0\end{cases}
$$

The algebraical solution for the 3 DOF planar (cont.)

Square and add (25) ($x=I_{1} c_{1}+I_{2} c_{12}$) and (26) ($\left.y=I_{1} s_{1}+l_{2} s_{12}\right)$

$$
x^{2}+y^{2}=I_{1}^{1}+I_{2}^{2}+2 I_{1} I_{2} C_{2}
$$

using

$$
\begin{gathered}
C_{12}=C_{1} C_{2}-S_{1} S_{2}, S_{12}=C_{1} S_{2}+S_{1} C_{2} \\
\text { giving } \\
C_{2}=\frac{x^{2}+y^{2}-I_{1}^{2}-I_{2}^{2}}{2 I_{1} I_{2}} \\
\text { for goal in workspace }
\end{gathered}
$$

$$
\begin{gathered}
S_{2}= \pm \sqrt{1-C_{2}^{2}} \\
\text { solution }
\end{gathered}
$$

$$
\theta_{2}=\operatorname{atan} 2\left(S_{2}, C_{2}\right)
$$

solve (25) $\left(x={ }_{1} c_{1}+{ }_{2} c_{12}\right)$ and (26) $\left(y={ }_{1} s_{1}+{ }_{2} s_{12}\right)$ for θ_{1}

$$
\theta_{1}=\operatorname{atan} 2(y, x)-\operatorname{atan} 2\left(k_{2}, k_{1}\right)
$$

where $k_{1}=I_{1}+I_{2} C_{2}$ and $k_{2}=I_{2} S_{2}$.
solve θ_{3} from (23) ($c_{\phi}=c_{123}$) and (24) ($\left.s_{\phi}=s_{123}\right)$

$$
\theta_{1}+\theta_{2}+\theta_{3}=\operatorname{atan2}\left(S_{\phi}, C_{\phi}\right)=\phi
$$

The geometrical solution for the example 1

Calculate θ_{2} via the law of cosines:

$$
x^{2}+y^{2}=l_{1}^{2}+l_{2}^{2}-2 l_{1} I_{2} \cos \left(180+\theta_{2}\right)
$$

The solution:

$$
\begin{gathered}
\theta_{2}= \pm \cos ^{-1} \frac{x^{2}+y^{2}-l_{1}^{2}-l_{2}^{2}}{2 l_{1} I_{2}} \\
\theta_{1}=\beta \pm \psi
\end{gathered}
$$

where:

$$
\beta=\operatorname{atan} 2_{m}(y, x), \quad \cos \psi=\frac{x^{2}+y^{2}-I_{1}^{2}-I_{2}^{2}}{2 l_{1} \sqrt{x^{2}+y^{2}}}
$$

For $\theta_{1}, \theta_{2}, \theta_{3}$ applies:

$$
\theta_{1}+\theta_{2}+\theta_{3}=\phi
$$

Algebraical solution (polynomial conversion)

The following substitutions are used for the polynomial conversion of transcendental equations:

$$
\begin{aligned}
u & =\tan \frac{\theta}{2} \\
\cos \theta & =\frac{1-u^{2}}{1+u^{2}} \\
\sin \theta & =\frac{2 u}{1+u^{2}}
\end{aligned}
$$

Algebraical solution (polynomial conversion) (cont.)

Example:
The following transcendental equation is given:

$$
a \cos \theta+b \sin \theta=c
$$

After the polynomial conversion:

$$
a\left(1-u^{2}\right)+2 b u=c\left(1+u^{2}\right)
$$

The solution for u :

$$
u=\frac{b \pm \sqrt{b^{2}-a^{2}-c^{2}}}{a+c}
$$

Then:

$$
\theta=2 \tan ^{-1}\left(\frac{b \pm \sqrt{b^{2}-a^{2}-c^{2}}}{a+c}\right)
$$

$$
\begin{aligned}
\theta_{4}^{\prime} & =\theta_{4}+180^{\circ} \\
\theta_{5}^{\prime} & =-\theta_{5} \\
\theta_{6}^{\prime} & =\theta_{6}+180^{\circ}
\end{aligned}
$$

- Different solution strategy: closed solutions vs. numerical solutions

Algebraic solution using the PUMA 560

Calculation of $\theta_{1}, \theta_{2}, \theta_{3}$:
The first three joint angles $\theta_{1}, \theta_{2}, \theta_{3}$ affect the position of the TCP $\left(p_{x}, p_{y}, p_{z}\right)^{T}$ (in case $d_{6}=0$).

$$
\begin{align*}
& p_{x}=C_{1}\left[S_{23} d_{4}+a_{3} C_{23}+a_{2} C_{2}\right]-S_{1} d_{2} \tag{27}\\
& p_{y}=S_{1}\left[S_{23} d_{4}+a_{3} C_{23}+a_{2} C_{2}\right]+C_{1} d_{2} \tag{28}\\
& p_{z}=C_{23} d_{4}-a_{3} S_{23}-a_{2} S_{2} \tag{29}
\end{align*}
$$

The outcome of this is:

$$
\theta_{1}=\tan ^{-1}\left(\frac{\mp p_{y} \sqrt{p_{x}^{2}+p_{y}^{2}-d_{2}^{2}}-p_{x} d_{2}}{\mp p_{x} \sqrt{p_{x}^{2}+p_{y}^{2}-d_{2}^{2}}+p_{y} d_{2}}\right)
$$

Algebraic solution using the PUMA 560 (cont.)

$$
\theta_{3}=\tan ^{-1}\left(\frac{\mp A_{3} \sqrt{A_{3}^{2}+B_{3}^{2}-D_{3}^{2}}+B_{3} D_{3}}{\mp B_{3} \sqrt{A_{3}^{2}+B_{3}^{2}-D_{3}^{2}}+A_{3} D_{3}}\right)
$$

where

$$
\begin{aligned}
& A_{3}=2 a_{2} a_{3} \\
& B_{3}=2 a_{2} d_{4} \\
& D_{3}=p_{x}^{2}+p_{y}^{2}+p_{z}^{2}-a_{2}^{2}-a_{3}^{2}-d_{2}^{2}-d_{4}^{2}
\end{aligned}
$$

Algebraic solution using the PUMA 560 (cont.)

and

$$
\theta_{2}=\tan ^{-1}\left(\frac{\mp B_{2} \sqrt{p_{x}^{2}+p_{y}^{2}-d_{2}^{2}}+A_{2} p_{z}}{\mp A_{2} \sqrt{p_{x}^{2}+p_{y}^{2}-d_{2}^{2}}+B_{2} p_{z}}\right)
$$

where

$$
\begin{aligned}
& A_{2}=d_{4} C_{3}-a_{3} S_{3} \\
& B_{2}=-a_{3} C_{3}-d_{4} S_{3}-a_{2}
\end{aligned}
$$

J. Craig, Introduction to Robotics: Pearson New International Edition: Mechanics and Control. Always learning, Pearson Education, Limited, 2013

$$
T=R_{z, \phi} R_{y, \theta} R_{x, \psi}
$$

The solution for following equation is sought:

$$
R_{z, \phi}^{-1} T=R_{y, \theta} R_{x, \psi}
$$

$$
\left[\begin{array}{cccc}
f_{11}(\mathbf{n}) & f_{21}(\mathbf{o}) & f_{31}(\mathbf{a}) & 0 \\
f_{12}(\mathbf{n}) & f_{22}(\mathbf{o}) & f_{32}(\mathbf{a}) & 0 \\
f_{13}(\mathbf{n}) & f_{23}(\mathbf{o}) & f_{33}(\mathbf{a}) & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
C \theta & S \theta S \psi & S \theta C \psi & 0 \\
0 & C \psi & -S \psi & 0 \\
-S \theta & C \theta S \psi & C \theta C \psi & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

where

$$
\begin{aligned}
& f_{11}=C \phi x+S \phi y \\
& f_{12}=-S \psi x+C \phi y \\
& f_{13}=z
\end{aligned}
$$

The equation for $f_{12}(\mathbf{n})$ leads to:

$$
-S \phi n_{x}+C \phi n_{y}=0
$$

\Longrightarrow

$$
\phi=\operatorname{atan} 2\left(n_{y}, n_{x}\right)
$$

and

$$
\phi=\phi+180^{\circ}
$$

The solution with the elements f_{13} and f_{11} are as appropriate:

$$
-S \theta=n_{z}
$$

and

$$
\begin{gathered}
C \theta=C \phi n_{x}+S \phi n_{y} \\
\theta=\operatorname{atan} 2\left(-n_{z}, C \phi n_{x}+S \phi a_{y}\right)
\end{gathered}
$$

The solution with the elements f_{23} and f_{22} are as appropriate:

$$
\begin{aligned}
-S \psi & =-S \phi a_{x}+C \phi a_{y} \\
C \psi & =-S \phi o_{x}+C \phi o_{y}
\end{aligned}
$$

\Longrightarrow

$$
\psi=\operatorname{atan} 2\left(S \phi a_{x}-C \phi a_{y},-S \phi o_{x}+C \phi o_{y}\right)
$$

Solution for arm configurations

Definition of different arm configurations

shoulder RIGHT-arm, LEFT-arm
elbow ABOVE-arm, BELOW-arm
wrist WRIST-down, WRIST-up

Solution for arm configurations (cont.)

Adapted from this following variable can be defined:

$$
\begin{gathered}
\text { ARM }= \begin{cases}+1 & \text { RIGHT-arm } \\
-1 & \text { LEFT-arm }\end{cases} \\
\text { ELBOW }= \begin{cases}+1 & \text { ABOVE-arm } \\
1 & \text { BELOW-arm }\end{cases} \\
\text { WRIST }
\end{gathered}= \begin{cases}+1 & \text { WRIST-down } \\
-1 & \text { WRIST-up }\end{cases}
$$

The complete solution for the inverse kinematics can be achieved by analysis of such arm configurations.

Problem

- Software was hard-coded for a certain robot model / type.
- Software specialized on the robot skills and geometry
- Consequently, the extending and porting software to new hardware was difficult and time consuming

Solution

Develop a control software with the following capabilities

- Possibility to control low-level hardware properties
- Maximum portability to different platforms
- Maximum flexibility for fast programming of applications

A Framework for robots under UNIX: RCCL

RCCL

Robot Control C Library

Ability to control multiple robots

Motion description with position equations

Code sample for robot control in RCCL

```
#include <rccl.h>
#include "manex.560.h"
main()
{
```

```
TRSF_PTR p, t;
```

TRSF_PTR p, t;
POS_PTR pos;
POS_PTR pos;
MANIP *mnp;
MANIP *mnp;
JNTS rcclpark;
JNTS rcclpark;
char *robotName;
char *robotName;
rcclSetOptions (RCCL_ERROR_EXIT); /*\#6*/
rcclSetOptions (RCCL_ERROR_EXIT); /*\#6*/
robotName = getDefaultRobot(); /*\#7*/
robotName = getDefaultRobot(); /*\#7*/
if (!getRobotPosition (rcclpark.v, "rcclpark", robotName))
if (!getRobotPosition (rcclpark.v, "rcclpark", robotName))
{ printf (''position 'rcclpark' not defined for robot\n'');
{ printf (''position 'rcclpark' not defined for robot\n'');
exit(-1);
exit(-1);
}
}
/*\#8*/
t = allocTransXyz ("T", UNDEF, -300.0, 0.0, 75.0);
p = allocTransRot ("P", UNDEF, P_X, P_Y, P_Z, xunit, 180.0);
pos = makePosition ("pos", T6, EQ, p, t, NULL); /*\#9*/

```

\section*{Code sample for robot control in RCCL (cont.)}
```

mnp = rcclCreate (robotName, 0);
/*\#10*/
rcclStart();
movej (mnp, \&rcclpark);
/*\#11*/
setMod (mnp, 'c');
/*\#12*/
move (mnp, pos); /*\#13*/
stop (mnp, 1000.0);
movej (mnp, \&rcclpark);
/*\#14*/
stop (mnp, 1000.0);
waitForCompleted (mnp);
rcclRelease (YES);

```
\}

\section*{Code sample for robot control in RCCL (cont.)}


\section*{Robot Operating System (ROS)}


Player/Stage Framework


RCCL


Hard-coded robot software

DER FORSCHUNG \| DER LEHRE \| DER BILDUNG

\title{
Introduction to Robotics
}

Lecture 4

Lasse Einig, Jianwei Zhang
[einig, zhang]@informatik.uni-hamburg.de

University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences
Department of Informatics
Technical Aspects of Multimodal Systems

July 12, 2018

\section*{Outline}

Introduction
Coordinate systems
Kinematic Equations
Robot Description
Inverse Kinematics for Manipulators
Differential motion with homogeneous transformations
Differential translation and rotation
Differential homogeneous transformation
Differential rotation around the \(x, y, z\) axes
Jacobian
Trajectory planning
Trajectory generation
Dynamics
Principles of Walking

\section*{Outline (cont.)}

\section*{Robot Control}

Task-Level Programming and Trajectory Generation
Task-level Programming and Path Planning
Task-level Programming and Path Planning
Architectures of Sensor-based Intelligent Systems
Summary
Conclusion and Outlook

\section*{Differential motion}
\[
p_{\text {end }}
\]
\[
\begin{aligned}
\Delta \boldsymbol{p}(t) & =\boldsymbol{p}(t+\Delta t)-\boldsymbol{p}(t) \\
& =H(t+\Delta t) \boldsymbol{p}_{0}-H(t) \boldsymbol{p}_{0} \\
& =(H(t+\Delta t)-H(t)) \boldsymbol{p}_{0} \\
& =(\Delta H(t)) \boldsymbol{p}_{0}
\end{aligned}
\]

\section*{Differential motion (cont.)}
\(H\) is a \(4 \times 4\) homogeneous transformation from world-frame to object-frame and \(\boldsymbol{p}_{0}\) is given with reference to the world-frame.

Hence it is:
\[
\begin{align*}
\dot{\boldsymbol{p}}(t) & =\lim _{\Delta t \rightarrow 0} \frac{\Delta \boldsymbol{p}(t)}{\Delta t}  \tag{30}\\
& =\frac{d H(t)}{d t} \mathbf{p}_{0}  \tag{31}\\
& =\left(\frac{d H(t)}{d t} H^{-1}(t)\right) H(t) \mathbf{p}_{\mathbf{0}}  \tag{32}\\
& =\left(\frac{d H(t)}{d t} H^{-1}(t)\right) \mathbf{p}(t) \tag{33}
\end{align*}
\]

\section*{Derivative of a homogeneous transformation}

Consider the homogeneous transformation H
\[
H=\left[\begin{array}{cccc}
h_{11} & h_{12} & h_{13} & h_{14} \\
h_{21} & h_{22} & h_{23} & h_{24} \\
h_{31} & h_{32} & h_{33} & h_{34} \\
0 & 0 & 0 & 1
\end{array}\right]
\]
where each element is a function of a variable \(t\) :
\[
d H=\left[\begin{array}{cccc}
\frac{\partial h_{11}}{\partial t} & \frac{\partial h_{12}}{\partial t} & \frac{\partial h_{13}}{\partial t} & \frac{\partial h_{14}}{\partial t} \\
\frac{\partial h_{21}}{\partial t} & \frac{\partial h_{22}}{\partial t} & \frac{\partial h_{23}}{\partial t} & \frac{\partial h_{24}}{\partial t} \\
\frac{\partial h_{31}}{\partial t} & \frac{\partial h_{32}}{\partial t} & \frac{\partial h_{33}}{\partial t} & \frac{\partial h_{34}}{\partial t} \\
0 & 0 & 0 & 1
\end{array}\right] d t
\]

\section*{Differential translation and rotation - World-frame}

Case 1 The differential translation and rotation are executed with reference to a fixed coordinate frame.
\[
\begin{equation*}
H+d H=\operatorname{Trans}_{d x, d y, d z} \operatorname{Rot}_{k, d \theta} H \tag{34}
\end{equation*}
\]
\(\operatorname{Trans}_{d x, d y, d z}\) : is a differential translation \(d z, d y, d z\) with reference to the fixed coordinate frame.
\(\operatorname{Rot}_{k, d \theta}\) : is a differential rotation \(d \theta\) around an arbitrary vector \(\mathbf{k}\) with reference to the fixed coordinate frame.
\(d H\) is calculated as follows:
\[
\begin{equation*}
d H=\left(\operatorname{Trans}_{d x, d y, d z} \operatorname{Rot}_{k, d \theta}-I\right) H \tag{35}
\end{equation*}
\]

\section*{Differential translation and rotation - Object-frame}

Case 2 The differential translation and rotation are executed with reference to a current object coordinate frame:
\[
\begin{equation*}
H+d H=H \operatorname{Trans}_{d x, d y, d z} \operatorname{Rot}_{k, d \theta} \tag{36}
\end{equation*}
\]
\(\operatorname{Trans}_{d x, d y, d z}\) : is a differential translation \(d z, d y, d z\) with reference to the current object coordinate frame.
\(\operatorname{Rot}_{k, d \theta}\) : is a differential rotation \(d \theta\) around an arbitrary vector \(\mathbf{k}\) with reference to the current object coordinate frame.
\(d H\) is calculated as follows:
\[
\begin{equation*}
d H=H\left(\operatorname{Trans}_{d x, d y, d z} \operatorname{Rot}_{k, d \theta}-I\right) \tag{37}
\end{equation*}
\]

\title{
Differential homogeneous transformation
}

Definition
\[
\Delta=\operatorname{Trans}_{d x, d y, d z} \operatorname{Rot}_{k, d \theta}-I
\]

Thus (35) can be written as
\[
d H=\boldsymbol{\Delta} \cdot H
\]
and (37) can be written as:
\[
d H=H \cdot \Delta
\]

\section*{Differential homogeneous transformation (cont.)}

The translation by \(\mathbf{d}\) is defined as:
\[
\operatorname{Trans}_{\boldsymbol{d}}=\left[\begin{array}{cccc}
1 & 0 & 0 & d_{x} \\
0 & 1 & 0 & d_{y} \\
0 & 0 & 1 & d_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
\]
where \(\boldsymbol{d}\) is a differential vector that represents the differential change
\[
d_{x} \vec{i}+d_{y} \vec{j}+d_{z} \vec{k}
\]
\((\vec{i}, \vec{j}, \vec{k}\) are three unit vectors coinciding with \(x, y, z)\).

\section*{Differential homogeneous transformation (cont.)}

The transformation of the rotation with \(\theta\) around an arbitrary vector \(\boldsymbol{k}=k_{x} \vec{i}+k_{y} \vec{j}+k_{z} \vec{k} \quad\) is defined as:
\[
\operatorname{Rot}_{\boldsymbol{k}, \theta}=\left[\begin{array}{cccc}
k_{x} k_{x} V \theta+C \theta & k_{y} k_{x} V \theta-k_{z} S \theta & k_{z} k_{x} V \theta+k_{y} S \theta & 0  \tag{38}\\
k_{x} k_{y} V \theta+k_{z} S \theta & k_{y} k_{y} V \theta+C \theta & k_{z} k_{y} V \theta-k_{x} S \theta & 0 \\
k_{x} k_{z} V \theta-k_{y} S \theta & k_{y} k_{z} V \theta+k_{x} S \theta & k_{z} k_{z} V \theta+C \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\]
where \(C \theta=\cos \theta, S \theta=\sin \theta\)
and \(V \theta=\) versine \(\theta=2 \sin ^{2}\left(\frac{\theta}{2}\right)=1-\cos \theta\).
see R. Paul, Robot Manipulators: Mathematics, Programming, and Control: the Computer Control of Robot Manipulators. Artificial Intelligence Series, MIT Press, 1981, section 1.12 "General Rotation Transformation"

\section*{Differential homogeneous transformation (cont.)}

With:
\[
\begin{aligned}
& \lim _{\theta \rightarrow 0} \sin \theta \rightarrow d \theta \\
& \lim _{\theta \rightarrow 0} \cos \theta \rightarrow 1 \\
& \lim _{\theta \rightarrow 0} \operatorname{vers} \theta \rightarrow 0
\end{aligned}
\]
(38) can be written as:
\[
\operatorname{Rot}_{\boldsymbol{k}, \theta}=\left[\begin{array}{cccc}
1 & -k_{z} d \theta & k_{y} d \theta & 0  \tag{39}\\
k_{z} d \theta & 1 & -k_{x} d \theta & 0 \\
-k_{y} d \theta & k_{x} d \theta & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\]

\section*{Differential homogeneous transformation (cont.)}
\[
\begin{align*}
\boldsymbol{\Delta} & =\left[\begin{array}{cccc}
1 & 0 & 0 & d_{x} \\
0 & 1 & 0 & d_{y} \\
0 & 0 & 1 & d_{z} \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{cccc}
1 & -k_{z} d \theta & k_{y} d \theta & 0 \\
k_{z} d \theta & 1 & -k_{x} d \theta & 0 \\
-k_{y} d \theta & k_{x} d \theta & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]-\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cccc}
0 & -k_{z} d \theta & k_{y} d \theta & d_{x} \\
k_{z} d \theta & 0 & -k_{x} d \theta & d_{y} \\
-k_{y} d \theta & k_{x} d \theta & 0 & d_{z} \\
0 & 0 & 0 & 0
\end{array}\right]
\end{align*}
\]

\section*{Differential rotation around the \(x, y, z\) axes}
\[
\begin{align*}
R_{x, \psi} & =\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & C \psi & -S \psi & 0 \\
0 & S \psi & C \psi & 0 \\
0 & 0 & 0 & 1
\end{array}\right]  \tag{42}\\
R_{y, \theta} & =\left[\begin{array}{cccc}
C \theta & 0 & S \theta & 0 \\
0 & 1 & 0 & 0 \\
-S \theta & 0 & C \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]  \tag{43}\\
R_{z, \phi} & =\left[\begin{array}{cccc}
C \phi & -S \phi & 0 & 0 \\
S \phi & C \phi & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \tag{44}
\end{align*}
\]

\section*{Differential rotation around the \(x, y, z\) axes (cont.)}

Considering the differential change:
\(\sin \theta \rightarrow \delta \theta\) and
\(\cos \theta \rightarrow 1\)

\[
\begin{align*}
R_{x, \delta_{x}} & =\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & -\delta_{x} & 0 \\
0 & \delta_{x} & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]  \tag{45}\\
R_{y, \delta_{y}} & =\left[\begin{array}{cccc}
1 & 0 & \delta_{y} & 0 \\
0 & 1 & 0 & 0 \\
-\delta_{y} & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]  \tag{46}\\
R_{z, \phi} & =\left[\begin{array}{cccc}
1 & -\delta_{z} & 0 & 0 \\
\delta_{z} & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \tag{47}
\end{align*}
\]

Omitting terms of the 2nd order, one gets:
\[
R_{z, \delta_{z}} R_{y, \delta_{y}} R_{x, \delta_{x}}=\left[\begin{array}{cccc}
1 & -\delta_{z} & \delta_{y} & 0  \tag{48}\\
\delta_{z} & 1 & -\delta_{x} & 0 \\
-\delta_{y} & \delta_{x} & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\]

Through comparison of (39) with (48) one determines:
\[
\begin{align*}
& k_{x} d \theta=\delta_{x}  \tag{49}\\
& k_{y} d \theta=\delta_{y}  \tag{50}\\
& k_{z} d \theta=\delta_{z} \tag{51}
\end{align*}
\]

Equation (41) can be rewritten as:
\[
\boldsymbol{\Delta}=\left[\begin{array}{cccc}
0 & -\delta_{z} & \delta_{y} & d_{x} \\
\delta_{z} & 0 & -\delta_{x} & d_{y} \\
-\delta_{y} & \delta_{x} & 0 & d_{z} \\
0 & 0 & 0 & 0
\end{array}\right]
\]

Definition of differential transformation
\(\boldsymbol{\Delta}\) is therefore fully defined by the vectors \(\boldsymbol{d}\) and \(\boldsymbol{\delta}\).

DER FORSCHUNG \| DER LEHRE \| DER BILDUNG

\title{
Introduction to Robotics \\ Lecture 5
}

Lasse Einig, Jianwei Zhang
[einig, zhang]@informatik.uni-hamburg.de

University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences
Department of Informatics
Technical Aspects of Multimodal Systems

July 12, 2018

\section*{Outline}

Introduction
Coordinate systems
Kinematic Equations
Robot Description
Inverse Kinematics for Manipulators
Differential motion with homogeneous transformations Jacobian

Jacobian of a Manipulator
Singular Configurations
Trajectory planning
Trajectory generation
Dynamics
Principles of Walking

\section*{Outline (cont.)}

Robot Control
Task-Level Programming and Trajectory Generation
Task-level Programming and Path Planning
Task-level Programming and Path Planning
Architectures of Sensor-based Intelligent Systems
Summary
Conclusion and Outlook

\section*{Jacobian of a Manipulator}

\section*{Definition}
- A Jacobian-matrix is a multidimensional representation of partial derivatives.
- The Jacobian of a manipulator links the joint velocities with the cartesian velocity of the TCP.
- The Jacobian matrix depends on the current state of the robot joints.

\section*{Jacobian of a Manipulator (cont.)}
- Consider an n-link manipulator with joint variables \(q_{1}, q_{2}, . . q_{n}\).
- Define \(q=\left[q_{1}, q_{2}, . . q_{n}\right]^{T}\)
- Let the transformation from base to end-effector frame be:
\[
T=\left[\begin{array}{cc}
R_{n}^{0}(q) & o(q)  \tag{52}\\
0 & 1
\end{array}\right]
\]
- We define \(\omega_{n}^{0}\) to be the angular velocity of the end-effector
- The linear velocity of the end-effector is \(v_{n}^{0}\)
- The Jacobian matrix consists of two components, that solve the following equations:
\[
v_{n}^{0}=J_{v} \dot{q} \quad \text { and } \quad \omega_{n}^{0}=J_{w} \dot{q}
\]

\section*{Jacobian of a Manipulator (cont.)}

The manipulator Jacobian
\[
J:=\left[\begin{array}{l}
J_{v} \\
J_{w}
\end{array}\right]
\]

We define the body velocity of the endeffector:
\[
\xi:=\left[\begin{array}{c}
v_{n}^{0} \\
\omega_{n}^{0}
\end{array}\right]:=\left[\begin{array}{l}
T d_{x} \\
T d_{y} \\
T d_{z} \\
T_{\delta_{x}} \\
T_{\delta_{y}} \\
T \delta_{z}
\end{array}\right] \quad \xi=J \dot{q}
\]

\section*{Angular Velocity Jacobian}

\section*{Revolute joints}

If the \(i^{\text {th }}\) joint is revolute, the axis of rotation is given by \(z_{i-1}\). Let \(\omega_{i-1, i}^{i-1}\) represent the angular velocity of the link \(i\) w.r.t. the frame \(i-1\).
Then, we have:
\[
\omega_{i-1, i}^{i-1}=\dot{q}_{i} z_{i-1}^{i-1}
\]

\section*{Prismatic joints}

If the \(i^{\text {th }}\) joint is prismatic, the motion of frame \(i\) relative to frame \(i-1\) is a translation.

Then, we have:
\[
\omega_{i-1, i}^{i-1}=0
\]

\section*{Angular Velocity Jacobian (cont.)}

Overall angular velocity:
\[
\begin{equation*}
\omega_{0, n}^{0}=\omega_{0,1}^{0}+R_{1}^{0} \omega_{1,2}^{1}+\ldots+R_{n-1}^{0} \omega_{n-1, n}^{n-1} \tag{53}
\end{equation*}
\]

We get:
\[
\begin{align*}
\omega_{0, n}^{0} & =p_{1} \dot{q}_{1} z_{0}^{0}+p_{2} \dot{q}_{2} R_{1}^{0} z_{1}^{1}+\ldots+p_{n} \dot{q}_{n} R_{n-1}^{0} z_{n-1}^{n-1}  \tag{54}\\
& =p_{1} \dot{q}_{1} z_{0}^{0}+p_{2} \dot{q}_{2} z_{1}^{0}+\ldots+p_{n} \dot{q}_{n} z_{n-1}^{0} \tag{55}
\end{align*}
\]
where:
\[
p_{i}= \begin{cases}0 & \text { if } \mathrm{i} \text { is prismatic }  \tag{56}\\ 1 & \text { if } \mathrm{i} \text { is revolute }\end{cases}
\]

\section*{Angular Velocity Jacobian (cont.)}

The complete Jacobian
\[
\left[\begin{array}{l}
v_{n}^{0}  \tag{57}\\
\omega_{n}^{0}
\end{array}\right]=\left[\begin{array}{l}
J_{v} \\
J_{w}
\end{array}\right] \dot{q}
\]

The Angular Velocity Jacobian
\[
J_{w}=\left[\begin{array}{llll}
p_{1} z_{0}^{0} & p_{2} z_{1}^{0} & \ldots & p_{n} z_{n-1}^{0} \tag{58}
\end{array}\right]
\]
(Hint: \(J_{w}\) is a \(3 x n\) matrix; due to matrix multiplication rules the representation is equal to those on the last slide.)

\section*{Linear Velocity Jacobian}

The linear velocity of the end effector is: \(\dot{\dot{o}}_{n}^{0}\)
By the chain rule of differentiation:
\[
\begin{equation*}
\dot{o}_{n}^{0}=\frac{\delta o_{n}^{0}}{\delta q_{1}} \dot{q}_{1}+\frac{\delta o_{n}^{0}}{\delta q_{2}} \dot{q}_{2}+\ldots+\frac{\delta o_{n}^{0}}{\delta q_{n}} \dot{q}_{n} \tag{59}
\end{equation*}
\]
therefore the linear part of the Jacobian is:
\[
\begin{equation*}
J_{v}=\frac{\delta o_{n}^{0}}{\delta q_{1}} \quad \frac{\delta o_{n}^{0}}{\delta q_{2}} \quad \cdots \quad \frac{\delta o_{n}^{0}}{\delta q_{n}} \tag{60}
\end{equation*}
\]

\section*{Linear Velocity Jacobian - Prismatic}

Every prismatic joint influences the velocity of the endeffector depending on:
- the current linear velocity of the joint \(\left(\dot{d}_{i}\right)\)
- the current orientation of the \(z\)-axis of the joint \(\left(z_{i-1}\right)\)
- depending on q
\[
\begin{equation*}
\dot{o}_{n}^{0}=\dot{d}_{i} z_{i-1} \tag{61}
\end{equation*}
\]

Therefore:
\[
\begin{equation*}
J_{v_{i}}=\frac{\delta o_{n}^{0}}{\delta q_{n}}=z_{i-1} \tag{62}
\end{equation*}
\]

\section*{Linear Velocity Jacobian - Revolute}

Every revolute joint influences the velocity of the end-effector depending on:
- the current angular velocity of the joint \(\left(\dot{q}_{i}\right)\)
- the current orientation of the z -axis of the joint \(\left(z_{i-1}\right)\)
- the current vector from the joint origin \(o_{i-1}\) to the end-effector
- the two latter depending on q

The linear velocity of the end-effector is of form:
with
\[
\omega=\dot{q}_{i} z_{i-1} \quad \text { and } \quad r=o_{n}^{0}-o_{i-1}^{0}
\]

Therefore:
\[
\begin{equation*}
J_{v_{i}}=\frac{\delta o_{n}^{0}}{\delta q_{n}}=z_{i-1} \times\left(o_{n}^{0}-o_{i-1}^{0}\right) \tag{63}
\end{equation*}
\]

\section*{Computing the final Jacobian}
\[
J:=\left[\begin{array}{l}
J_{v} \\
J_{w}
\end{array}\right]
\]
\[
\begin{align*}
& J_{v}=\left[\begin{array}{lll}
J_{v_{1}} & J_{v_{2}} & J_{v_{n}}
\end{array}\right] \text { with }  \tag{64}\\
& J_{v_{i}}= \begin{cases}z_{i-1} & \text { if } \mathrm{i} \text { is prismatic } \\
z_{i-1} \times\left(o_{n}^{0}-o_{i-1}^{0}\right) & \text { if } \mathrm{i} \text { is revolute }\end{cases} \tag{65}
\end{align*}
\]
\[
J_{w_{i}}= \begin{cases}0 & \text { if } \mathrm{i} \text { is prismatic }  \tag{66}\\ z_{i-1} & \text { if } \mathrm{i} \text { is revolute }\end{cases}
\]

\section*{Computing the final Jacobian (cont.)}

\section*{Target}

Compute \(z_{i}\) and \(o_{i}\).
- \(z_{i}\) is equal to the first three elements of the 3rd column of matrix \({ }^{0} T_{i}\)
- \(o_{i}\) is equal to the first three elements of the 4th column of matrix \({ }^{0} T_{i}\)
\({ }^{0} T_{i}\) has to be computed for every joint.

\section*{Jacobian of a Manipulator - DOF}

Consider a Manipulator with 6 DOFs:
\[
T_{6}=A_{1} A_{2} A_{3} A_{4} A_{5} A_{6}
\]
the Jacobian is:
\[
\left.\begin{array}{l}
{\left[\begin{array}{l}
T_{6} d_{x} \\
T_{6} \\
d_{y} \\
T_{6} \\
d_{z} \\
T_{6}
\end{array} \delta_{x}\right.} \\
T_{6} \delta_{y} \\
T_{6} \delta_{z}
\end{array}\right]=J_{6 \times 6}\left[\begin{array}{l}
d q_{1} \\
d q_{2} \\
d q_{3} \\
d q_{4} \\
d q_{5} \\
d q_{6}
\end{array}\right]\left[\begin{array}{l}
\dot{\mathbf{x}}=J(\mathbf{q}) \quad \dot{\mathbf{q}}
\end{array}\right.
\]

In case of a 6 -DOF manipulator, we get a \(6 \times 6\) matrix.

\section*{Inverse Jacobian}


\section*{Question}

Is the Jacobian invertible?
If it is, then:
\[
\dot{\mathbf{q}}=J^{-1}(\mathbf{q}) \dot{\mathrm{x}}
\]
\(\Longrightarrow\) to move the the end-effector of the robot in Cartesian Space with a certain velocity.

\section*{Singular Configurations}

For most manipulators there exist values of \(\mathbf{q}\) where the Jacobian gets singular.

\section*{Singularity}
\[
\operatorname{det} J=0 \Longrightarrow J \text { is not invertible }
\]

Such configurations are called singularities of the manipulator. Two Main types of Singularities:
- Workspace boundary singularities
- Workspace internal singularities

\section*{Singular Configurations - Workarounds}
- generally only for 6-DOF manipulators the Jacobian is invertible
- there are workarounds for other types of manipulators
\(n<6\) manually restrict the DOF of the end-effector
\(\Longrightarrow\) square Jacobian matrix.
Example:
\[
\left[\begin{array}{l}
T_{6} d_{x} \\
T_{6} d_{y}
\end{array}\right]=J_{2 \times 2}\left[\begin{array}{l}
d q_{1} \\
d q_{2}
\end{array}\right]
\]
for a 2-joint planar manipulator
\(n>6\) use the pseudoinverse of J
\[
\begin{align*}
& A^{+}=\left(A^{T} \cdot A\right)^{-1} \cdot A^{T}, \text { linear independent colums }  \tag{68}\\
& A^{+}=A^{T} \cdot\left(A^{T} \cdot A\right)^{-1}, \text { linear independent rows } \tag{69}
\end{align*}
\]

DER FORSCHUNG \| DER LEHRE \| DER BILDUNG

\title{
Introduction to Robotics \\ Lecture 6
}

Lasse Einig, Jianwei Zhang
[einig, zhang]@informatik.uni-hamburg.de

University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences
Department of Informatics
Technical Aspects of Multimodal Systems

July 12, 2018

\section*{Outline}

Introduction
Coordinate systems
Kinematic Equations
Robot Description
Inverse Kinematics for Manipulators
Differential motion with homogeneous transformations
Jacobian
Trajectory planning
Trajectory generation
Generation of trajectories
Trajectories in multidimensional space
Cubic polynomials between two configurations
Optimizing motion
Trajectory generation

\section*{Outline (cont.)}

Dynamics
Principles of Walking
Robot Control
Task-Level Programming and Trajectory Generation
Task-level Programming and Path Planning
Task-level Programming and Path Planning
Architectures of Sensor-based Intelligent Systems
Summary
Conclusion and Outlook

\section*{Definition}

A trajectory is a time history of position, velocity and acceleration
for each DOF
Describes motion of TCP frame relative to base frame
- abstract from joint configuration

Series of discrete poses (TCP or joint configuration)
- usually fixed temporal intervals
- possibly fixed distances, key frames

\section*{Problem}

I am at point \(A\) and want move to point \(B\).
- How do I get to point B?
- How long does it take me to get to point \(B\) ?
- Which constraints exist for moving from \(A\) to \(B\) ?

\section*{Solution}
- generate a possible trajectory
- trajectory planning
- describe intermediate poses (waypoints)

\section*{Requirement}

The methods for path generation should be applicable for
- calculation of cartesian trajectories for the TCP
- calculation for trajectories in joint space

\section*{Primitive solution}

\section*{Naive approach}

Set the pose for the next time step (e.g. 10 ms later) to \(B\).
- possible only in simulation
- the moving distance for a manipulator at the next time step may be too large (velocity approaches \(\infty\) )

\section*{Linear interpolation}

Next best approach
- divide distance between \(A\) and \(B\) to shorter (sub-)distances
- use linear interpolation for these (sub-)distances
- respect the maximum velocity constraint

\section*{Linear interpolation - visualization}


\section*{Linear interpolation - constraints}

\section*{Problem}

The physical constraints are violated
- joint velocity is limited by maximum motor rotation speed
- joint acceleration is limited by maximum motor torque Implicitly these contraints are valid for motion in cartesian space.
- robot dynamics (joint moments resulting from the robot motion) affect the boundary condition

\section*{Solution}
- dynamical trajectory planning
- advanced optimization methods \(\rightarrow\) current topic of research

\section*{Linear interpolation - improvement}

Next best approach
- Limitation of joint velocity and acceleration
- Two different methods
- trapezoidal interpolation
- polynomial interpolation

\section*{Trapezoidal interpolation - visualization}

- consider joint velocity and acceleration contraints
- optimal time usage (move with maximum acceleration and velocity)
- acceleration is not differentiable (the jerk is not continuous)
- start and end velocity equals 0
- not sensible for concatenating trajectories
- improved by polynomial interpolation

\section*{Trapezoidal interpolation - constraints}

\section*{Problem}

Multidimensional trapezoidal interpolations
- different run time for joints (or cartesian dimensions)
- multiple velocity and acceleration contraints
- results in various time switch points
- from acceleration to continuous velocity
- from continuous velocity to deceleration
- moving along a line in joint/cartesian space is impossible.

\section*{Solution}
- Normalization to the slowest joint
- Use jerk and arrival time of the slowest joint instead of velocity.

\section*{Trapezoidal interpolation - normalization}

Normalize to the slowest joint


Trapezoidal interpolation - normalization (cont.)

Normalize to the slowest joint

- Consider velocity and acceleration boundary conditions
- calculation of extremum and duration of trajectory
- Acceleration differentiable
- continous jerk
- smooth trajectory
- interesting only in the theory - for momentum control
- Start and end velocity may be \(\neq 0\)
- sensible for concatenating trajectories
- Usually a polynom with degree of 3 (cubic spline) or 5
- Calculation of coefficient with respect to boundary constraints
- \(3^{\text {rd }}\)-degree polynomial: consider 4 boundary constraints
- position and velocity; start and goal
- \(5^{\text {th }}\)-degree polynomial: consider 6 boundary constraints
- position, velocity and acceleration; start and goal

\section*{Polynomial interpolation (cont.)}

Example \(5^{\text {th }}\)-degree
\(f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}\)
Boundary conditions for start \(\left(x=t_{0}\right)\) and goal \(\left(x=t_{d}\right)\) :
- \(f\left(t_{0}\right)=\operatorname{pos}_{S_{t a r t}}, f\left(t_{d}\right)=\operatorname{pos}_{G o a l}\)
- \(f^{\prime}\left(t_{0}\right)=\) vel \(_{\text {Start }}, f^{\prime}\left(t_{d}\right)=\) vel \(_{\text {Goal }}\)
- \(f^{\prime \prime}\left(t_{0}\right)=\operatorname{acc}_{S_{t a r t}}, f^{\prime \prime}\left(t_{d}\right)=\operatorname{acc}_{\text {Goal }}\)
\(t\) : formal time from the interval \([0 ; 1]\)
Proper position interpolation from start \((A)\) to goal \((B)\)
\[
P(t)=A f(t)+B f(1-t)
\]

\section*{Polynomial interpolation (cont.)}


\section*{Boundary constraints}

Pick-and-Place example


Work surface

\title{
Boundary constraints (cont.) \\ Pick-and-Place example
}

Pick \(\operatorname{pos}_{S t a r t}=o b j e c t\), vel \(l_{\text {Start }}=0, a c c_{S t a r t}=0\)
Lift-off limited velocity and acceleration
Motion continuous via waypoints, full velocity and acceleration
Set-down similar to Lift-off
Place similar to Pick

\section*{Generation of trajectories}

\section*{Task}
- find trajectory for moving the robot from start to goal pose
- calculate
- interpolate
- approximate
- use continous functions of time

Solution:
- Cartesian space
- Joint Space

\section*{Generation of trajectories (cont.)}

Cartesian space:
- near to the task specification
- advantageous for collision avoidance

\section*{Generation of trajectories (cont.)}

Joint space:
- no inverse kinematics in joint space required
- the planned trajectory can be immediately applied
- physical joint constraints can be considered

- Changes in position, velocity and acceleration of all joints are analyzed over a period of time
- Trajectory with \(n\) DOF is a parameterized function \(q(t)\) with values in its motion region.
- Trajectory \(q(t)\) of a robot with \(n\) DOF is then a vector of \(n\) parameterized functions \(q_{i}(t), i \in\{1 \ldots n\}\) with one common parameter \(t\) :
\[
q(t)=\left[q_{1}(t), q_{2}(t), \ldots, q_{n}(t)\right]^{T}
\]
- A trajectory is \(C^{k}\)-continuous, if all derivatives up to the \(k\)-th (including) exist and are continuous.
- A trajectory is called smooth, if it is at least \(C^{2}\)-continuous
- \(q(x)\) is the trajectory,
- \(\dot{q}(x)\) is the velocity,
- \(\ddot{q}(x)\) is the acceleration,
- \(\dddot{q}(x)\) is the jerk

\section*{Remarks on generation of trajectories}
- The smoothest curves are generated by infinitly often differentiable functions.
- \(e^{x}\)
- \(\sin (x), \cos (x)\)
- \(\log (x)(\) for \(x>0)\)
- ...
- Polynomials are suitable for interpolation
- Problem: oscillations caused by a degree which is too high
- Piecewise polynomials with specified degree are applicable
- cubic polynomial
- splines
- B-Splines
- ...

\section*{Cubic polynomials between two configurations}
- third-degree polynomial \(\Rightarrow\) four constraints:
\[
\theta(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}
\]
- if the start and end velocity is 0 then
\[
\begin{align*}
\theta(0) & =\theta_{0}  \tag{70}\\
\theta\left(t_{f}\right) & =\theta_{f}  \tag{71}\\
\dot{\theta}(0) & =0  \tag{72}\\
\dot{\theta}\left(t_{f}\right) & =0 \tag{73}
\end{align*}
\]

\section*{Cubic polynomials between two configurations (cont.)}
- The solution
\[
\begin{aligned}
\text { eq. (70) } & a_{0}=\theta_{0} \\
\text { eq. (72) } & a_{1}=0 \\
& a_{2}=\frac{3}{t_{f}^{2}}\left(\theta_{f}-\theta_{0}\right) \\
a_{3} & =-\frac{2}{t_{f}^{3}}\left(\theta_{f}-\theta_{0}\right)
\end{aligned}
\]

\section*{Cubic polynomials with waypoints and velocities}
- Similar to the previous example:
- positions of waypoints are given (same)
- velocities of waypoints are different from 0 (different)
\[
\begin{align*}
\theta(0) & =\theta_{0}  \tag{74}\\
\theta\left(t_{f}\right) & =\theta_{f}  \tag{75}\\
\dot{\theta}(0) & =\dot{\theta}_{0}  \tag{76}\\
\dot{\theta}\left(t_{f}\right) & =\dot{\theta}_{f} \tag{77}
\end{align*}
\]

\section*{Cubic polynomials with waypoints and velocities (cont.)}
- The solution
\[
\begin{array}{ll}
\text { eq. (74) } & a_{0}=\theta_{0} \\
\text { eq. (76) } & a_{1}=\dot{\theta}_{0} \\
a_{2} & =\frac{3}{t_{f}^{2}}\left(\theta_{f}-\theta_{0}\right)-\frac{2}{t_{f}} \dot{\theta}_{0}-\frac{1}{t_{f}} \dot{\theta}_{f} \\
a_{3} & =-\frac{2}{t_{f}^{3}}\left(\theta_{f}-\theta_{0}\right)+\frac{1}{t_{f}^{2}}\left(\dot{\theta}_{f}+\dot{\theta}_{0}\right)
\end{array}
\]

\section*{Velocity calculation at the waypoints}
- Manually specify waypoints
- based on cartesian linear and angle velocity of the tool frame
- Automatic calculation of waypoints in cartesian or joint space
- based on heuristics
- Automatic determination of the parameters
- based on continous acceleration at the waypoints

\section*{Factors for time optimal motion - Arc Length}

If the curve in the \(n\)-dimensional K space is given by
\[
\mathbf{q}(t)=\left[q^{1}(t), q^{2}(t), \ldots, q^{n}(t)\right]^{T}
\]
then the arc length can be defined as follows:
\[
s=\int_{0}^{t}\|\dot{\mathbf{q}}(t)\|_{2} d t
\]
where \(\|\dot{\mathbf{q}}(t)\|_{2}\) is the euclidean norm of vector \(d \mathbf{q}(t) / d t\) and is labeled as a flow velocity along the curve.
\[
\|\mathbf{x}\|_{2}:=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}
\]

With the following two points given
\(\mathbf{p}_{0}=\mathbf{q}\left(t_{s}\right)\) und \(\mathbf{p}_{1}=\mathbf{q}\left(t_{f}\right)\),
the arc length \(L\) between \(\mathbf{p}_{0}\) and \(\mathbf{p}_{1}\) is the integral:
\[
L=\int_{\mathbf{p}_{1}}^{\mathbf{p}_{0}} d s=\int_{t_{s}}^{t_{f}}\|\dot{\mathbf{q}}(t)\|_{2} d t
\]
"The trajectory parameters should be calculated in the way that the arc length \(L\) under the given constraints has the shortest possible value."
- trajectory of circle
\[
q(t)=c(t)=[r \cos (t), r \sin (t)]^{T}
\]
- arc length \(L\) of circle (circumference)
\[
\begin{align*}
L & =\int_{0}^{2 \pi}\|\dot{\mathbf{c}}(t)\|_{2} d t  \tag{78}\\
& =\int_{0}^{2 \pi}\left\|[-r \sin (t), r \cos (t)]^{T}\right\|_{2} d t  \tag{79}\\
& =\int_{0}^{2 \pi} \sqrt{r^{2}\left(\sin ^{2}(t)+\cos ^{2}(t)\right)} d t  \tag{80}\\
& =\int_{0}^{2 \pi} r d t  \tag{81}\\
L & =2 \pi r \tag{82}
\end{align*}
\]

\section*{Factors for time optimal motion - Curvature}

\section*{Curvature}

Defines the sharpness of a curve. A straight line has zero curvature. Curvature of large circles is smaller than of small circles.

At first the unit vector of a curve \(\mathbf{q}(t)\) can be defined as
\[
\mathbf{U}=\frac{d \mathbf{q}(t)}{d s}=\frac{d \mathbf{q}(t) / d t}{d s / d t}=\frac{\dot{\mathbf{q}}(t)}{|\dot{\mathbf{q}}(t)|}
\]

If \(s\) is the parameter of the arc length and \(\mathbf{U}\) as the unit vector is given, the curvature of curve \(\mathbf{q}(t)\) can be defined as
\[
\kappa(s)=\left|\frac{d \mathbf{U}}{d s}\right|
\]

Factors for time optimal motion - Curvature (cont.)
\[
\text { with } \quad \kappa(s)=\left|\frac{d \mathbf{U}}{d s}\right| \quad \rightarrow \text { curvature }
\]

If the parameter \(t\), the first derivative \(\dot{\mathbf{q}}=d \mathbf{q}(t) / d t\) and the second derivative \(\ddot{\mathbf{q}}=d \dot{\mathbf{q}}(t) / d t\) for the curve \(\mathbf{q}(t)\) are given, then the curvature can be calculated from the following representation
\[
\kappa(t)=\frac{|\dot{\mathbf{q}} \times \ddot{\mathbf{q}}|}{\left|\dot{\mathbf{q}}^{3}\right|}=\frac{\left(\dot{\mathbf{q}}^{2} \cdot \ddot{\mathbf{q}}^{2}-(\dot{\mathbf{q}} \cdot \ddot{\mathbf{q}})^{2}\right)^{1 / 2}}{|\dot{\mathbf{q}}|^{3}}
\]
where \(\dot{\mathbf{q}} \times \ddot{\mathbf{q}}\) is the cross product and \(\dot{\mathbf{q}} \cdot \ddot{\mathbf{q}}\) is the dot product
with \(\quad q(t)=c(t)=[r \cos (t), r \sin (t)]^{T} \rightarrow\) trajectory of a circle
\[
\begin{aligned}
\dot{c}(t) & =[-r \sin (t), r \cos (t)]^{T} \\
\ddot{c}(t) & =[-r \cos (t),-r \sin (t)]^{T} \\
\dot{c}^{2}(t) & =r^{2} \sin ^{2}(t)+r^{2} \cos ^{2}(t)=r^{2} \\
\dot{c}^{2}(t) & =r^{2} \cos ^{2}(t)+r^{2} \sin ^{2}(t)=r^{2} \\
\dot{c}(t) \cdot \ddot{c}(t) & =r^{2} \sin (t) \cos (t)-r^{2} \cos (t) \sin (t)=0
\end{aligned}
\]

Curvature of a circle
\[
\kappa(t)=\frac{\left(\dot{\mathbf{c}}^{2} \cdot \ddot{\mathbf{c}}^{2}-\left(\dot{\mathbf{c}} \cdot \dot{\mathbf{c}}^{2}\right)^{1 / 2}\right.}{|\dot{\mathbf{c}}|^{3}}=\frac{\sqrt{r^{4}}}{r^{3}}=\frac{1}{r}
\]

\section*{Factors for time optimal motion - Bending Energy}

The bending energy of a smooth curve \(\mathbf{q}(t)\) over the interval \(t \in[0, T]\) is defined as
\[
E=\int_{0}^{L} \kappa(s)^{2} d s=\int_{0}^{T} \kappa(t)^{2}|\dot{\mathbf{q}}(t)| d t
\]
where \(\kappa(t)\) is the curvature of \(\mathbf{q}(t)\).
"The bending energy \(E\) of a trajectory should be as small as possible under consideration of the arc length."

\section*{Factors for time optimal motion - Motion Time}

If a motion consists of \(n\) successive segments
\[
q_{j}, j \in\{1 \ldots n\}
\]
then
\[
u_{j}=t_{j+1}-t_{j}
\]
is the required time for the motion in the segment \(\mathbf{q}_{j}\). The total motion time is
\[
T=\sum_{j=1}^{n-1} u_{j}
\]

\section*{Dynamical constraints for all joints}

The borders for the minimum motion time \(T_{\text {min }}\) for the trajectory \(\mathbf{q}_{j}^{i}(t)\) are defined over dynamical parameters of all joints.
For joint \(i \in\{1 \ldots n\}\) of trajectory part \(j \in\{1 \ldots m\}\) this kind of constraint can be described as follows
\[
\begin{align*}
\left|\dot{q}_{j}^{i}(t)\right| & \leq \dot{q}_{\text {max }}^{i}  \tag{83}\\
\left|\ddot{q}_{j}^{i}(t)\right| & \leq \ddot{q}_{\text {max }}^{i}  \tag{84}\\
\left|m_{j}^{i}(t)\right| & \leq m_{\text {max }}^{i} \tag{85}
\end{align*}
\]
- \(m^{i}\) is the torque (moment of force) for the joint \(i\) and can be calculated from the dynamical equation (motion equation).
- \(\dot{q}_{\text {max }}^{i}, \ddot{q}_{\text {max }}^{i}\) and \(m_{\text {max }}^{i}\) represent the important parameters of the dynamical capacity of the robot.

\section*{Difficulties for cartesian space trajectory generation}
- Waypoints cannot be realized
- workspace boundaries, object collision, self-collision
- Velocities in the vicinity of singular configurations are too high
- Start and end configurations can be achieved, but there are different solutions
- ambiguous solutions

\section*{Motion along a line \(<\mathbf{w}_{0}, \mathbf{w}_{1}\)}
- The following algorithm should create the smallest set of waypoints in the joint space under a predefined deviation \(\epsilon>0\).
- Therefore the deviation between the trajectory \(\mathbf{q}(t)\) and the given line \(<\mathbf{w}_{0}, \mathbf{w}_{1}>\) must be smaller than \(\epsilon\).

\section*{Algorithm(Bounded_Deviation)}
1. Calculation of possible configurations \(\mathbf{q}_{0}, \mathbf{q}_{1}\) from \(\mathbf{w}_{0}, \mathbf{w}_{1}\) with the help of the inverse kinematics.
2. Calculation of the center in joint space:
\[
\mathbf{q}_{m}=\frac{\mathbf{q}_{0}+\mathbf{q}_{1}}{2}
\]
3. Calculation of the corresponding point of \(\mathbf{q}_{m}\) in the workspace with usage of direct kinematics:
\[
\mathbf{w}_{m}=W\left(\mathbf{q}_{m}\right)
\]
4. Calculation of the center in the workspace:
\[
\mathbf{w}_{M}=\frac{\mathbf{w}_{0}+\mathbf{w}_{1}}{2}
\]
5. If the deviation \(\left\|\mathbf{w}_{\mathbf{m}}-\mathbf{w}_{\mathbf{M}}\right\| \geq \epsilon\), then cancel; else add the \(\mathbf{w}_{M}\) as node point between \(\mathbf{w}_{0}\) and \(\mathbf{w}_{1}\).
6. Recursive application of the algorithm for two new segments \(\left(\mathbf{w}_{0}, \mathbf{w}_{M}\right)\) und ( \(\left.\mathbf{w}_{M}, \mathbf{w}_{1}\right)\).

DER FORSCHUNG \| DER LEHRE \| DER BILDUNG

\title{
Introduction to Robotics \\ Lecture 7
}

Lasse Einig, Jianwei Zhang
[einig, zhang]@informatik.uni-hamburg.de

University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences
Department of Informatics
Technical Aspects of Multimodal Systems

July 12, 2018

\section*{Outline}

Introduction
Coordinate systems
Kinematic Equations
Robot Description
Inverse Kinematics for Manipulators
Differential motion with homogeneous transformations
Jacobian
Trajectory planning
Trajectory generation
Recapitulation
Approximation Interpolation methods

Bernstein-Polynomials
B-Splines

\section*{Outline (cont.)}

Dynamics
Principles of Walking
Robot Control
Task-Level Programming and Trajectory Generation
Task-level Programming and Path Planning
Task-level Programming and Path Planning
Architectures of Sensor-based Intelligent Systems
Summary
Conclusion and Outlook

\section*{Trajectory generation}
- Cartesian space
- closer to the problem
- better suited for collision avoidance
- Joint space
- trajectories are immediately executable
- limited to direct kinematics
- allows accounting for joint angle limitations

The trajectory of a robot with \(n\) degrees of freedom (DoF) is a vector of \(n\) parametric functions with a common parameter:

Time
\[
q(t)=\left[q^{1}(t), q^{2}(t), \ldots, q^{n}(t)\right]^{T}
\]
- Deriving a trajectory yields
- velocity \(\dot{q}\)
- acceleration \(\ddot{q}\)
- jerk \(\dddot{q}\)
- Jerk represents the change of acceleration over time, allowing for non-constant accelerations.
- A trajectory is \(C^{k}\)-continuous, if the first \(k\) derivatives of its path exist and are continuous.
- A trajectory is defined as smooth if it is at least \(C^{2}\)-continuous.



\section*{Approximation (cont.)}

Stone-Weierstrass theorem (1937)

\section*{Theorem}
- Every non-periodic continuous function on a closed interval can be approximated as closely as desired using algebraic polynomials.
- Every periodic continuous function can be approximated as closely as desired using trigonometric polynomials.

\section*{Definition}

Interpolation is the process of constructing new data points within the range of a discrete set of known data points.
- Interpolation is a kind of approximation.
- A function is designed to match the known data points exactly, while estimating the unknown data in between in an useful way.
- In robotics, interpolation is common for computing trajectories and motion/-controllers.
- Approximation: Fitting a curve to given data points.
- Online tool: https://mycurvefit.com/
- Interpolation: Defining a curve exactly through all given data points
- In the case of many, especially noisy, data points, approximation is often better suited than interpolation
- Approximation of the relation between \(x\) and \(y\) (curve, plane, hyperplane) with a different function, given a limited number \(n\) of data points \(D=\left\{\mathbf{x}_{i}, y_{i}\right\} ; i \in\{1 \ldots n\}\).

- A special case of approximation is interpolation, where the model exactly matches all data points. If many data points are given or measurement data is affected by noise, approximation should preferably be used.


\section*{Approximation without Overfitting}


\section*{Overfitting example}

Complete the sequence: \(1,3,5,7\), ?
- Base
- subset of a vector space
- able to represent arbitrary vectors in space
- finite linear combination
- Uniqueness
- \(n^{\text {th }}\)-degree polynomials only have \(n\) zero-points
- resulting system of equations is unique
- Oszillation
- high-degree polynomials may oszillate due to many extrema
- workaround: composition of sub-polynomials

\section*{Interpolation methods}

Generation of robot-trajectories in joint-space over multiple stopovers requires appropriate interpolation methods.

Some interpolation methods using polynomials:
- Newton-polynomials
- Lagrange-polynomials
- Bernstein-polynomials
- Basis-Splines (B-Splines)

Examples of polynomials interpolation can be found at
- http://polynomialregression.drque.net/online.php
- https://arachnoid.com/polysolve/
- http://www.hvks.com/Numerical/webinterpolation.html

\section*{Bernstein-Polynomials}

Bernstein-polynomials (named after Sergei Natanovich Bernstein) are real polynomials with integer coefficients.

\section*{Definition}

Bernstein-Polynomials of degree \(k\) are defined as:
\[
B_{i, k}(t)=\binom{k}{i}(1-t)^{k-i} t^{i}, \quad i=0,1, \ldots, k
\]

Interpolation with \(B_{i, k}\) :
\[
\mathbf{y}=\mathbf{b}_{0} B_{0, k}(t)+\mathbf{b}_{1} B_{1, k}(t)+\cdots+\mathbf{b}_{k} B_{k, k}(t)
\]

\section*{Properties}

Properties of Bernstein-polynomials:
- base property: the Bernstein polynomials \(\left[B_{i, n}: 0 \leq i \leq n\right]\) are linearly independent and form a base of the space of polynomials of degree \(\leq n\),
- decomposition of one: \(\sum_{i=0}^{k} B_{i, k}(t) \equiv \sum_{i=0}^{k}\binom{k}{i} t^{i}(1-t)^{k-i} \equiv 1\),
- positivity \(B_{i, k}(t) \geq 0\) for \(t \in[0,1]\),
- recursivity: \(B_{i, k}(t)=(1-t) B_{i, k-1}(t)+t \cdot B_{i-1, k-1}(t)\)


\section*{Polynomial of degree 2}



\section*{Polynomial of degree 15}


\title{
Bernstein polynomials for trajectory generation
}
- Cubic polynomials ( \(3^{r d}\)-degree) most used
- derivatives exist
- velocity
- acceleration
- jerk
- provides smooth trajectory

\section*{B-spline curves and basis functions}
- Splines are used as basis function (hence Basis-Spline)
- B-spline curve is a polynomial
- B-spline curve of order \(k\) is composed of B-Splines (piecewise)
- Generally, \(k-2\) derivations are continuous at intersections
- B-splines are polynomials based on the following ordered parameters
\[
\mathbf{t}=\left(t_{0}, t_{1}, t_{2}, \ldots, t_{m}, t_{m+1}, \ldots, t_{m+k}\right)
\]
where
- \(m\) : is given by the number of points to be interpolated
- \(k\) : is the order of the \(b\)-spline curve

\section*{Definition of B-splines}

The following functions are known as normalized B-splines \(N_{i, k}\) of order \(k\) : for \(k=1\), the degree is \(p=k-1=0\) :
\[
N_{i, 1}(t)=\left\{\begin{array}{lll}
1 & : & \text { for } t_{i} \leq t<t_{i+1} \\
0 & : & \text { else }
\end{array}\right.
\]
as well as a recursive definition for \(k>1\)
\[
N_{i, k}(t)=\frac{t-t_{i}}{t_{i+k-1}-t_{i}} N_{i, k-1}(t)+\frac{t_{i+k}-t}{t_{i+k}-t_{i+1}} N_{i+1, k-1}(t)
\]
with \(i=0, \ldots, m\).

Linear splines correspond to piecewise linear functions
Advantages:
- splines are more flexible than polynomials due to their piecewise definition
- still, they are relatively simple and smooth
- prevent strong oscillation
- the values of the \(1^{\text {st }}\) and \(2^{\text {nd }}\) derivatives can be defined as constraints
- also applicable for representing surfaces (CAD modeling)
- Path controlled by de-Boor points
- Always constrained to de-Boor point's convex hull
- De-Boor points are of same dimensionality as B-spline curve
- B-spline curves have locality properties similar to Bézier-curves
- control point \(P_{i}\) influences the curve only within the interval \(\left[\tau_{i}, \tau_{i+p}\right]\)

\section*{Examples of B-splines}


\section*{Overlapping}

There are \(k=p+1\) overlapping B -splines within an interval. An example of cubic \((p=3)\) B-splines:


\section*{B-Splines of degree \(n\)}

The recursive definition of a B-spline basis function \(N_{i, k}(t)\) :



- Distance between uniform B-splines' control points is constant
- Weight-functions of uniform B-splines are periodic
- All functions have the same form
- Easy to compute
\[
B_{k, d(u)}=B_{k+1, d(u+\Delta u)}=B_{k+2, d(u+2 \Delta u)},
\]
\(u\) represents the control-point's values

- Partition of unity: \(\sum_{i=0}^{k} N_{i, k}(t)=1\).
- Positivity: \(N_{i, k}(t) \geq 0\).
- Local support: \(N_{i, k}(t)=0\) for \(t \notin\left[t_{i}, t_{i+k}\right]\).
- \(C^{k-2}\) continuity:

If the knots \(\left\{t_{i}\right\}\) are pairwise different from each other, then
\[
N_{i, k}(t) \in C^{k-2}
\]
i.e. \(N_{i, k}(t)\) is \((k-2)\) times continuously differentiable.

\section*{Construction of a B-spline curve}

A B-spline curve can be composed by combining pre-defined control-points with B-spline basis functions:
\[
\mathbf{r}(t)=\sum_{j=0}^{m} \mathbf{v}_{j} \cdot N_{j, k}(t)
\]
where \(t\) is the position, \(\mathbf{r}(t)\) is a point on this B -spline curve and \(\mathbf{v}_{j}\) are called its control points (de-Boor points).
\(\mathbf{r}(t)\) is a \(C^{k-2}\) continuous curve if the range of \(t\) is \(\left[t_{k-1}, t_{m+1}\right]\).

\section*{Generating control points from data points}

The control points \(\mathbf{v}_{j}\) for interpolation are identical to the data points only if \(k=2\).
A series of control points forms a convex hull for the interpolating curve. Two methods for generation of control points from data points:
- by solving the following system of equations
\[
\mathbf{q}_{j}(t)=\sum_{j=0}^{m} \mathbf{v}_{j} \cdot N_{j, k}(t)
\]
where \(\mathbf{q}_{j}\) are the data points to be interpolated, \(j=0, \cdots, m .[5]\) :
- by learning, based on gradient-descend.[6]

\section*{Function approximation - 1D example}


Function approximation - 1D example (cont.)


Approximation of \(\operatorname{sinb}(x, y)=\sin \left(\sqrt{x^{2}+y^{2}}\right) / \sqrt{x^{2}+y^{2}}\)


\section*{Surface reconstruction with B-Splines}
- Surface reconstruction from laser scan data using B-splines [7]


Pointcloud ( 16,585 points)


35 patches, \(1.36 \%\) max. error


285 patches, \(0.41 \%\) max. error

\section*{Surface reconstruction with B-Splines (cont.)}


Pointcloud (20,021 points)


Pointcloud (37,974 points)


29 patches, \(1.20 \%\) max. error


15 patches, \(3.00 \%\) max. error


156 patches, \(0.27 \%\) max. error


94 patches, \(0.69 \%\) max. error

\section*{Surface reconstruction with B-Splines (cont.)}
- Surface reconstruction from mesh data (reduced to 30,000 faces)


Mesh (69,473 faces)


72 patches, \(4.64 \%\) max. error


153 patches, \(1.44 \%\) max. error

To match \(I+1\) data points \(\left(x_{i}, y_{i}\right)(i=0,1, \ldots, I)\) with a polynomial of degree \(I\), the following approach of Lagrange can be used:
\[
p_{l}(x)=\sum_{i=0}^{l} y_{i} L_{i}(x)
\]

The interpolation polynomial in the Lagrange form is defined as follows:
\[
\begin{gathered}
L_{i}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{i-1}\right)\left(x-x_{i+1}\right) \cdots\left(x-x_{l}\right)}{\left(x_{i}-x_{0}\right)\left(x_{i}-x_{1}\right) \cdots\left(x_{i}-x_{i-1}\right)\left(x_{i}-x_{i+1}\right) \cdots\left(x_{i}-x_{l}\right)} \\
L_{i}\left(x_{k}\right)=\left\{\begin{array}{l}
1 \text { if } i=k \\
0 \text { if } i \neq k
\end{array}\right.
\end{gathered}
\]

DER FORSCHUNG \| DER LEHRE \| DER BILDUNG

\title{
Introduction to Robotics
}

\section*{Lecture 8}

Lasse Einig, Jianwei Zhang
[einig, zhang]@informatik.uni-hamburg.de

University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences
Department of Informatics
Technical Aspects of Multimodal Systems

July 12, 2018

\section*{Outline}

Introduction
Coordinate systems
Kinematic Equations
Robot Description
Inverse Kinematics for Manipulators
Differential motion with homogeneous transformations
Jacobian
Trajectory planning
Trajectory generation
Dynamics
Forward and inverse Dynamics
Dynamics of Manipulators
Newton-Euler-Equation
Langrangian Equations

\section*{Outline (cont.)}

\section*{General dynamic equations}

Principles of Walking
Robot Control
Task-Level Programming and Trajectory Generation
Task-level Programming and Path Planning
Task-level Programming and Path Planning
Architectures of Sensor-based Intelligent Systems
Summary
Conclusion and Outlook
- A multibody system is a mechanical system of single bodies
- connected by joints,
- influenced by forces
- The term dynamics describes the behavior of bodies influenced by forces
- Typical forces: weight, friction, centrifugal, magnetic, spring, ...
- kinematics just models the motion of bodies (without considering forces), therefore it can be seen as a subset of dynamics

\section*{Forward and inverse Dynamics}

We consider a force \(F\) and its effect on a body:
\[
F=m \cdot a=m \cdot \dot{v}
\]

In order to solve this equation, two of the variables need to be known.

\section*{Forward Dynamics}

If the force \(F\) and the mass of the body \(m\) is known:
\[
a=\dot{v}=\frac{F}{m}
\]

Hence the following can be determined:
- velocity (by integration)
- coordinates of single bodies
- forward dynamics
- mechanical stress of bodies

\section*{Forward Dynamics (cont.)}

\section*{Input}
\(\tau_{i}=\) torque at joint \(i\) that effects a trajectory \(\Theta\).
\(i=1, \ldots, n\), where \(n\) is the number of joints.

Output
\(\Theta_{i}=\) joint angle of \(i\)
\(\dot{\Theta}_{i}=\) angular velocity of joint \(i\)
\(\ddot{\Theta}_{i}=\) angular acceleration of joint \(i\)

If the time curves of the joint angles are known, it can be differentiated twice.

This way,
- internal forces
- and torques
can be obtained for each body and joint.
Problems of highly dynamic motions:
- models are not as complex as the real bodies
- differentiating twice (on sensor data) leads to high inaccuracy

\section*{Inverse Dynamics (cont.)}

\section*{Input}
\(\Theta_{i}=\) joint angle \(i\)
\(\dot{\Theta}_{i}=\) angular velocity of joint \(i\)
\(\ddot{\Theta}_{i}=\) angular acceleration of joint \(i\)
\(i=1, \ldots, n\), where \(n\) is the number of joints.

\section*{Output}
\(\tau_{i}=\) required torque at joint \(i\) to produce trajectory \(\Theta\).

\section*{Dynamics of Manipulators}
- Forward dynamics:
- Input: joint forces / torques;
- Output: kinematics;
- Application: Simulation of a robot model.
- Inverse Dynamics:
- Input: desired trajectory of a manipulator;
- Output: required joint forces / torques;
- Application: model-based control of a robot.
\[
\begin{aligned}
& \tau(t) \rightarrow \text { direct dynamics } \rightarrow \mathbf{q}(t),(\dot{\mathbf{q}}(t), \ddot{\mathbf{q}}(t)) \\
& \mathbf{q}(t) \rightarrow \text { inverse dynamics } \rightarrow \tau(t)
\end{aligned}
\]

Unlike kinematics, the inverse dynamics is easier to solve than forward dynamics

\section*{Dynamics of Manipulators (cont.)}

Two methods for calculation:
- Analytical methods
- based on Lagrangian equations
- Synthetic methods:
- based on the Newton-Euler equations

\section*{Computation time}

Complexity of solving the Lagrange-Euler-model is \(O\left(n^{4}\right)\) where \(n\) is the number of joints.
\(n=6: 66,271\) multiplications and 51,548 additions.

The description of manipulator dynamics is directly based on the relations between the kinetic and potential energy of the manipulator joints.

Here:
- constraining forces are not considered
- deep knowledge of mechanics is necessary
- high effort of defining equations
- can be solved by software

\section*{Recursive Newton-Euler Method}
- Determine the kinematics from the fixed base to the TCP (relative kinematics)
- The resulting acceleration leads to forces towards rigid bodies
- The combination of constraining forces, payload forces, weight forces and working forces can be defined for every rigid body. All torques and momentums need to be in balance
- Solving this formula leads to the joint forces
- Especially suitable for serial kinematics of manipulator

\section*{Influencing factors to robot dynamics}
- Functional affordance
- trajectory and velocity of links
- load on a link
- Control quantity
- velocity and acceleration of joints
- forces and torques
- Robot-specific elements
- geometry
- mass distribution

\section*{Aim of determining robot dynamics}
- Determining joint forces and torques for one point of a trajectory \((\Theta, \dot{\Theta}, \Theta)\)
- Determining the motion of a link or the complete manipulator for given joint-forces and -torques ( \(\tau\) )
To achieve this the mathematical model is applied.
- Combining the different influence factors in the robot specific motion equation from kinematics \((\Theta, \dot{\Theta}, \ddot{\Theta})\)
- Practically the Newton-, Euler- and motion-equation for each joint are combined
- Advantages: numerically efficient, applicable for complex geometry, can be modularized

\section*{Interim Conclusions}
- We can determine the forces with the Newton-equation
- The Euler-equation provides the torque
- The combination provides force and torque for each joint.

\section*{Example: A 2 DOF manipulator}

Dynamics of a multibody system, example: a two joint manipulator.


\section*{Newton-Euler-Equations for 2 DOF manipulator}

Using Newton's second law, the forces at the center of mass at link 1 and 2 are:
\[
\begin{aligned}
& \mathbf{F}_{1}=m_{1} \ddot{\mathbf{r}}_{1} \\
& \mathbf{F}_{2}=m_{2} \ddot{\mathbf{r}}_{2}
\end{aligned}
\]
where
\[
\begin{gathered}
\mathbf{r}_{1}=\frac{1}{2} l_{1}\left(\cos \theta_{1} \vec{i}+\sin \theta_{1} \vec{j}\right) \\
\mathbf{r}_{2}=2 \mathbf{r}_{1}+\frac{1}{2} l_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right) \vec{i}+\sin \left(\theta_{1}+\theta_{2}\right) \vec{j}\right]
\end{gathered}
\]

\section*{Newton-Euler-Equations for 2 DOF manipulator (cont.)}

Euler equations:
\[
\begin{aligned}
& \tau_{1}=\mathbf{I}_{1} \dot{\omega}_{1}+\omega_{1} \times \mathbf{I}_{1} \omega_{1} \\
& \tau_{2}=\mathbf{I}_{2} \dot{\omega}_{2}+\omega_{2} \times \mathbf{I}_{2} \omega_{2}
\end{aligned}
\]
where
\[
\begin{aligned}
& \mathbf{I}_{1}=\frac{m_{1} /_{1}^{2}}{12}+\frac{m_{1} R^{2}}{4} \\
& \mathbf{I}_{2}=\frac{m_{2} /_{2}^{2}}{12}+\frac{m_{2} R^{2}}{4}
\end{aligned}
\]

\section*{Newton-Euler-Equations for 2 DOF manipulator (cont.)}

The angular velocities and angular accelerations are:
\[
\begin{gathered}
\omega_{1}=\dot{\theta}_{1} \\
\omega_{2}=\dot{\theta}_{1}+\dot{\theta}_{2} \\
\dot{\omega}_{1}=\ddot{\theta}_{1} \\
\dot{\omega}_{2}=\ddot{\theta}_{1}+\ddot{\theta}_{2}
\end{gathered}
\]

As \(\omega_{i} \times \mathbf{I}_{i} \omega_{i}=0\), the torques at the center of mass of links 1 and 2 are:
\[
\begin{gathered}
\tau_{1}=\mathbf{I}_{1} \ddot{\theta}_{1} \\
\tau_{2}=\mathbf{I}_{2}\left(\ddot{\theta}_{1}+\ddot{\theta}_{2}\right)
\end{gathered}
\]
\(\mathbf{F}_{1}, \mathbf{F}_{2}, \tau_{1}, \tau_{2}\) are used for force and torque balance and are solved for joint 1 and 2.

\section*{Lagrangian Equations}

The Lagrangian function \(L\) is defined as the difference between kinetic energy \(K\) and potential energy \(P\) of the system.
\[
L=K-P
\]

\section*{Theorem}

The motion equations of a mechanical system with coordinates \(\mathbf{q} \in \Theta^{n}\) and the Lagrangian function \(L\) is defined by:
\[
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{i}}-\frac{\partial L}{\partial q_{i}}=F_{i}, \quad i=1, \ldots, n
\]
where
\(q_{i}\) : the coordinates, where the kinetic and potential energy is defined;
\(\dot{q}_{i}\) : the velocity;
\(F_{i}\) : the force or torque, depending on the type of joint (rotational or linear)

\section*{Example: A two joint manipulator}


\section*{Langragian Method for two joint manipulator}

The kinetic energy of mass \(m_{1}\) is:
\[
K_{1}=\frac{1}{2} m_{1} d_{1}^{2} \dot{\theta}_{1}^{2}
\]

The potential energy is:
\[
P_{1}=-m_{1} g d_{1} \cos \left(\theta_{1}\right)
\]

The cartesian positions are:
\[
\begin{gathered}
x_{2}=d_{1} \sin \left(\theta_{1}\right)+d_{2} \sin \left(\theta_{1}+\theta_{2}\right) \\
y_{2}=-d_{1} \cos \left(\theta_{1}\right)-d_{2} \cos \left(\theta_{1}+\theta_{2}\right)
\end{gathered}
\]

The cartesian components of velocity are:
\[
\begin{aligned}
\dot{x}_{2} & =d_{1} \cos \left(\theta_{1}\right) \dot{\theta}_{1}+d_{2} \cos \left(\theta_{1}+\theta_{2}\right)\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right) \\
\dot{y}_{2} & =d_{1} \sin \left(\theta_{1}\right) \dot{\theta}_{1}+d_{2} \sin \left(\theta_{1}+\theta_{2}\right)\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right)
\end{aligned}
\]

The square of velocity is:
\[
v_{2}^{2}=\dot{x}_{2}^{2}+{\dot{y_{2}}}^{2}
\]

The kinetic energy of link 2 is:
\[
K_{2}=\frac{1}{2} m_{2} v_{2}^{2}
\]

The potential energy of link 2 is:
\[
P_{2}=-m_{2} g d_{1} \cos \left(\theta_{1}\right)-m_{2} g d_{2} \cos \left(\theta_{1}+\theta_{2}\right)
\]

The Lagrangian function is:
\[
L=\left(K_{1}+K_{2}\right)-\left(P_{1}+P_{2}\right)
\]

The force/torque to joint 1 and 2 are:
\[
\begin{aligned}
& \tau_{1}=\frac{d}{d t} \frac{\partial L}{\partial \dot{\theta_{1}}}-\frac{\partial L}{\partial \theta_{1}} \\
& \tau_{2}=\frac{d}{d t} \frac{\partial L}{\partial \dot{\theta_{2}}}-\frac{\partial L}{\partial \theta_{2}}
\end{aligned}
\]
\(\tau_{1}\) and \(\tau_{2}\) are expressed as follows:
\[
\begin{aligned}
\tau_{1}= & D_{11} \ddot{\theta}_{1}+D_{12} \ddot{\theta}_{2}+D_{111} \dot{\theta}_{1}^{2}+D_{122} \dot{\theta}_{2}^{2} \\
& +D_{112} \dot{\theta}_{1} \dot{\theta}_{2}+D_{121} \dot{\theta}_{2} \dot{\theta}_{1}+D_{1} \\
\tau_{2}= & D_{21} \ddot{\theta}_{1}+D_{22} \ddot{\theta}_{2}+D_{211} \dot{\theta}_{1}^{2}+D_{222} \dot{\theta}_{2}^{2} \\
& +D_{212} \dot{\theta}_{1} \dot{\theta}_{2}+D_{221} \dot{\theta}_{2} \dot{\theta}_{1}+D_{2}
\end{aligned}
\]
where
\(D_{i i}\) : the inertia to joint \(i\);
\(D_{i j}\) : the coupling of inertia between joint \(i\) and \(j\);
\(D_{i j j}\) : the coefficients of the centripetal force to joint \(i\) because of the velocity of joint \(j\);
\(D_{i i k}\left(D_{i k i}\right)\) : the coefficients of the Coriolis force to joint \(i\) effected by the velocities of joint \(i\) and \(k\);
\(D_{i}\) : the gravity of joint \(i\).

\section*{General dynamic equations of a manipulator}
\[
\tau=M(\Theta) \ddot{\Theta}+V(\Theta, \dot{\Theta})+G(\Theta)
\]
\(M(\Theta)\) : the position dependent \(n \times n\)-mass matrix of a manipulator For the example given above:
\[
M(\Theta)=\left[\begin{array}{ll}
D_{11} & D_{12} \\
D_{21} & D_{22}
\end{array}\right]
\]
\(V(\Theta, \dot{\Theta})\) : an \(n \times 1\)-vector of centripetal and coriolis coefficients For the example given above:
\[
V(\Theta, \dot{\Theta})=\left[\begin{array}{l}
D_{111} \dot{\theta}_{1}^{2}+D_{122} \dot{\theta}_{2}^{2}+D_{112} \dot{\theta}_{1} \dot{\theta}_{2}+D_{121} \dot{\theta}_{2} \dot{\theta}_{1} \\
D_{211} \dot{\theta}_{1}^{2}+D_{222} \dot{\theta}_{2}^{2}+D_{212} \dot{\theta}_{1} \dot{\theta}_{2}+D_{221} \dot{\theta}_{2} \dot{\theta}_{1}
\end{array}\right]
\]

\section*{General dynamic equations of a manipulator (cont.)}
- a term such as \(D_{111} \dot{\theta}_{1}^{2}\) is caused by coriolis force;
- a term such as \(D_{112} \dot{\theta}_{1} \dot{\theta}_{2}\) is caused by coriolis force and depends on the (math.) product of the two velocities.
- \(G(\Theta)\) : a term of velocity, depends on \(\Theta\).
- for the example given above
\[
G(\Theta)=\left[\begin{array}{l}
D_{1} \\
D_{2}
\end{array}\right]
\]

\section*{Outline}

Introduction
Coordinate systems
Kinematic Equations
Robot Description
Inverse Kinematics for Manipulators
Differential motion with homogeneous transformations
Jacobian
Trajectory planning
Trajectory generation
Dynamics
Principles of Walking Introduction
ZMP
Inverted Pendulum

\section*{Outline (cont.)}

Principles of Walking

\section*{Stabilizing \\ Full Body Motion}

Robot Control
Task-Level Programming and Trajectory Generation
Task-level Programming and Path Planning
Task-level Programming and Path Planning
Architectures of Sensor-based Intelligent Systems
Summary
Conclusion and Outlook

\section*{Motivation}
- Enabling locomotion in difficult terrain
- Legs can be used for other things
- Necessary to integrate robots in a human environment

\(3_{\text {http: }} / / 1\).bp.blogspot.com/-MhFnvPPR5V4/UmifTu4r_OI/AAAAAAAAFtI/FvJqeWu9Ahc/s1600/13-pictures-of-crazy-goats-on-cliff-transparent.png
\({ }^{4}\) https://www.allposters.com

\section*{Problems}
- Stability
- Energy consumption
- Hardware costs
- Complex control


\footnotetext{
\(5^{5}\) https://www.wikihow.com/Recognize-the-Signs-of-Intoxication
}
- Static - Dynamic
- Passiv - Active
- 2,4,6,8, .. legged
- Open loop - closed loop
- This lecture: active bipedal walking, no running


7

\footnotetext{
\({ }_{7}\) https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/hires/2017/1-sixleggedrob-transparent.png
7 https://asl.ethz.ch/research/legged-robots.html
}

\section*{Types of Implementing Walking}
- Control Theory
- Neural Networks
- Central Pattern Generators
- Evolutional Computing
- Expert Solution


\footnotetext{
\(8_{\text {https: }}\) //de.wikipedia.org/wiki/Spline-Interpolation
}

\section*{Important Words}
- Support leg/foot
- Flying leg/foot
- Torso / trunk
- Step / double step
- Sagittal / lateral

\section*{Support Polygon}
- Convex hull of all ground contact points

(a) Full contact of both feet

(b) Partial contact

\footnotetext{
\({ }^{9}\) Introduction to Humanoid Robotics, Shuuji Kajita, 2015
}

\section*{Center of Pressure (CoP)}
- Center of ground reaction forces
- Those can also be horizontal
- Moment becomes zero
- Equals the zero moment point (ZMP)

(a)Almost flat

(b)Biased distribution

(c)Concentrate at tiptoe 10

\footnotetext{
\({ }^{10}\) Introduction to Humanoid Robotics, Shuuji Kajita, 2015
}

\section*{Zero Moment Point (ZMP)}
- When standing, projection of CoM coincides with ZMP
- When dynamic, CoM outside of support polygon
- ZMP is always inside support polygon

(a)A standing human
(b)A human in action

11

\footnotetext{
\({ }^{11}\) Introduction to Humanoid Robotics, Shuuji Kajita, 2015
}
- Forces of the robot define position of ZMP
- Can it get outside of the support polygon?


\footnotetext{
12 Introduction to Humanoid Robotics, Shuuji Kajita, 2015
}
- No! The ZMP is always in the support polygon
- If it is on an edge, the robot rotates


\footnotetext{
13 Introduction to Humanoid Robotics, Shuuji Kajita, 2015
}

\section*{Limitations of ZMP}
- Sole slips on ground
- Other parts of the robot are in contact with environment
- Ground is not perfectly level


14 https://www.reddit.com/r/rickandmorty/comments/70t45i/anyone_else_wish_heshe_could_experience_true_level/

\section*{Inverted Pendulum}
- Simplest model for walking robot or human
- Point mass at end of massless telescopic leg
- f: kick force, tau: torque


\footnotetext{
\({ }^{15}\) Introduction to Humanoid Robotics, Shuuji Kajita, 2015
}

\section*{Inverted Pendulum}

(a) \(f=0\) : Free fall of CoM

(c) \(f=M q:\) Fall down and acceleration

(b) \(f=M g \cos \theta-M v \dot{\theta}^{2}\) : Fall down with constant leg length

(d) \(f=M_{G} / \cos \theta: \operatorname{CoM}\) accelerates while keeping the initial height16
\({ }^{16}\) Introduction to Humanoid Robotics, Shuuji Kajita, 2015

\section*{Support Leg Exchange}
- Considering fixed step length
- Earlier touchdown of the next step results slow down
- Later touchdown of the next step results speed ups


\footnotetext{
17 Introduction to Humanoid Robotics, Shuuji Kajita, 2015
}
- Transfer to 3D
- Introduction of lateral movement

\({ }^{18}\) Introduction to Humanoid Robotics, Shuuji Kajita, 2015

\section*{Omni-directional Walking}
- Forward (x)
- Sideward (y)
- Turn (yaw)


19 Introduction to Humanoid Robotics, Shuuji Kajita, 2015

\section*{Double Support Phase}
- Accelerations are extreme on support change
- Not feasible in reality
- Introduction of a double support phase


\footnotetext{
\({ }^{20}\) Introduction to Humanoid Robotics, Shuuji Kajita, 2015
}

\section*{Double Support}

\({ }^{21}\) Introduction to Humanoid Robotics, Shuuji Kajita, 2015


\footnotetext{
22 https://thumbs.dreamstime.com/z/running-robot-27653003-transparent.png
}
- Why are we not finished yet?

\section*{Detecting Instability}

Which senses do you think humans use for walking?

\section*{Detecting Instability}
- Sensors
- IMU(s)
- Force sensors on foot sole
- 6 axis force/torque sensor in ankle
- Joint Torques
- Camera
- Model
- Joint positions
- Link masses and inertia
- Rigidity of links (especially foot soles)

\section*{Stabilizing Approaches}
- Simple stopping
- Counter movements with the arms/torso
- Change of step position (capture steps)

\section*{Counter Movements with Upper Body}
- Rotation around edge of support polygon
- Introduce counter force with arms/torso or flying leg
- Flying leg is mostly not usable


\footnotetext{
\({ }^{23}\) Springer Handbook of Robotics, Bruno Siciliano, 2016
}

\section*{Capture Step}
- Capture point is where the robot comes to a complete stop
- Multiple capture steps may be necessary
- You can completely base your walking on this


\footnotetext{
\({ }^{24}\) https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=\&arnumber=6094435
}
- We will not cover machine learning
- If you are interested join my lecture in "Intelligent Robotics" in the winter term
- General approaches are:
- Learning parameter of a walking pattern generator (e.g. double support length)
- Learning neural networks from scratch
- Learning from demonstration
- Artificial central pattern generators

\section*{Current State of the Art}
- Some very expensive robot manage to solve the problem (at least most of the time) using control theory
- Cheaper robots still struggle to achieve really stable walking
- Machine learning approaches still mostly only work in simulation (reality gap)
- Working on better comparison between approaches, e.g. EuroBench


*Torricelli et al. 2015, Benchmarking Bipedal Locomotion: A
Unified Scheme for Humanoids, Wearable Robots, and Humans

\footnotetext{
\({ }^{25}\) http://eurobench2020.eu/abstract/motivation-background/
}

\({ }^{26}\) Eurobench Guide for Applications

\section*{Full Body Motion}
- Small overview of full body motions
- Examples are: walking with hand on handrail or standing up
- Higher complexity since all limbs are involved
- Breaks assumptions that are often made for normal walking
- Motions can be periodic or non periodic

\section*{Walking with Hand Contacts}
- Using handrail, pushing cart, opening door, holding hands, using walking stick, collaborative carrying
- Introduces additional forces on the robot
- Support polygon maybe totally different
- More complex models have to be used
- Currently mostly used approach: quadratic programming
- Solve problem of optimizing a quadratic function with multiple linear constrains
- Use rigid body dynamics together with a model
- Problems
- Model is not perfect
- If caring an object, you need a model of it
- Robot is maybe not perfectly rigid

\section*{Non Periodic Motions}
- Simpler due to known start and end
- Examples
- Standing up
- Kicking
- Grasping
- Waving

\section*{Implementing Non Periodic Motions}
- Keypoint teach in
- Put robot into key positions manually
- Save joint positions at these points
- Interpolate
- Useful for simple motions (e.g. waving) or static robots
- Learning from demonstration
- Either demonstrate on the robot itself or by using motion capture
- Normally more than one demonstration
- Not just simply replaying
- Cartesian splines
- Define trajectories of the limbs with Cartesian splines manually
- Comparably easy to do for humans (much better than joint space)
- Splines configurable with few parameters
- Use inverse kinematics to compute joint goals
- Optionally use additional goals in the IK solver to keep balance

\section*{Implementing Non Periodic Motions}
- DeepLearning
- Just let it learn in simulation till it works
- Put it on the robot and hope for the best
- Reality gap
- Control Theory
- Have an open loop trajectory, e.g. from teach in
- Use a stability criterion, e.g. ZMP
- Adjust joint goals with controller, e.g. PID
- More on the learning aspect in the intelligent robotics lecture

\section*{Questions}

\section*{Questions?}

DER FORSCHUNG \| DER LEHRE \| DER BILDUNG

\title{
Introduction to Robotics \\ Lecture 9
}

Lasse Einig, Jianwei Zhang
[einig, zhang]@informatik.uni-hamburg.de

University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences
Department of Informatics
Technical Aspects of Multimodal Systems

July 12, 2018

\section*{Outline}

Introduction
Coordinate systems
Kinematic Equations
Robot Description
Inverse Kinematics for Manipulators
Differential motion with homogeneous transformations
Jacobian
Trajectory planning
Trajectory generation
Dynamics
Principles of Walking
Robot Control
Introduction

\section*{Outline (cont.)}

Classification of Robot Arm Controllers
Internal Sensors of Robots
Control System of a Robot
Task-Level Programming and Trajectory Generation
Task-level Programming and Path Planning
Task-level Programming and Path Planning
Architectures of Sensor-based Intelligent Systems
Summary
Conclusion and Outlook

\section*{Definitions}

\section*{Controller}
- Influences one or more physical variables
- meet a control variable
- reduce disturbances
- Compares actual value to reference value
- minimize control deviation

\section*{Definitions (cont.)}

\section*{System}
- Physical or technical construct
- input signal - stimulus
- output signal - response
- Transforms stimulus into response
- Symbolical illustration
- block with marked signals
- direction of signal effect expressed with arrows

\section*{Definitions (cont.)}

\section*{Input and output variables}
- Change over time
- expressed as \(u(t)\) and \(v(t)\) (dynamic system)
- Infinite number of possible variables
- for real-world dynamic technical systems (in principle)
- Description of system behaviour based on desired application
- using the relevant variables

\section*{Control Problem}

\section*{Given: dynamic system (to be controlled)}
- Model describing dynamic system (e.g. Jacobian)
- Input variables - control variables
- measured values (sensor data)
- Output variables - controlled variables
- system input (force/torque data)

\section*{Problem}
- Keep control variable values constant and / or
- Follow a reference value and / or
- Minimize the influence of disturbances

\section*{Control Problem (cont.)}

Sought: controller (for dynamic system)
- Implement hardware or software controller
- Alter controlled-variables (output)
- Based on control variables (input)
- Solve the problem

\section*{Example: Cruise Control}

\section*{Input}
- Speed over ground
- Relative speed to traffic
- Distance to car in front
- Distance to car behind
- Weather conditions
- Relative position in road lane

\section*{Output}
- Throttle
- Brakes
- Steering

\section*{Development of Control Engineering - Timeline}

1788 J. Watt: engine speed governor
1877 J . Routh: differential equation for the description of control processes
1885 A. Hurwitz: stability studies
1932 A. Nyquist: frequency response analysis
1940 W. Oppelt: frequency response analysis, Control Engineering becomes an independent discipline
1945 H . Bode: discipline new methods for frequency response analysis
1950 N. Wiener: statistical methods
1956 L. Pontrjagin: optimal control theory, maximum principle
1957 R. Bellmann: dynamic programming
1960 direct digital control
1965 L. Zadeh: Fuzzy-Logic
1972 Microcomputer use
1975 Control systems for automation
1980 Digital device technology
1985 Fuzzy-controller for industrial use
1995 Artificial neuronal networks for industrial use

\section*{Classification of Robot Arm Controllers}

As the problem of trajectory-tracking:
- Joint space: PID, plus model-based
- Cartesian space: joint-based
- using kinematics or using inverse Jacobian calculation
- Adaptive: model-based adaptive control, self-tuning
- controller (structure and parameter) adapts to the time-invariant or unknown system-behavior
- basic control circle is superimposed by an adaptive system
- process of adaption consists of three phases
- identification
- decision-process
- modification
- Hybrid force and position control is still a current research topic

\section*{Control System Architecture of PUMA-Robot}

- two-level hierachical structure of control system
- DEC LSI-11 sends joint values at 35.7 Hz ( 28 ms )
- trajectory
- Distance of actual value to goal value is interpolated
- using 8,16,32 or 64 increments

\section*{Control System Architecture of PUMA-Robot (cont.)}

- The joint control loop operates at 1143 Hz ( 0.875 ms )
- Encoders are used as position sensors
- Potentiometer are used for rough estimation (only PUMA-560)
- No dedicated speedometer
- velocity is calculated as the difference of joint positions over time

\section*{Internal Sensors of Robots}
- Placed inside the robot
- Monitor the internal state of the robot
- e.g. position and velocity of a joint

\section*{Position measurement systems}
- Potentiometer
- Incremental/absolute encoder
- Resolver

Velocity measurement systems
- Speedometers
- Calculate from position change over time

\section*{Optical Incremental Encoders}


\section*{Optical Absolute Encoder}


\section*{Resolver}

- analog rotation encoding
- phase shift between \(U_{A}\) and \(U_{B}\) determines rotation
- precision depending on digital converter

\section*{Sensor Classification Hierarchy}


\section*{Control System of a Robot}


\section*{Control System of a Robot (cont.)}
- Target values
- \(\Theta_{d}(t)\)
- \(\dot{\Theta}_{d}(t)\)
- \(\ddot{\Theta}_{d}(t)\)
- Magnitude of error
- \(E=\Theta_{d}-\Theta, \dot{E}=\dot{\Theta}_{d}-\dot{\Theta}\)
- Output (Control) value
- \(\Theta(t)\)
- \(\dot{\Theta}(t)\)
- Controlled value
- \(\tau\)

\section*{Simplified Circuit of a DC-Motor}

\(U_{a}\) input voltage of armature (motor) circuit
\(R_{a}\) armature (motor) resistance
\(L_{a}\) armature (coil) inductance
\(i_{a} \quad\) armature current (passing the motor)
\(k_{e} \quad\) exciter (motor) torque constant

\section*{Simplified Circuit of a DC-Motor (cont.)}

\(U_{a}\) input voltage
\(R_{a}\) armature resistance
\(L_{a}\) armature inductance
\(i_{a}\) armature current
\(k_{e} \quad\) exciter torque constant

The circuit can be described with the first order differential equation:
\[
L_{a} \dot{i}_{a}+R_{a} i_{a}=U_{a}-k_{e} \dot{\theta}_{e}
\]
- Inductance relative to current change
- Resistance relative to absolute current
- Torque relative to rotation change

\section*{Connection Between Motor and a Joint}

\(\eta \quad\) transmission ratio
\(I_{m / l}\) inertia of motor/load
\(\tau_{m / /}\) torque of motor/load
\(\theta_{m / l}\) rotation velocity of motor/load
\(b_{m / l}\) friction factor

\section*{Connection Between Motor and a Joint (cont.)}


The motor torque formula is
\[
\tau_{m}=\left(I_{m}+I_{l} / \eta^{2}\right) \ddot{\theta_{m}}+\left(b_{m}+b_{l} / \eta^{2}\right) \dot{\theta_{m}}
\]
an the load torque is
\[
\tau_{l}=\left(I_{l}+\eta^{2} I_{m}\right) \ddot{\theta}_{l}+\left(b_{l}+\eta^{2} b_{m}\right) \dot{\theta}_{l}
\]

\section*{Linear Control for Trajectory Tracking}

\[
\begin{equation*}
f^{\prime}=\ddot{x}_{d}+k_{v} \dot{e}+k_{p} e+k_{i} \int e d t \tag{86}
\end{equation*}
\]
is called the principle of PID-control.

P Proportional controller: \(\tau(t)=k_{p} \cdot e(t)\) The amplification factor \(k_{p}\) defines the sensitivity.
I Integral controller: \(\tau(t)=k_{i} \cdot \int_{t_{0}}^{t} e\left(t^{\prime}\right) d t^{\prime}\)
Long term errors will sum up.
D Derivative controller: \(\tau(t)=k_{v} \cdot \dot{e}(t)\)
This controller is sensitive to changes in the deviation.
Combined \(\Rightarrow\) PID-controller:
\[
\tau(t)=k_{p} \cdot e(t)+k_{v} \cdot \dot{e}(t)+k_{i} \int_{t_{0}}^{t} e\left(t^{\prime}\right) d t^{\prime}
\]

\section*{Model-Based Control for Trajectory Tracking}


The dynamic equation:
\[
\tau=M(\Theta) \ddot{\Theta}+V(\Theta, \dot{\Theta})+G(\Theta)
\] where \(M(\Theta)\) is the position-dependent \(n \times n\)-mass matrix of the manipulator, \(V(\Theta, \dot{\Theta})\) is a \(n \times 1\)-vector of centripetal and Coriolis factors, and \(G(\Theta)\) is a complex function of \(\Theta\), the position of all joints of the manipulator.

\section*{Robot Control Improvements}

\section*{Scientific Research}
- model-based control
- adaptive control

\section*{Industrial robotcs}
- PID-control system with gravity compensation
\[
\tau=\dot{\Theta}_{d}+K_{v} \dot{E}+K_{p} E+K_{i} \int E d t+\hat{G}(\Theta)
\]

\section*{Control in Cartesian Space - Method I} Joint-based control with Cartesian trajectory input

- cartesian trajectory is converted into joint space first
- joint space trajectory is sent to the controller
- trajectory controller sends joint targets to motor controllers
- motor controller sends torque data to motor
- sensors output joint state

\section*{Control in Cartesian Space - Method II}

Cartesian control via calculation of kinematics

- controller operates in cartesian space
- joint space conversion within control cycle
- error values in cartesian space using FK

\section*{Control in Cartesian Space - Method III}

Cartesian control via calculation of inverse Jacobian

- no explicit joint space conversion
- dynamic conversion using inverse Jacobian

\section*{Hybrid Control of Force and Position}

\section*{Motivation}

Certain tasks require control of both: position and force of the end-effector:
- assembly
- grinding
- opening/closing doors
- crank winding
- ...

An example shows two feedback loops for seperate control of position and force

\section*{Hybrid Control of Force and Position (cont.)}


\section*{Hybrid Force/Torque Control for safe HRI}


DER FORSCHUNG \| DER LEHRE \| DER BILDUNG

\title{
Introduction to Robotics \\ Lecture 10
}

Lasse Einig, Jianwei Zhang
[einig, zhang]@informatik.uni-hamburg.de

University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences
Department of Informatics
Technical Aspects of Multimodal Systems

July 12, 2018

\section*{Outline}

Introduction
Coordinate systems
Kinematic Equations
Robot Description
Inverse Kinematics for Manipulators
Differential motion with homogeneous transformations
Jacobian
Trajectory planning
Trajectory generation
Dynamics
Principles of Walking
Robot Control
Task-Level Programming and Trajectory Generation

\section*{Outline (cont.)}

\section*{Object Representation \\ Motivation of Path Planning \\ Configuration of an Artifact \\ Geometrical Path Planning}

Task-level Programming and Path Planning
Task-level Programming and Path Planning
Architectures of Sensor-based Intelligent Systems
Summary
Conclusion and Outlook

\section*{Basics of Task-Level Programming}

Goal enable task-specification with symbolically described states where planning of necessary movement is up to the robot system

Example driving commands should only require the target position instead of specifying how to move precisely

\section*{Common problem of task-level programming}

Collision avoidance
A general approach - geometric trajectory planning:
to plan collision-free motion for the known models of manipulators and obstacles in the workspace.

\section*{Object-Representation}
of robots, the environment and objects
- Approximating methods
- bounding box
- convex hull
- spherical and ellipse models
- Constructive Solid Geometry (CSG)
- Boundary Representation (BREP)
- Sweep Representation
- Spatial data structures
- Grid-Model (Spatial Occupancy Enumeration)
- Hierarchical Representation: (quadtree, octree)

\section*{CSG Representation}
- Method to model bodies
- Direct modeling
- Design of complex surfaces
- Combination of basic shapes using the boolean operators

union

difference

intersection

Wind CSG Representation (cont.)
Task-Level Programming and Trajectory Generation - Object Representation
Introduction to Robotics



\section*{Boundary Representation}
- Method to model bodies
- Indirect modeling
- Surface / Volume model
- Vertice-Edge-Surfaces

\begin{tabular}{|c|c|c|}
\hline Edge-\# & \(\mathrm{V}-\#_{1}\) & \(\mathrm{~V}-\#_{2}\) \\
\hline 1 & 1 & 2 \\
\hline 2 & 2 & 3 \\
\hline 3 & 1 & 3 \\
\hline 4 & 1 & 4 \\
\hline 5 & 2 & 4 \\
\hline 6 & 3 & 4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{V}-\#\) & x & y & z \\
\hline 1 & 2 & -2 & 0 \\
\hline 2 & -2 & 2 & 0 \\
\hline 3 & 2 & 2 & 4 \\
\hline 4 & -2 & -2 & 4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Surface-\# & Edge order \\
\hline 1 & \(1-2-3\) \\
\hline 2 & \(3-6-4\) \\
\hline 3 & \(2-5-6\) \\
\hline 4 & \(1-4-5\) \\
\hline
\end{tabular}

\section*{Sweep Representation}
- method to model bodies
- models in 2.5D
- intuitive
- quadratic, cubic polynomials


A 2D-shape
B extrusion path


\section*{Sweep Representation (cont.)}


\section*{Grid-Model (Spatial Occupancy Enumeration)}
- Volume model in virtual space
- Enclosed hull
- Voxel based
- Unambiguous definition from inside and outside
- Easy check for collisions between objects
- Representation using CSG or BREP



\section*{Quadtree Representation}
- 2D modeling
- Taken over from DB-applications
- Surface is partitioned into 4 parts
- Indexing of created surfaces
- Level of partitioning depends on the density of the object
- Octree is the 3D-equivalent

\section*{Quadtree Representation (cont.)}

Task-Level Programming and Trajectory Generation - Object Representation




assembly parts

physical assembled plane

simulated assembled plane

Learning of Assembly Strategies in a distributed Multi-Robot-Environment [8]

assembly start

during assembly

\section*{Robot Programming}


\section*{Positioning of a Gripper}


Tasks comprised:
- Geometric paths
- Trajectories
- position, velocity and acceleration functions over time
- Instruction order for sensor-based motion

Goals comprised:
- Motion to goal position without colliding
- Autonomous assembly of an aggregate
- Spatial recognition

\section*{Configuration of an Artifact}

\section*{Artifact}

A virtual or real body, that can change its place and form over time.

A configuration of an artifact is a set of independent parameters, which define the position of all its points in a reference frame.
- Can be expressed as a geometrical state-vector
- Number of parameter for the specification of the configuration is equal to the degrees of freedom

\section*{Configurations of a Rigid Body}


\section*{Configuration of an object}
- 2D: \((x, y, \theta)\)
- 3D: \((x, y, z, \alpha, \beta, \gamma)\)
- Plane: (longitude, latitude, altitude, roll, pitch, yaw)

\section*{Configurations of a Multi-joint Manipulator}


\section*{Configurations and Paths of a Human Body}


\section*{Path}

A steady curve, connecting two configurations
\(\tau: s \in[0,1], \tau(s) \in\) configuration space

\section*{Definition}

\section*{Basic path problem}

\section*{Generalized motion problem}
"Given a number \(m\) of statical obstacles and an artifact with d degrees of freedom, the task of geometrical path planning is to determine a path between two configurations without collisions."
A complete path-planner shall always deliver a valid plan if one exists, otherwise it should notify about the non-existence of a path.

Known are:
- Completely a priori modeled geometry of the artifact and the obstacles
- Kinematics of the artifact (a rigid body or a body with alterable shape)
- Start and goal configuration

To determine:
- Sequence of steady transformations of collision-free configurations of the artifact from the start to the goal configuration

The Visibility Graph (V-Graph) is constructed by linking the visible corner points of the obstacles (visible: line does not intersect obstacle).


Complexity: \(O\left(m^{2}\right), m\) is the no. of obstacle polygon vertices

The Tangent Graph (T-Graph) was introduced as a subgraph of the V-Graph. It can be proven, that the shortest route between the start and goal is a subset of the T-graph.


Complexity: \(O\left(m^{2}\right)\)

\section*{Voronoi Diagram}


Construction complexity: \(O(m \log m)\) Search complexity: \(O(m)\)

\section*{Heuristical Search}
- \(A^{*}\)-algorithm is used to find the least-cost path
- Search a path from the initial node \(\mathbf{s}\) to (one of) the goal node(s) z
- A heuristic cost function \(f\) is used, which assigns a value to every route from the initial to an arbitrary node \(\mathbf{q}\)
- This value is used to estimate the complete costs from the initial node to the goal node (passing node \(\mathbf{q}\) )
- The estimation function \(f\) can be defined as an addition of two functions \(g\) and \(h\)
- \(g\) describes the known cost from the initial node to node \(\mathbf{q}\)
- \(h\) estimates the cost of the shortest route from \(\mathbf{q}\) to the goal node \(\mathbf{z}\)
- If \(h\) is chosen the way that the actual costs are not over-estimated, the search algorithm is called \(A^{*}\)

\section*{Heuristical Search (cont.)}
- It is guaranteed, that the shortest existing route can be found with the \(A^{*}\)-algorithm
- In order to find not only the shortest, but also the smoothest route, the costs of a route contain also a factor for direction changes. \(g\) and \(h\) are defined such that
- \(g=e(s, q)+w_{f} \cdot c_{f}(s, q)\)
- \(h=e(q, z)+w_{f} \cdot c_{f}^{*}(q, z)\)
- \(e(x, y)\) is the euclidean distance from \(x\) to \(y\)
- \(w_{f}\) is a weight factor for the smoothness of the route
- \(c(x, y)\) is the measure of curvature of the route from \(x\) to \(y\)
- * this value has to be estimated
- All possible route candidates from \(\mathbf{s}\) to \(\mathbf{q}\) are inserted into an open list
- The route candidate with the minimal \(f\)-value is moved from the open list to the closed list
- This closed list route candidate is then expanded to all reachable neighbor-nodes and the new \(f\) function is evaluated.
- This is repeated until the goal-node is is expanded
- a route has been found
- there is no route from \(\mathbf{s}\) to \(\mathbf{z}\) if the open list is empty

\section*{A* path finding}

\section*{Boundaries of Path Planning Algorithms}

\section*{First lower boundary}

PSPACE-hard, i.e. at least as complex as an NP-problem, in the worst case an exponential computing time for every algorithm to solve this problem [9]

\section*{First upper boundary}

Double exponential time-complexity with the DOF \(d\) [10]

\section*{Second upper boundary}

Single exponential time-complexity using silhouette-method [11]

DER FORSCHUNG \| DER LEHRE \| DER BILDUNG

\title{
Introduction to Robotics
}

Lecture 11

Lasse Einig, Jianwei Zhang
[einig, zhang]@informatik.uni-hamburg.de

University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences
Department of Informatics
Technical Aspects of Multimodal Systems

July 12, 2018

\section*{Outline}

Introduction
Coordinate systems
Kinematic Equations
Robot Description
Inverse Kinematics for Manipulators
Differential motion with homogeneous transformations
Jacobian
Trajectory planning
Trajectory generation
Dynamics
Principles of Walking
Robot Control
Task-Level Programming and Trajectory Generation

\section*{Outline (cont.)}

\title{
Task-level Programming and Path Planning
}

Work space to Configuration Space
C-obstacles
Partition Representation of the C-Space
Task-level Programming and Path Planning
Architectures of Sensor-based Intelligent Systems
Summary
Conclusion and Outlook

Robot Single reference point with physical attributes


\section*{Task-level Programming - Basics}

Work space The cartesian space of the environment


\section*{Task-level Programming - Basics}

Configuration space C Set of all possible configurations


\section*{Task-level Programming - Basics}

Obstacles in work space C-Obstacles in configuration space


\section*{Task-level Programming - Basics}

Obstacle space \(\mathrm{C}_{\text {obstacle }}\) Union of C-Obstacles


\section*{Task-level Programming - Basics}

Free space \(\mathrm{C}_{\text {free }}\) the complement of Obstacle space


\section*{Task-level Programming - Basics}

Robot Single reference point with physical attributes
Work space The cartesian space of the environment
Configuration space C Set of all possible configurations
Obstacles in work space C-Obstacles in configuration space
Obstacle space Cobstacle Union of C-Obstacles
Free space \(\mathrm{C}_{\text {free }}\) the complement of Obstacle space
Path-planning for Work-/Configuration-Space
Search for a path for the reference point of the artifact in the free space.
Configurations of the artifact in free space have no intersection with obstacles

\section*{Work Space to Configuration Space - Illustration}


\section*{Work Space to Configuration Space - Example}


Workspace scheme with start and goal Discretized workspace positions
\(x\) scale \(=100, y^{\text {scale }}=80\)

\section*{Work Space to Configuration Space - Example}


\section*{Work Space to Configuration Space - Example}


- Python
- Brute forward kinematics
- using polygon collisions
- shapely library
- 56 cpus
- Intel \({ }^{\circledR}\) Xeon \({ }^{\circledR}\) E5-2690 v4
( 2.60 GHz )

\section*{C-Obstacle for a circular artifact}


Obstacle \& artifact (radius r) Expanded C-Obstacle

\title{
C-Obstacle for a circular artifact
}


Obstacle \& artifact (radius r)
Path of minimal distance to obstacle

\section*{C-Obstacle for Polygons}


Obstacle \& polygon artifact with \(\theta=\theta_{1} \vee \theta_{2}\); minimum distance to obstacle.

\section*{Minkowski Sum \& Difference}

A C-Obstacle of a fixed, convex obstacle with respect to a moving convex robot (part) may be theoretically represented as the Minkowski Sum of the corresponding objects.
\(C_{O}(H)\) is the C-obstacle of a fixed convex polyhedra \(H\), with respect to the (moving) convex object \(O\).

Minkowski-Sum (Minkowski-Difference) of \(H\) and \(O(H\) and \(-O)\)
\[
C_{O}(H)=H \ominus O=H \oplus(\ominus O)
\]
where
\[
H \ominus O:=\{h-o \mid h \in H \wedge o \in O\}
\]

\section*{Minkowski Sum \& Difference - 2D Example}
\[
\begin{gathered}
A=\{(0,0),(2,0),(2,2),(0,2)\} \quad B=\{(-1,1),(-3,2),(-3,1)\} \\
A \oplus B=\{(-1,1),(-3,2),(-3,1),(1,1),(-1,2),(-1,1), \\
(1,3),(-1,4),(-1,3),(-1,3),(-3,4),(-3,3)\}
\end{gathered}
\]

The convex hull (eliminating duplicates \& inner points)
\[
\operatorname{conv}\{A \oplus B\}=\{(-3,1),(1,1),(1,3),(-1,4),(-3,4)\}
\]



\section*{Minkowski Sum \& Difference - 2D Example (cont.)}
\[
\begin{gathered}
A=\{(0,0),(2,0),(2,2),(0,2)\} \quad B=\{(-1,1),(-3,2),(-3,1)\} \\
A \ominus B=\{(1,-1),(3,-2),(3,-1),(3,-1),(5,-2), \\
(5,-1),(3,1),(5,0),(5,1),(1,1),(3,0),(3,1)\}
\end{gathered}
\]

The convex hull (eliminating duplicates \& inner points)
\[
\operatorname{conv}\{A \ominus B\}=\{(1,-1),(3,-2),(5,-2),(5,1),(1,1)\}
\]



\section*{Minkowski Sum \& Difference - 2D Example (cont.)}

\section*{Collision detection}

Two objects are colliding, if their Minkoswki difference contains the origin of the coordinate frame.



There is an interactive applet on the web:
http://www.cut-the-knot.org/Curriculum/Geometry/PolyAddition.shtml

\section*{C-Obstacles for 2-D translation and 1-D rotation}


Represent rotational configuration of the C-obstacle as slice for each \(\theta\) configuration of the robot.

C-Obstacles for 2-D translation and 1-D rotation (cont.)


The configuration space for a \(k\)-DOF robot is a \(k\)-Dimensional coordinate system.

C-Obstacles for 2-D translation and 1-D rotation (cont.)



\section*{C-obstacles of a 2-DOF Chain of Poles}



\section*{Configuration Space of a 3-DOF Chain of Poles}


\section*{Partition Representation of C-Space}

The free space is partioned into cells using
- Geometrical partition
- uniform cubes
- a hierarchical tree-structure (Quad-tree, Oct-tree, etc.)
- slices and scanlines
- bubbles of variable size

The union of the non-overlapping cells is part of the free space.
Neighborship graphs represent the connectivity of free space.
- Topological partition
- overlapping generalized cones
- critical points of the C-obstacle connection graph

The union of the overlapping cells is equal to the free space.

\section*{Squares-Partitioning of Configuration Space}


Resulting bitmap of configuration space using squares partitioning


Bitmap of configuration space

Partitioning of the configuration space using Octrees


EMPTY cell


MIXED cell
FULL cell

\section*{Partitioning of the configuration space using Slices}


Complexity regarding the transformation of the C-obstacles
\[
r^{d-1} f(m)
\]
where \(r\) : the number of discretization steps for each DOF,
\(d\) : DOF of the robot arm
\(f(m)\) : the computing time of one slice
\(m\) : the number of edges of all obstacles

\section*{Representation of free space with generalized cones}


\section*{Exact Partition of Configuration Space}


Trapezoidal partitioning of the configuration space

\section*{Exact Partition of Configuration Space (cont.)}


\section*{Exact Partition of Configuration Space (cont.)}


Cylindrical partitioning and connectivity graph

\section*{Planning Results}

[12]
Serial computing: 3-DOF C-space Massive-parallel computing: up to 6-DOF C-Space

Advantages:
- Complete in case of sufficient resolution
- Global overview

Disadvantages:
- High demand for RAM
- Curse of Dimensionality
- Complex to implement
- Practically implementable only for few degrees of freedom


Path planning without explicit representation of free space?


DER FORSCHUNG \| DER LEHRE \| DER BILDUNG

\title{
Introduction to Robotics
}

Lecture 12

Lasse Einig, Jianwei Zhang
[einig, zhang]@informatik.uni-hamburg.de

University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences
Department of Informatics
Technical Aspects of Multimodal Systems

July 12, 2018

\section*{Outline}

Introduction
Coordinate systems
Kinematic Equations
Robot Description
Inverse Kinematics for Manipulators
Differential motion with homogeneous transformations
Jacobian
Trajectory planning
Trajectory generation
Dynamics
Principles of Walking
Robot Control
Task-Level Programming and Trajectory Generation

\section*{Outline (cont.)}

Task-level Programming and Path Planning
Task-level Programming and Path Planning
Recapitulation
Potential Field Method
Probabilistic Approaches
Application fields
Extension of Basic Problem and Applications
Practical Example: Path Planning with Movelt
Architectures of Sensor-based Intelligent Systems
Summary
Conclusion and Outlook

1iv Partition based Path Planning - Methods
Task-level Programming and Path Planning - Recapitulation


\section*{Partition based Path Planning}

Advantages:
- Complete in case of sufficient resolution
- Global overview

Disadvantages:
- High demand for RAM
- Curse of Dimensionality
- Complex to implement
- Practically implementable only for few degrees of freedom
\[
\Downarrow
\]

Path planning without explicit representation of free space?


\section*{Potential Field Method (PFM)}

\section*{Definition}

The manipulator moves in a field of forces. The position to be reached is an attracting pole for the end effector and obstacles are repulsive surfaces for the manipulator parts.
[13]
- Initially developed for real-time collision avoidance
- Potential field associates a scalar value to every point in space
- An ideal field used for navigation should
- be smooth
- have only one global minimum
- the values should approach \(\infty\) near obstacles
- Force applied to the robot is the negative gradient of the potential field
- Robot moves along this force
- A function is defined in the free space, which has a global minimum at the goal configuration
- Motion follows steepest descend of the gradient

\section*{Basic Principle (cont.)}

- The attracting force (of the goal)
\[
\vec{F}_{\text {goal }}(\mathbf{x})=-\kappa_{\rho}\left(\mathbf{x}-\mathbf{x}_{\text {goal }}\right)
\]
- where
\(\kappa_{\rho}\) is a gain factor
( \(\left.\mathbf{x}-\mathbf{x}_{\text {Goal }}\right)\) is the distance between current and goal position
- The potential field (of obstacles)
\[
U(\mathbf{x})= \begin{cases}\frac{1}{2} \eta\left(\frac{1}{\rho(\mathbf{x})}-\frac{1}{\rho_{0}}\right)^{2} & \text { if } \rho(\mathbf{x}) \leq \rho_{0} \\ 0 & \text { else }\end{cases}
\]
- where
\(\eta\) is a constant gain factor \(\rho(\mathbf{x})\) is the shortest distance to the obstacle O
\(\rho_{0}\) is a threshold defining the region of influence of an obstacle
- The repulsive force of an obstacle
\[
\vec{F}_{\text {obstacle }}(\mathbf{x})= \begin{cases}\eta\left(\frac{1}{\rho(\mathbf{x})}-\frac{1}{\rho_{0}}\right) \frac{1}{\rho(\mathbf{x})^{2}} \frac{d \rho(\mathbf{x})}{d \mathbf{x}} & \text { if } \rho(\mathbf{x}) \leq \rho_{0} \\ 0 & \text { if } \rho(\mathbf{x})>\rho_{0}\end{cases}
\]
- where
\(\frac{d \rho(x)}{d x}\) is the partial derivative vector of the distance from the point to the obstacle. This way, the direction of the force vector is expressed
[13]

\section*{Advantages and Disadvantages of PFM}

Advantages:
- Usage of heuristics
- Real-time capable

Disadvantages:
- Completeness
- existing solution might not be found
- calculation might not terminate if no solution exists
- Problem with multiple local minima may occur often
- No formal proof of capabilities
- No further constraints can be considered

\section*{Local Minima of PFM}


\section*{Probabilistic Approaches}

Demand for an efficient (i.e. fast, robust, easy to implement) framework to plan robot motion supporting high DOF. Ideas:
1. Random samples in the region of interest
2. Test the samples for collisions
3. Connect samples using simple trajectories
4. Search in the resulting graph

\section*{Motivation}

Collision detection and distance estimation are faster than the generation of an explicit representation of free space.

Probabilistic Roadmaps

Milestones and Roadmaps
Task-level Programming and Path Planning - Probabilistic Approaches
Introduction to Robotics

J. Zhang, L. Einig

\section*{Milestones and Roadmaps}



\section*{Strategies of Taking Samples}

Problem 99\% computation time of a probabilistic roadmap planner is used for collision checks.
Solution Intelligent strategy to reduce the size of the roadmap and thus the time for collision checks?
- Multi- vs single-exploration strategy
- Uniform
- Multi-level (coarse to fine)
- Obstacle-aware (shift colliding sample to free space)
- Lazy collision checks
- Probabilistic default values


In an expansive free space: \(P_{\text {fail }} \sim e^{-N}\) where \(N\) : the number of milestones

\section*{Successful 6D plan for narrow passages}

(a)

(d)

(b)

(e)

(c)

(f)

\section*{Planning Results for a multi-joint artifact}


\section*{Summary Probabilistic Approaches}

Disadvantages
- No strict termination criteria, if no solution can be found
- only probabilistic completeness (an existing solution will eventually be found...)
- Missing insight to planning process

\section*{Advantages}
- Easy to implement
- Fast, scalable for problems with high DOF
- Rate of convergence increases with milestones

\section*{Application fields}
- Production: robot programming, assembly, layout planning
- Sequence generation for maintenance tasks
- Autonomous mobile robots
- Graphical animations
- Motion planning for medical appliances
- Simulation of realistic paths of cells and molecules
- ...

Using a path planner, the complexity of a product can be assessed. The assembly-process can be planned.


\section*{Layout Planning}

Path planning combined with optimization methods generate optimal positioning of robots and other equipment in a work cell.



Humanoid (cont.)



High DOF path planning is required for humanoid motion

\section*{Engine Maintenance}

Path planner can be used to automatically check the disassembly methods of parts.
This way the products can be easier maintained and repaired.


\section*{Animation of Task Oriented Programming}

Simulation and visualization gives insight to path planning resulting from task oriented programming.



\section*{Animation as Simulation}



\section*{Generation of Docking Motion of Molecules}


\section*{Generation of Docking Motion of Molecules (cont.)}
- moving obstacles
- multiple moving objects
- objects with deformable shape
- unspecified goals
- non holonomic constraints
- dynamic constraints
- planning for optimal time
- fuzzy sensing and plan execution
- highly complex artifacts

Handling of over 1000 degrees of freedom


Skip next slide if sensible to blood and organs.

\section*{Path planning for soft objects}


\section*{Autonomous Virtual Actors}


A Bug's Life (1998, Disney/Pixar)


Final Fantasy VIII (1999, Square)


Antz (1998, DreamWorks/PDI)


Toy Story 3 (2010,Disney/Pixar)


Tomb Raider 5 (2000, Eidos Interactive)


The Legend of Zelda: Skyward Swords (2011, Nintendo)
- Explicit representation of configuration space yields a complete solution
- for sufficient resolution/precision
- applicability is limited
- Distributed probabilistic approach for high DOF
- Path planning is native in the field of robotics
- widely used in other fields
- manufacturing, VR, animation, gaming, biology, chemistry, ...
- Simulated environments fulfill the requirements of geometrical path planning
- known models of the environment
- specified start and goal configurations
- ideal execution
- Increasing computation power allows real time application
- Real robots face various uncertainties in the environment
- Extension of basic problem requires additional research
- Embedded (robotic) systems get more and more powerful
- motion modeling and calculation of intelligent devices open new fields of research

\section*{Open Motion Planning Library (OMPL)}
- Library of sampling based motion planning algorithms
- Integrated in ROS arm navigation stack (used on the PR2)
- Integrated in Movelt! project
- Includes state-of-the-art motion planning algorithms
- No collision checking
- Demo videos at http://ompl.kavrakilab.org/gallery.html
- Tutorials on how to integrate OMPL at http://wiki.ros.org/ompl_ros_interface/Tutorials
- Features
- kinematics
- dynamics
- collision
- checking
- constraint evaluation
- visualization
- Planning and executing motion plans for different robots
- Overview at http://moveit.ros.org

\section*{Movelt! - A Planning Framework (cont.)}


\section*{Movelt! - A Planning Framework (cont.)}

Task-level Programming and Path Planning - Practical Example: Path Planning with Movelt


DER FORSCHUNG \| DER LEHRE \| DER BILDUNG

\title{
Introduction to Robotics
}

Lecture 13

Lasse Einig, Jianwei Zhang
[einig, zhang]@informatik.uni-hamburg.de

University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences
Department of Informatics
Technical Aspects of Multimodal Systems

July 12, 2018

\section*{Outline}

Introduction
Coordinate systems
Kinematic Equations
Robot Description
Inverse Kinematics for Manipulators
Differential motion with homogeneous transformations
Jacobian
Trajectory planning
Trajectory generation
Dynamics
Principles of Walking
Robot Control
Task-Level Programming and Trajectory Generation

\section*{Outline (cont.)}

Task-level Programming and Path Planning
Task-level Programming and Path Planning
Architectures of Sensor-based Intelligent Systems
The CMAC-Model
The Subsumption-Architecture
Control Architecture of a Fish
Procedural Reasoning System
Behavior Fusion
Hierarchy
Architectures for Learning Robots
Summary
Conclusion and Outlook

\section*{Architectures of Sensor-based Intelligent Systems}

\section*{Overview}
- Basic behavior
- Behavior fusion
- Subsumption
- Hierarchical architectures
- Interactive architectures

The Perception-Action-Model with Memory


CMAC: Cerebellar Model Articulation Controller
S sensory input vectors (firing cell patterns)
A association vector (cell pattern combination)
P response output vector ( \(\mathbf{A} \cdot W\) )
W weight matrix
The CMAC model can be viewed as two mappings:
\[
\begin{aligned}
& f: \mathbf{S} \longrightarrow \mathbf{A} \\
& g: \mathbf{A} \xrightarrow{w} \mathbf{P}
\end{aligned}
\]

\section*{CMAC-Model (cont.)}


\section*{B-Spline-Model}

The B-Spline model is an ideal implementation of the CMAC-Model. The CMAC model provides an neurophysiological interpretation of the B-Spline model.


\section*{Alvinn - Visual Navigation}


\section*{Action-oriented Perception}

- hierarchical structure of behavior
- higher level behaviors subsumpe lower level behaviors


\section*{Foraging and Flocking}
- multi-robot architecture
- basic behaviors are sequentially executed
flocking \(=\) wandering + aggregation + dispersion surrounding \(=\) wandering + following + aggregation herding \(=\) wandering + surrounding + flocking
foraging \(=\) wandering + dispersion + following +homing+flocking


\section*{Cockroach Neuron / Behaviors}

\section*{SENSORS}

\section*{BEHAVIORS}


\section*{Control Architecture of a Fish}

\section*{Control and information flow in artificial fish}

Perception sensors, focuser, filter
Behaviors behavior routines
Brain/mind habits, intention generator
Learning optimization
Motor motor controllers, actuators/muscles


\section*{Procedural Reasoning System}


\section*{Hierarchical Fuzzy-Control of a Robot}


\section*{Behavior Fusion}

Fuzzy rules evaluate current situation.
Situation evaluation determines 3 fuzzy-parameters
- the priority \(K\) of the LCA rule base
- the replanning selector
- NextSubgoal (whether a subgoal has been reached)

Typical rule IF (SL85 IS HIGH) AND (SL45 IS VL) AND (SLRO IS VL) AND (SR45 IS VL) AND (SR85 IS VL) THEN (Speed IS LOW) AND (Steer IS PM) K IS HIGH AND Replan IS LOW
Translation If the leftmost proximity sensor detects an obstacle which is near and the other sensors detect no obstacle at all, then steer halfway to the right at low speed. Mainly perform obstacle avoidance. No re-planning required.
Coordination of multiple rule bases
\[
\begin{aligned}
\text { Speed } & =\text { Speed }_{L C A} \cdot K+\text { Speed }_{S A} \cdot(1-K) \\
\text { Steer } & =\text { Steer }_{L C A} \cdot K+\text { Steer }_{S A} \cdot(1-K)
\end{aligned}
\]

LCA: Local Collision Avoidance SA: Subgoal Approach

\section*{Real-Time Control System (RCS)}
- RCS reference model is an architecture for intelligent systems.
- Processing modes are organized such that the BG (Behavior Generation) modules form a command tree.
- Information in the knowledge database is shared between WM (World Model) modules in nodes within the same subtree.

Examples of functional characteristics of the BG and WM modules:




\section*{Sensor-Hierarchy}


\section*{Other examples}


\section*{Other examples}


\section*{An Architecture for Learning Robots}


\section*{AuRA Architecture}


\section*{Atlantis Architecture}


\section*{RACE}

\section*{Robustness by Autonomous Competence Enhancement}


\section*{Introduction to Robotics}

Summary

Lasse Einig, Jianwei Zhang [einig, zhang]@informatik.uni-hamburg.de

University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences
Department of Informatics
Technical Aspects of Multimodal Systems
\[
\text { July 12, } 2018
\]

\section*{Outline}

Introduction
Coordinate systems
Kinematic Equations
Robot Description
Inverse Kinematics for Manipulators
Differential motion with homogeneous transformations
Jacobian
Trajectory planning
Trajectory generation
Dynamics
Principles of Walking
Robot Control
Task-Level Programming and Trajectory Generation

\section*{Outline (cont.)}

Summary
Task-level Programming and Path Planning
Task-level Programming and Path Planning
Architectures of Sensor-based Intelligent Systems
Summary
Conclusion and Outlook

\section*{Summary - Control}
- Industrial Robots:
- position control with PID controllers
- featuring gravity compensation
- Research:
- model-based control
- hybrid force-position control
- under-actuated control
- backwards controllable (direct drive, artificial muscle) structure
- external-sensor based control
\(\rightarrow\) Intelligent Robots/Applied Sensor Technology

\section*{Summary - Mechanical Structures of Robots}

Things we talked about
- Open chain of rotational joints
- Hybrid joints for rotational and translational motion (SCARA, Stanford)
- Mobile robots, running machines

Things we did not talk about
- Closed chain, including Steward Mechanism [28, p. 279]
- Drive without motors
- Tool plate mounted to base plate with six translational joints (usually hydraulic) called leg
- Legs are connected to the plates with universal joints
- Mathematically 6-DOF configuration space without singularities
- Parallel mechanism provides high payload
- Sequential manipulator applies forces and torques unequally

The Stewart-Platform (cont.)


\section*{Summary - Algorithms}
- Transformations
- Trajectory generation (e.g. linear Cartesian trajectory)
- Approximated representation of robot joints and objects
- Graph generation (V-Graph, T-Graph, ...)
- Search algorithms
- Further path planning algorithms
- Sensor fusion
- Vision
- detection (static, dynamic)
- reconstruction of position and orientation
- Action planning
- Sensor guided motion

\section*{Overall Summary}

Introduction
+ Definition;
- Classification;
+ Basic components;
+ DOF
Coordinate Transformation
+ Manipulator-coordinates (Robot\&Table);
+ Homogeneous transformations;
+ Rotation matrices, their inverse and their operations;
+ Transformation equations [2, 28, 3, 1]
Robot Description
+ DH-conventions and their applications (classic or modified);
- Universal Robot Description Format (URDF)

\section*{Overall Summary (cont.)}

\section*{Kinematics}
+ Problems of forward and inverse kinematics;
- Algebraic and geometric solution of inverse kinematics;
+ Differential homogeneous transformations;
+ Jacobi-matrices;
+ Singularities [2, 28, 3, 1]
Trajectory Generation
+ Tasks and constraints;
- Polynomial solutions between two and four points;
- Factors of an optimal motion;
+ Linear motion in cartesian space, realization and problems;
+ Concepts of B-Spline interpolation;
- B-Spline basis functions [28, 3, 1, B-Spline Literature]

\section*{Overall Summary (cont.)}

\section*{Programming}
- Task description, steps from the definition of frames to the implementation of programs;
- Advantages and concepts of RCCL [2, RCCL-Guide];
- Types of robot programming;
- offline-programming [28, 3]

Control
- Control systems of a PUMA robot;
- Linear and model-based control;
- PID controller;
+ Control concepts in Cartesian space \([28,3,1]\)

\section*{Sensors}
- Classification;
+ Intrinsic sensors, principle and application in control;
- extrinsic sensors [28, 3, 1]

\section*{Overall Summary (cont.)}

\section*{Dynamics}
+ Problems;
+ Newton-Euler equations and Lagrangian Equations;
- Solution for arms with 1 or 2 joints, multiple joints as
excercise;
+ Structure of a dynamical equation \([28,3,1]\)
Collision avoidance
+ Configuration space;
+ Concepts of transformation to configuration space;
- Object representation;
+ Potential field method;
+ Probabilistic approaches

\section*{Overall Summary (cont.)}

Control architectures
- Subsumption;
- CMAC;
- Hierarchical

Additional references: [29, 30, 31, 32]

\section*{Outline}

Introduction
Coordinate systems
Kinematic Equations
Robot Description
Inverse Kinematics for Manipulators
Differential motion with homogeneous transformations
Jacobian
Trajectory planning
Trajectory generation
Dynamics
Principles of Walking
Robot Control
Task-Level Programming and Trajectory Generation

\section*{Outline (cont.)}

Conclusion and Outlook
Task-level Programming and Path Planning
Task-level Programming and Path Planning
Architectures of Sensor-based Intelligent Systems
Summary
Conclusion and Outlook

\section*{Intelligent Robots}

Underlying robot-technique as described, additionally:
External Recognition
Reliable measurements of the environment;
Scene interpretation
Knowledge base
About environment;
Its own state;
Everyday knowledge comparable to a human
Autonomous planning
Action;
Coarse motion;
Grasping;
Sensor data acquisition

\section*{Intelligent Robots (cont.)}

Human friendly interface
Understanding of naturally spoken commands;
Generation of robot actions;
Solving of disambiguity in context-aware situations
Adaptive Control
Evolution instead of programming;
Ability to learn

\section*{Autonomous Planning Systems}

Action Planning
Task-Specification;
State representation;
Task-decomposition;
Action-sequence generation
Motion Planning
Representation of the robot and the environment;
Calculation and representation of configuration space;
Search algorithms
Planning of Sensing
Which sensors;
Which time intervals;
Where to measure;
Internal and external parameters of the sensor

\section*{Sensor driven motion}

\section*{Goal}

Intelligent Control including the ability to adapt to different situations and to react to uncertainties

Control Architecture
Integration of perception, planning and actions
Tasks of sensor data processing
Position detection;
Proximity detection;
Slip detection;
Success confirmation;
Error detection;
Inspection

\section*{Sensor driven motion (cont.)}

Applied sensors
Tactile sensors;
Vision systems;
Force-torque measurement systems;
Distance sensors

\section*{Strategies}
calibrated based on absolute reference values; uncalibrated based on relative information

Types of perception
passive based on a certain sensor-actor configuration; active depending on the plan for sensing

\section*{Future Commercial Robots}
will be:
- dexterous
- smaller
- faster
- lightweight
- powerful
- intelligent
- easier to operate
- cheaper

\section*{Challenges in the Field of Robotics}

\section*{Methods}

Symbolical understanding of the environment;
Integrated sensor-motor-coupling;
Self-learning
Systems
Synergetic multi-sensor;
Agile mobility;
Dexterous manipulation capabilities
Technical
Sensor complexity similar to a human;
New drive types;
Nano-robots;
Multifinger hand;
Anthropomorphic robots;
Flying robots

\section*{Continuing Education at University of Hamburg}

Intelligent Robots Project
Build a complex robotic system from the available hardware at TAMS. Current Hardware includes PR2, TASER, 2 KUKA lightweight arms, 2 Mitsubishi PA10-6C, UR5 Arm, 4 Turtlebots, Shadow Hand C6, Shadow Hand C5, Robotiq adaptive gripper, SCHUNK gripper, 2 Barret Hands. . .
Intelligent Robots/Applied Sensor Technology Lecture Intrinsic and Extrinsic sensor technology and their application for intelligent robotic systems.
Machine Learning Lecture
Machine learning techniques allow robots to learn from observation and experience

\section*{Neural Networks Lecture}

Neural Networks allow robots to learn and offer new approaches to planning and control

\section*{Continuing Education at University of Hamburg (cont.)}

Image Processing I\&II Lecture
Image processing is required for robots to observe the
environment and recognize/classify/detect objects and humans
Knowledge Processing Lecture
The gained knowledge from observance and sensing has to be processed efficiently
Language Processing Lecture
How to extract knowledge and information from human speech
Real-Time Systems Lecture at TUHH
Robots have to process information and act in Real-Time environments

Fundamentals of Control Technology Lecture at TUHH
Control Technology is required for the technical control of robotic systems. Advanced Lecture with large prerequisites.

\section*{Bibliography}
[1] K. Fu, R. González, and C. Lee, Robotics: Control, Sensing, Vision, and Intelligence.
McGraw-Hill series in CAD/CAM robotics and computer vision, McGraw-Hill, 1987.
[2] R. Paul, Robot Manipulators: Mathematics, Programming, and Control: the Computer Control of Robot Manipulators. Artificial Intelligence Series, MIT Press, 1981.
[3] J. Craig, Introduction to Robotics: Pearson New International Edition: Mechanics and Control.
Always learning, Pearson Education, Limited, 2013.
[4] J. F. Engelberger, Robotics in service. MIT Press, 1989.
[5] W. Böhm, G. Farin, and J. Kahmann, "A Survey of Curve and Surface Methods in CAGD," Comput. Aided Geom. Des., vol. 1, pp. 1-60, July 1984.
[6] J. Zhang and A. Knoll, "Constructing Fuzzy Controllers with B-spline Models - Principles and Applications," International Journal of Intelligent Systems, vol. 13, no. 2-3, pp. 257-285, 1998.
[7] M. Eck and H. Hoppe, "Automatic Reconstruction of B-spline Surfaces of Arbitrary Topological Type," in Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH '96, (New York, NY, USA), pp. 325-334, ACM, 1996.
[8] M. C. Ferch, Lernen von Montagestrategien in einer verteilten Multiroboterumgebung. PhD thesis, Bielefeld University, 2001.
[9] J. H. Reif, "Complexity of the Mover's Problem and Generalizations - Extended Abstract," Proceedings of the 20th Annual IEEE Conference on Foundations of Computer Science, pp. 421-427, 1979.

\section*{Bibliography (cont.)}
[10] J. T. Schwartz and M. Sharir, "A Survey of Motion Planning and Related Geometric Algorithms," Artificial Intelligence, vol. 37, no. 1, pp. 157-169, 1988.
[11] J. Canny, The Complexity of Robot Motion Planning. MIT press, 1988.
[12] T. Lozano-Pérez, J. L. Jones, P. A. O'Donnell, and E. Mazer, Handey: A Robot Task Planner. Cambridge, MA, USA: MIT Press, 1992.
[13] O. Khatib, "The Potential Field Approach and Operational Space Formulation in Robot Control," in Adaptive and Learning Systems, pp. 367-377, Springer, 1986.
[14] J. Barraquand, L. Kavraki, R. Motwani, J.-C. Latombe, T.-Y. Li, and P. Raghavan, "A Random Sampling Scheme for Path Planning," in Robotics Research (G. Giralt and G. Hirzinger, eds.), pp. 249-264, Springer London, 1996.

\section*{Bibliography (cont.)}
[15] R. Geraerts and M. H. Overmars, "A Comparative Study of Probabilistic Roadmap Planners," in Algorithmic Foundations of Robotics V, pp. 43-57, Springer, 2004.
[16] K. Nishiwaki, J. Kuffner, S. Kagami, M. Inaba, and H. Inoue, "The Experimental Humanoid Robot H7: A Research Platform for Autonomous Behaviour," Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 365, no. 1850, pp. 79-107, 2007.
[17] R. Brooks, "A robust layered control system for a mobile robot," Robotics and Automation, IEEE Journal of, vol. 2, pp. 14-23, Mar 1986.
[18] M. J. Mataric, "Interaction and intelligent behavior.," tech. rep., DTIC Document, 1994.
[19] M. P. Georgeff and A. L. Lansky, "Reactive reasoning and planning.," in AAAl, vol. 87, pp. 677-682, 1987.

\section*{Bibliography (cont.)}
[20] J. Zhang and A. Knoll, Integrating Deliberative and Reactive Strategies via Fuzzy Modular Control, pp. 367-385. Heidelberg: Physica-Verlag HD, 2001.
[21] J. S. Albus, "The nist real-time control system (rcs): an approach to intelligent systems research," Journal of Experimental \& Theoretical Artificial Intelligence, vol. 9, no. 2-3, pp. 157-174, 1997.
[22] A. Meystel, "Nested hierarchical control," 1993.
[23] G. Saridis, "Machine-intelligent robots: A hierarchical control approach," in Machine Intelligence and Knowledge Engineering for Robotic Applications (A. Wong and A. Pugh, eds.), vol. 33 of NATO ASI Series, pp. 221-234, Springer Berlin Heidelberg, 1987.
[24] T. Fukuda and T. Shibata, "Hierarchical intelligent control for robotic motion by using fuzzy, artificial intelligence, and neural network," in Neural Networks, 1992. IJCNN., International Joint Conference on, vol. 1, pp. 269-274 vol.1, Jun 1992.

\section*{Bibliography (cont.)}
[25] R. C. Arkin and T. Balch, "Aura: principles and practice in review," Journal of Experimental \& Theoretical Artificial Intelligence, vol. 9, no. 2-3, pp. 175-189, 1997.
[26] E. Gat, "Integrating reaction and planning in a heterogeneous asynchronous architecture for mobile robot navigation," ACM SIGART Bulletin, vol. 2, no. 4, pp. 70-74, 1991.
[27] L. Einig, Hierarchical Plan Generation and Selection for Shortest Plans based on Experienced Execution Duration. Master thesis, Universität Hamburg, 2015.
[28] J. Craig, Introduction to Robotics: Mechanics \& Control. Solutions Manual.
Addison-Wesley Pub. Co., 1986.
[29] H. Siegert and S. Bocionek, Robotik: Programmierung intelligenter Roboter: Programmierung intelligenter Roboter. Springer-Lehrbuch, Springer Berlin Heidelberg, 2013.

\section*{Bibliography (cont.)}
[30] R. Schilling, Fundamentals of robotics: analysis and control. Prentice Hall, 1990.
[31] T. Yoshikawa, Foundations of Robotics: Analysis and Control. Cambridge, MA, USA: MIT Press, 1990.
[32] M. Spong, Robot Dynamics And Control. Wiley India Pvt. Limited, 2008.```


[^0]:    ${ }^{1}$ Robot Institute of America

