

Introduction to Robotics Lecture 11

Lasse Einig, Jianwei Zhang [einig, zhang]@informatik.uni-hamburg.de

University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems

June 28, 2018

Introduction Coordinate systems Kinematic Equations Robot Description Inverse Kinematics for Manipulators Differential motion with homogeneous transformations Jacobian Trajectory planning Trajectory generation **Dynamics** Principles of Walking Robot Control Task-Level Programming and Trajectory Generation

Task-level Programming and Path Planning Work space to Configuration Space C-obstacles Partition Representation of the C-Space Task-level Programming and Path Planning Architectures of Sensor-based Intelligent Systems Summary Conclusion and Outlook

Task-level Programming and Path Planning

Introduction to Robotics

Robot Single reference point with physical attributes

Task-level Programming and Path Planning

Introduction to Robotics

Work space The cartesian space of the environment

Task-level Programming and Path Planning

Introduction to Robotics

Configuration space C Set of all possible configurations

Task-level Programming and Path Planning

Introduction to Robotics

Obstacles in work space C-Obstacles in configuration space

Task-level Programming and Path Planning

Introduction to Robotics

Obstacle space Cobstacle Union of C-Obstacles

Task-level Programming and Path Planning

Introduction to Robotics

Free space C_{free} the complement of Obstacle space

Robot Single reference point with physical attributes Work space The cartesian space of the environment Configuration space C Set of all possible configurations Obstacles in work space C-Obstacles in configuration space Obstacle space C_{obstacle} Union of C-Obstacles Free space C_{free} the complement of Obstacle space Path-planning for Work-/Configuration-Space Search for a path for the reference point of the artifact in the free space. Configurations of the artifact in free space have no intersection with obstacles

Work Space to Configuration Space – Illustration

Task-level Programming and Path Planning - Work space to Configuration Space

Work Space to Configuration Space – Example

Task-level Programming and Path Planning - Work space to Configuration Space

Introduction to Robotics

Workspace scheme with start and goalDiscretized workspacepositions $xscale = 100, y^{scale} = 80$

Work Space to Configuration Space – Example

Task-level Programming and Path Planning - Work space to Configuration Space

Work Space to Configuration Space – Example

Task-level Programming and Path Planning - Work space to Configuration Space

Introduction to Robotics

 $\begin{array}{ll} \mbox{Discretized} & \mbox{configuration} & \mbox{space} \\ q_1^{scale} = 3600, \; q_2^{scale} = 3600 \end{array}$

Work Space to Configuration Space – Complexity

Task-level Programming and Path Planning - Work space to Configuration Space

C-Obstacle for a circular artifact

Task-level Programming and Path Planning - C-obstacles

Introduction to Robotics

Obstacle & artifact (radius *r*) Expanded C-Obstacle

C-Obstacle for a circular artifact

Task-level Programming and Path Planning - C-obstacles

Introduction to Robotics

Obstacle & artifact (radius r)

Path of minimal distance to obstacle

Task-level Programming and Path Planning - C-obstacles

Obstacle & polygon artifact with $\theta = \theta_1 \vee \theta_2$; minimum distance to obstacle.

A C-Obstacle of a fixed, convex obstacle with respect to a moving convex robot (part) may be theoretically represented as the Minkowski Sum of the corresponding objects.

 $C_O(H)$ is the C-obstacle of a fixed convex polyhedra H, with respect to the (moving) convex object O.

Minkowski-Sum (Minkowski-Difference) of H and O (H and -O)

$$C_O(H) = H \ominus O = H \oplus (\ominus O)$$

where

$$H \ominus O := \{h - o \mid h \in H \land o \in O\}$$

Minkowski Sum & Difference – 2D Example

Task-level Programming and Path Planning - C-obstacles

Introduction to Robotics

$$A = \{(0,0), (2,0), (2,2), (0,2)\} \qquad B = \{(-1,1), (-3,2), (-3,1)\}$$
$$A \oplus B = \{(-1,1), (-3,2), (-3,1), (1,1), (-1,2), (-1,1), (1,3), (-1,4), (-1,3), (-1,3), (-3,4), (-3,3)\}$$

The convex hull (eliminating duplicates & inner points) $conv{A \oplus B} = \{(-3,1), (1,1), (1,3), (-1,4), (-3,4)\}$

Minkowski Sum & Difference – 2D Example (cont.)

Task-level Programming and Path Planning - C-obstacles

Introduction to Robotics

$$\begin{aligned} &A = \{(0,0),(2,0),(2,2),(0,2)\} & B = \{(-1,1),(-3,2),(-3,1)\} \\ &A \ominus B = \{(1,-1),(3,-2),(3,-1),(3,-1),(5,-2),\\ &(5,-1),(3,1),(5,0),(5,1),(1,1),(3,0),(3,1)\} \end{aligned}$$

The convex hull (eliminating duplicates & inner points) $conv\{A \ominus B\} = \{(1,-1), (3,-2), (5,-2), (5,1), (1,1)\}$

Minkowski Sum & Difference – 2D Example (cont.)

Task-level Programming and Path Planning - C-obstacles

Introduction to Robotics

Collision detection

Two objects are colliding, if their Minkoswki difference contains the origin of the coordinate frame.

http://www.cut-the-knot.org/Curriculum/Geometry/PolyAddition.shtml

C-Obstacles for 2-D translation and 1-D rotation

Task-level Programming and Path Planning - C-obstacles

Introduction to Robotics

Represent rotational configuration of the C-obstacle as slice for each θ configuration of the robot.

C-Obstacles for 2-D translation and 1-D rotation (cont.)

Task-level Programming and Path Planning - C-obstacles

Introduction to Robotics

The configuration space for a k-DOF robot is a k-Dimensional coordinate system.

C-Obstacles for 2-D translation and 1-D rotation (cont.)

Task-level Programming and Path Planning - C-obstacles

Task-level Programming and Path Planning - C-obstacles

C-obstacles of a 2-DOF Chain of Poles

Task-level Programming and Path Planning - C-obstacles

Tree-structure for Configuration Space partitioning

Task-level Programming and Path Planning - C-obstacles

Configuration Space of a 3-DOF Chain of Poles

Task-level Programming and Path Planning - C-obstacles

Partition Representation of C-Space

Task-level Programming and Path Planning - Partition Representation of the C-Space

The free space is partioned into cells using

- Geometrical partition
 - uniform cubes
 - a hierarchical tree-structure (Quad-tree, Oct-tree, etc.)
 - slices and scanlines
 - bubbles of variable size

The union of the non-overlapping cells is part of the free space. Neighborship graphs represent the connectivity of free space.

- Topological partition
 - overlapping generalized cones
 - critical points of the C-obstacle connection graph

The union of the overlapping cells is equal to the free space.

Squares-Partitioning of Configuration Space

Task-level Programming and Path Planning - Partition Representation of the C-Space

Introduction to Robotics

Resulting bitmap of configuration space using squares partitioning

Squares-Partitioning of Configuration Space (cont.)

Task-level Programming and Path Planning - Partition Representation of the C-Space

Introduction to Robotics

Bitmap of configuration space

Partitioning of the configuration space using Octrees

Task-level Programming and Path Planning - Partition Representation of the C-Space

Partitioning of the configuration space using Slices

Task-level Programming and Path Planning - Partition Representation of the C-Space

Introduction to Robotics

Complexity regarding the transformation of the C-obstacles

 $r^{d-1}f(m)$

where r: the number of discretization steps for each DOF,
d: DOF of the robot arm
f(m): the computing time of one slice
m: the number of edges of all obstacles

Representation of free space with generalized cones

Task-level Programming and Path Planning - Partition Representation of the C-Space

Exact Partition of Configuration Space

Task-level Programming and Path Planning - Partition Representation of the C-Space

Introduction to Robotics

Trapezoidal partitioning of the configuration space

Exact Partition of Configuration Space (cont.)

Task-level Programming and Path Planning - Partition Representation of the C-Space

Introduction to Robotics

Cylindrical partitioning using critical points

Exact Partition of Configuration Space (cont.)

Task-level Programming and Path Planning - Partition Representation of the C-Space

Introduction to Robotics

Cylindrical partitioning and connectivity graph

Planning Results

Task-level Programming and Path Planning - Partition Representation of the C-Space

Introduction to Robotics

Serial computing: 3-DOF C-space Massive-parallel computing: up to 6-DOF C-Space

Partition based Path Planning

Task-level Programming and Path Planning - Partition Representation of the C-Space

Advantages:

- Complete in case of sufficient resolution
- Global overview

Disadvantages:

- High demand for RAM
 - Curse of Dimensionality
- Complex to implement
- Practically implementable only for few degrees of freedom

Path planning without explicit representation of free space?

- K. Fu, R. González, and C. Lee, *Robotics: Control, Sensing, Vision, and Intelligence.* McGraw-Hill series in CAD/CAM robotics and computer vision, McGraw-Hill, 1987.
- R. Paul, Robot Manipulators: Mathematics, Programming, and Control: the Computer Control of Robot Manipulators. Artificial Intelligence Series, MIT Press, 1981.
- J. Craig, Introduction to Robotics: Pearson New International Edition: Mechanics and Control. Always learning, Pearson Education, Limited, 2013.
- [4] J. F. Engelberger, *Robotics in service*. MIT Press, 1989.
- [5] W. Böhm, G. Farin, and J. Kahmann, "A Survey of Curve and Surface Methods in CAGD," *Comput. Aided Geom. Des.*, vol. 1, pp. 1–60, July 1984.

- [6] J. Zhang and A. Knoll, "Constructing Fuzzy Controllers with B-spline Models - Principles and Applications," *International Journal* of *Intelligent Systems*, vol. 13, no. 2-3, pp. 257–285, 1998.
- [7] M. Eck and H. Hoppe, "Automatic Reconstruction of B-spline Surfaces of Arbitrary Topological Type," in *Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques*, SIGGRAPH '96, (New York, NY, USA), pp. 325–334, ACM, 1996.
- [8] M. C. Ferch, Lernen von Montagestrategien in einer verteilten Multiroboterumgebung.
 PhD thesis, Bielefeld University, 2001.
- J. H. Reif, "Complexity of the Mover's Problem and Generalizations - Extended Abstract," *Proceedings of the 20th Annual IEEE Conference on Foundations of Computer Science*, pp. 421–427, 1979.

- [10] J. T. Schwartz and M. Sharir, "A Survey of Motion Planning and Related Geometric Algorithms," *Artificial Intelligence*, vol. 37, no. 1, pp. 157–169, 1988.
- [11] J. Canny, *The Complexity of Robot Motion Planning*. MIT press, 1988.
- [12] T. Lozano-Pérez, J. L. Jones, P. A. O'Donnell, and E. Mazer, Handey: A Robot Task Planner. Cambridge, MA, USA: MIT Press, 1992.
- [13] O. Khatib, "The Potential Field Approach and Operational Space Formulation in Robot Control," in *Adaptive and Learning Systems*, pp. 367–377, Springer, 1986.
- [14] J. Barraquand, L. Kavraki, R. Motwani, J.-C. Latombe, T.-Y. Li, and P. Raghavan, "A Random Sampling Scheme for Path Planning," in *Robotics Research* (G. Giralt and G. Hirzinger, eds.), pp. 249–264, Springer London, 1996.

- [15] R. Geraerts and M. H. Overmars, "A Comparative Study of Probabilistic Roadmap Planners," in *Algorithmic Foundations of Robotics V*, pp. 43–57, Springer, 2004.
- [16] K. Nishiwaki, J. Kuffner, S. Kagami, M. Inaba, and H. Inoue, "The Experimental Humanoid Robot H7: A Research Platform for Autonomous Behaviour," *Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences*, vol. 365, no. 1850, pp. 79–107, 2007.
- [17] R. Brooks, "A robust layered control system for a mobile robot," *Robotics and Automation, IEEE Journal of*, vol. 2, pp. 14–23, Mar 1986.
- [18] M. J. Mataric, "Interaction and intelligent behavior.," tech. rep., DTIC Document, 1994.
- [19] M. P. Georgeff and A. L. Lansky, "Reactive reasoning and planning.," in AAAI, vol. 87, pp. 677–682, 1987.

- J. Zhang and A. Knoll, Integrating Deliberative and Reactive Strategies via Fuzzy Modular Control, pp. 367–385.
 Heidelberg: Physica-Verlag HD, 2001.
- [21] J. S. Albus, "The nist real-time control system (rcs): an approach to intelligent systems research," *Journal of Experimental & Theoretical Artificial Intelligence*, vol. 9, no. 2-3, pp. 157–174, 1997.
- [22] A. Meystel, "Nested hierarchical control," 1993.
- [23] G. Saridis, "Machine-intelligent robots: A hierarchical control approach," in *Machine Intelligence and Knowledge Engineering for Robotic Applications* (A. Wong and A. Pugh, eds.), vol. 33 of *NATO ASI Series*, pp. 221–234, Springer Berlin Heidelberg, 1987.
- [24] T. Fukuda and T. Shibata, "Hierarchical intelligent control for robotic motion by using fuzzy, artificial intelligence, and neural network," in *Neural Networks*, 1992. IJCNN., International Joint Conference on, vol. 1, pp. 269–274 vol.1, Jun 1992.

- [25] R. C. Arkin and T. Balch, "Aura: principles and practice in review," *Journal of Experimental & Theoretical Artificial Intelligence*, vol. 9, no. 2-3, pp. 175–189, 1997.
- [26] E. Gat, "Integrating reaction and planning in a heterogeneous asynchronous architecture for mobile robot navigation," ACM SIGART Bulletin, vol. 2, no. 4, pp. 70–74, 1991.
- [27] L. Einig, Hierarchical Plan Generation and Selection for Shortest Plans based on Experienced Execution Duration.
 Master thesis, Universität Hamburg, 2015.
- J. Craig, Introduction to Robotics: Mechanics & Control. Solutions Manual.
 Addison-Wesley Pub. Co., 1986.
- [29] H. Siegert and S. Bocionek, Robotik: Programmierung intelligenter Roboter: Programmierung intelligenter Roboter. Springer-Lehrbuch, Springer Berlin Heidelberg, 2013.

- [30] R. Schilling, *Fundamentals of robotics: analysis and control*. Prentice Hall, 1990.
- [31] T. Yoshikawa, *Foundations of Robotics: Analysis and Control*. Cambridge, MA, USA: MIT Press, 1990.
- [32] M. Spong, *Robot Dynamics And Control*. Wiley India Pvt. Limited, 2008.