

MIN Faculty Department of Informatics

Introduction to Robotics Lecture 8

Lasse Einig, Jianwei Zhang [einig, zhang]@informatik.uni-hamburg.de

University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems

May 24, 2018

Outline

Dynamics

Introduction Coordinate systems Kinematic Equations Robot Description Inverse Kinematics for Manipulators Differential motion with homogeneous transformations Jacobian Trajectory planning Trajectory generation **Dynamics** Forward and inverse Dynamics Dynamics of Manipulators Newton-Euler-Equation Langrangian Equations

Outline (cont.)

Dynamics

General dynamic equations

Principles of Walking

Robot Control

Task-Level Programming and Trajectory Generation

Task-level Programming and Path Planning

Task-level Programming and Path Planning

Architectures of Sensor-based Intelligent Systems

Summary

Conclusion and Outlook

Dynamics - Forward and inverse Dynamics

A multibody system is a mechanical system of single bodies

- connected by joints,
- influenced by forces
- The term dynamics describes the behavior of bodies influenced by forces
 - Typical forces: weight, friction, centrifugal, magnetic, spring, ...
- kinematics just models the motion of bodies (without considering forces), therefore it can be seen as a subset of dynamics

Dynamics - Forward and inverse Dynamics

Introduction to Robotics

We consider a force F and its effect on a body:

$$F = m \cdot a = m \cdot \dot{v}$$

In order to solve this equation, two of the variables need to be known.

Introduction to Robotics

If the force F and the mass of the body m is known:

.

$$a = \dot{v} = \frac{F}{m}$$

Hence the following can be determined:

- velocity (by integration)
- coordinates of single bodies
- forward dynamics
- mechanical stress of bodies

Dynamics - Forward and inverse Dynamics

Input

 τ_i = torque at joint *i* that effects a trajectory Θ .

 $i = 1, \ldots, n$, where *n* is the number of joints.

Output

- Θ_i = joint angle of *i*
- $\dot{\Theta}_i$ = angular velocity of joint *i*
- $\ddot{\Theta}_i$ = angular acceleration of joint *i*

If the time curves of the joint angles are known, it can be differentiated twice.

This way,

- internal forces
- and torques

can be obtained for each body and joint.

Problems of highly dynamic motions:

- models are not as complex as the real bodies
- differentiating twice (on sensor data) leads to high inaccuracy

Dynamics - Forward and inverse Dynamics

Input

 $\Theta_i = \text{joint angle } i$

- $\dot{\Theta}_i$ = angular velocity of joint *i*
- $\ddot{\Theta}_i$ = angular acceleration of joint *i*
- $i = 1, \ldots, n$, where *n* is the number of joints.

Output

 τ_i = required torque at joint *i* to produce trajectory Θ .

Forward dynamics:

- Input: joint forces / torques;
- Output: kinematics;
- Application: Simulation of a robot model.

Inverse Dynamics:

- Input: desired trajectory of a manipulator;
- Output: required joint forces / torques;
- Application: model-based control of a robot.

$$au(t) \rightarrow \text{direct dynamics} \rightarrow \mathbf{q}(t), (\dot{\mathbf{q}}(t), \ddot{\mathbf{q}}(t))$$

 $\mathbf{q}(t) \rightarrow \text{inverse dynamics} \rightarrow \tau(t)$

Unlike kinematics, the inverse dynamics is easier to solve than forward dynamics

Dynamics of Manipulators (cont.)

Two methods for calculation:

- Analytical methods
 - based on Lagrangian equations
- Synthetic methods:
 - based on the Newton-Euler equations

Computation time

Complexity of solving the Lagrange-Euler-model is $O(n^4)$ where *n* is the number of joints.

n = 6: 66,271 multiplications and 51,548 additions.

Dynamics - Dynamics of Manipulators

The description of manipulator dynamics is directly based on the relations between the kinetic and potential energy of the manipulator joints.

Here:

- constraining forces are not considered
- deep knowledge of mechanics is necessary
- high effort of defining equations
- can be solved by software

Dynamics - Dynamics of Manipulators

- Determine the kinematics from the fixed base to the TCP (relative kinematics)
- The resulting acceleration leads to forces towards rigid bodies
- The combination of constraining forces, payload forces, weight forces and working forces can be defined for every rigid body. All torques and momentums need to be in balance
- Solving this formula leads to the joint forces
- Especially suitable for serial kinematics of manipulator

Influencing factors to robot dynamics

Dynamics - Dynamics of Manipulators

Introduction to Robotics

Functional affordance

- trajectory and velocity of links
- load on a link
- Control quantity
 - velocity and acceleration of joints
 - forces and torques
- Robot-specific elements
 - geometry
 - mass distribution

Aim of determining robot dynamics

Dynamics - Dynamics of Manipulators

Introduction to Robotics

- Determining joint forces and torques for one point of a trajectory (Θ, Θ, Θ)
- Determining the motion of a link or the complete manipulator for given joint-forces and -torques (\(\tau\))

To achieve this the mathematical model is applied.

Dynamics - Dynamics of Manipulators

- Combining the different influence factors in the robot specific motion equation from kinematics (Θ, Θ, Θ)
- Practically the Newton-, Euler- and motion-equation for each joint are combined
- Advantages: numerically efficient, applicable for complex geometry, can be modularized

Dynamics - Dynamics of Manipulators

- We can determine the forces with the Newton-equation
- The Euler-equation provides the torque
- ▶ The combination provides force and torque for each joint.

Dynamics of a multibody system, example: a two joint manipulator.

Introduction to Robotics

Using Newton's second law, the forces at the center of mass at link 1 and 2 are:

$$\mathbf{F}_1 = m_1 \ddot{\mathbf{r}}_1$$

$$\mathbf{F}_2 = m_2 \ddot{\mathbf{r}}_2$$

where

$$\mathbf{r}_1 = \frac{1}{2} l_1 (\cos \theta_1 \vec{i} + \sin \theta_1 \vec{j})$$
$$\mathbf{r}_2 = 2\mathbf{r}_1 + \frac{1}{2} l_2 [\cos(\theta_1 + \theta_2) \vec{i} + \sin(\theta_1 + \theta_2) \vec{j}]$$

Introduction to Robotics

Euler equations:

$$\tau_1 = \mathbf{I}_1 \dot{\omega}_1 + \omega_1 \times \mathbf{I}_1 \omega_1$$

$$\tau_2 = \mathbf{I}_2 \dot{\omega}_2 + \omega_2 \times \mathbf{I}_2 \omega_2$$

where

$$\mathbf{I}_{1} = \frac{m_{1}l_{1}^{2}}{12} + \frac{m_{1}R^{2}}{4}$$
$$\mathbf{I}_{2} = \frac{m_{2}l_{2}^{2}}{12} + \frac{m_{2}R^{2}}{4}$$

Introduction to Robotics

The angular velocities and angular accelerations are:

 $\omega_1 = \dot{\theta}_1$ $\omega_2 = \dot{\theta}_1 + \dot{\theta}_2$ $\dot{\omega}_1 = \ddot{\theta}_1$ $\dot{\omega}_2 = \ddot{\theta}_1 + \ddot{\theta}_2$

As $\omega_i \times \mathbf{I}_i \omega_i = 0$, the torques at the center of mass of links 1 and 2 are:

$$\tau_1 = \mathbf{I}_1 \ddot{\theta}_1$$
$$\tau_2 = \mathbf{I}_2 (\ddot{\theta}_1 + \ddot{\theta}_2)$$

 F_1, F_2, τ_1, τ_2 are used for force and torque balance and are solved for joint 1 and 2.

Dynamics - Langrangian Equations

The Lagrangian function L is defined as the difference between kinetic energy K and potential energy P of the system.

$$L = K - P$$

Theorem

The motion equations of a mechanical system with coordinates $\mathbf{q} \in \Theta^n$ and the Lagrangian function *L* is defined by:

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = F_i, \quad i = 1, \dots, n$$

where

 q_i : the coordinates, where the kinetic and potential energy is defined;

 \dot{q}_i : the velocity;

 F_i : the force or torque, depending on the type of joint (rotational or linear)

Example: A two joint manipulator

Dynamics - Langrangian Equations

Introduction to Robotics

Langragian Method for two joint manipulator

Dynamics - Langrangian Equations

Introduction to Robotics

The kinetic energy of mass m_1 is:

$$K_1 = rac{1}{2}m_1 \, {d_1}^2 \, {\dot{\theta_1}}^2$$

The potential energy is:

$$P_1 = -m_1 g d_1 \cos(\theta_1)$$

The cartesian positions are:

$$x_2 = d_1 sin(\theta_1) + d_2 sin(\theta_1 + \theta_2)$$

$$y_2 = -d_1 cos(\theta_1) - d_2 cos(\theta_1 + \theta_2)$$

Dynamics - Langrangian Equations

Introduction to Robotics

The cartesian components of velocity are:

$$\dot{x}_2=d_1cos(heta_1)\dot{ heta}_1+d_2cos(heta_1+ heta_2)(\dot{ heta_1}+\dot{ heta_2})$$

$$\dot{y}_2 = d_1 sin(heta_1)\dot{ heta}_1 + d_2 sin(heta_1 + heta_2)(\dot{ heta_1} + \dot{ heta_2})$$

The square of velocity is:

$$v_2{}^2 = \dot{x_2}{}^2 + \dot{y_2}{}^2$$

The kinetic energy of link 2 is:

$$K_2 = \frac{1}{2}m_2v_2^2$$

The potential energy of link 2 is:

$$P_2 = -m_2gd_1cos(\theta_1) - m_2gd_2cos(\theta_1 + \theta_2)$$

Dynamics - Langrangian Equations

Introduction to Robotics

The Lagrangian function is:

$$L = (K_1 + K_2) - (P_1 + P_2)$$

The force/torque to joint 1 and 2 are:

$$\tau_1 = \frac{d}{dt} \frac{\partial L}{\partial \dot{\theta_1}} - \frac{\partial L}{\partial \theta_1}$$
$$\tau_2 = \frac{d}{dt} \frac{\partial L}{\partial \dot{\theta_2}} - \frac{\partial L}{\partial \theta_2}$$

Langragian Method for two joint manipulator (cont.)

Dynamics - Langrangian Equations

Introduction to Robotics

 τ_1 and τ_2 are expressed as follows:

$$\begin{aligned} \tau_1 = & D_{11}\ddot{\theta_1} + D_{12}\ddot{\theta_2} + D_{111}\dot{\theta_1}^2 + D_{122}\dot{\theta_2}^2 \\ &+ D_{112}\dot{\theta_1}\dot{\theta_2} + D_{121}\dot{\theta_2}\dot{\theta_1} + D_1 \\ \tau_2 = & D_{21}\ddot{\theta_1} + D_{22}\ddot{\theta_2} + D_{211}\dot{\theta_1}^2 + D_{222}\dot{\theta_2}^2 \\ &+ D_{212}\dot{\theta_1}\dot{\theta_2} + D_{221}\dot{\theta_2}\dot{\theta_1} + D_2 \end{aligned}$$

where

- D_{ii} : the inertia to joint *i*;
- D_{ij} : the coupling of inertia between joint *i* and *j*;
- D_{ijj}: the coefficients of the centripetal force to joint *i* because of the velocity of joint *j*;
- $D_{iik}(D_{iki})$: the coefficients of the Coriolis force to joint *i* effected by the velocities of joint *i* and *k*;
 - D_i : the gravity of joint *i*.

General dynamic equations of a manipulator

Dynamics - General dynamic equations

Introduction to Robotics

$$au = M(\Theta)\ddot{\Theta} + V(\Theta, \dot{\Theta}) + G(\Theta)$$

 $M(\Theta)$: the position dependent $n \times n$ -mass matrix of a manipulator For the example given above:

$$M(\Theta) = egin{bmatrix} D_{11} & D_{12} \ D_{21} & D_{22} \end{bmatrix}$$

 $V(\Theta, \dot{\Theta})$: an $n \times 1$ -vector of centripetal and coriolis coefficients For the example given above:

$$V(\Theta, \dot{\Theta}) = \begin{bmatrix} D_{111}\dot{\theta}_1^2 + D_{122}\dot{\theta}_2^2 + D_{112}\dot{\theta}_1\dot{\theta}_2 + D_{121}\dot{\theta}_2\dot{\theta}_1 \\ D_{211}\dot{\theta}_1^2 + D_{222}\dot{\theta}_2^2 + D_{212}\dot{\theta}_1\dot{\theta}_2 + D_{221}\dot{\theta}_2\dot{\theta}_1 \end{bmatrix}$$

Dynamics - General dynamic equations

Introduction to Robotics

- a term such as $D_{111}\dot{\theta}_1^2$ is caused by coriolis force;
- ► a term such as $D_{112}\dot{\theta}_1\dot{\theta}_2$ is caused by coriolis force and depends on the (math.) product of the two velocities.
- $G(\Theta)$: a term of velocity, depends on Θ .
 - for the example given above

$$G(\Theta) = \begin{bmatrix} D_1 \\ D_2 \end{bmatrix}$$

Bibliography

- K. Fu, R. González, and C. Lee, *Robotics: Control, Sensing, Vision, and Intelligence*. McGraw-Hill series in CAD/CAM robotics and computer vision, McGraw-Hill, 1987.
- R. Paul, Robot Manipulators: Mathematics, Programming, and Control: the Computer Control of Robot Manipulators. Artificial Intelligence Series, MIT Press, 1981.
- J. Craig, Introduction to Robotics: Pearson New International Edition: Mechanics and Control.
 Always learning, Pearson Education, Limited, 2013.
- [4] J. F. Engelberger, *Robotics in service*. MIT Press, 1989.
- [5] W. Böhm, G. Farin, and J. Kahmann, "A Survey of Curve and Surface Methods in CAGD," *Comput. Aided Geom. Des.*, vol. 1, pp. 1–60, July 1984.

- [6] J. Zhang and A. Knoll, "Constructing Fuzzy Controllers with B-spline Models - Principles and Applications," *International Journal* of Intelligent Systems, vol. 13, no. 2-3, pp. 257–285, 1998.
- [7] M. Eck and H. Hoppe, "Automatic Reconstruction of B-spline Surfaces of Arbitrary Topological Type," in *Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques*, SIGGRAPH '96, (New York, NY, USA), pp. 325–334, ACM, 1996.
- [8] M. C. Ferch, Lernen von Montagestrategien in einer verteilten Multiroboterumgebung.
 PhD thesis, Bielefeld University, 2001.
- J. H. Reif, "Complexity of the Mover's Problem and Generalizations - Extended Abstract," *Proceedings of the 20th Annual IEEE Conference on Foundations of Computer Science*, pp. 421–427, 1979.

- [10] J. T. Schwartz and M. Sharir, "A Survey of Motion Planning and Related Geometric Algorithms," *Artificial Intelligence*, vol. 37, no. 1, pp. 157–169, 1988.
- [11] J. Canny, *The Complexity of Robot Motion Planning*. MIT press, 1988.
- T. Lozano-Pérez, J. L. Jones, P. A. O'Donnell, and E. Mazer, Handey: A Robot Task Planner.
 Cambridge, MA, USA: MIT Press, 1992.
- [13] O. Khatib, "The Potential Field Approach and Operational Space Formulation in Robot Control," in *Adaptive and Learning Systems*, pp. 367–377, Springer, 1986.
- [14] J. Barraquand, L. Kavraki, R. Motwani, J.-C. Latombe, T.-Y. Li, and P. Raghavan, "A Random Sampling Scheme for Path Planning," in *Robotics Research* (G. Giralt and G. Hirzinger, eds.), pp. 249–264, Springer London, 1996.

- [15] R. Geraerts and M. H. Overmars, "A Comparative Study of Probabilistic Roadmap Planners," in *Algorithmic Foundations of Robotics V*, pp. 43–57, Springer, 2004.
- [16] K. Nishiwaki, J. Kuffner, S. Kagami, M. Inaba, and H. Inoue, "The Experimental Humanoid Robot H7: A Research Platform for Autonomous Behaviour," *Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences*, vol. 365, no. 1850, pp. 79–107, 2007.
- [17] R. Brooks, "A robust layered control system for a mobile robot," *Robotics and Automation, IEEE Journal of*, vol. 2, pp. 14–23, Mar 1986.
- [18] M. J. Mataric, "Interaction and intelligent behavior.," tech. rep., DTIC Document, 1994.
- [19] M. P. Georgeff and A. L. Lansky, "Reactive reasoning and planning.," in AAAI, vol. 87, pp. 677–682, 1987.

- J. Zhang and A. Knoll, Integrating Deliberative and Reactive Strategies via Fuzzy Modular Control, pp. 367–385.
 Heidelberg: Physica-Verlag HD, 2001.
- [21] J. S. Albus, "The nist real-time control system (rcs): an approach to intelligent systems research," *Journal of Experimental & Theoretical Artificial Intelligence*, vol. 9, no. 2-3, pp. 157–174, 1997.
- [22] A. Meystel, "Nested hierarchical control," 1993.
- [23] G. Saridis, "Machine-intelligent robots: A hierarchical control approach," in *Machine Intelligence and Knowledge Engineering for Robotic Applications* (A. Wong and A. Pugh, eds.), vol. 33 of *NATO ASI Series*, pp. 221–234, Springer Berlin Heidelberg, 1987.
- [24] T. Fukuda and T. Shibata, "Hierarchical intelligent control for robotic motion by using fuzzy, artificial intelligence, and neural network," in *Neural Networks*, 1992. IJCNN., International Joint Conference on, vol. 1, pp. 269–274 vol.1, Jun 1992.

- [25] R. C. Arkin and T. Balch, "Aura: principles and practice in review," *Journal of Experimental & Theoretical Artificial Intelligence*, vol. 9, no. 2-3, pp. 175–189, 1997.
- [26] E. Gat, "Integrating reaction and planning in a heterogeneous asynchronous architecture for mobile robot navigation," ACM SIGART Bulletin, vol. 2, no. 4, pp. 70–74, 1991.
- [27] L. Einig, Hierarchical Plan Generation and Selection for Shortest Plans based on Experienced Execution Duration.
 Master thesis, Universität Hamburg, 2015.
- J. Craig, Introduction to Robotics: Mechanics & Control. Solutions Manual.
 Addison-Wesley Pub. Co., 1986.
- [29] H. Siegert and S. Bocionek, Robotik: Programmierung intelligenter Roboter: Programmierung intelligenter Roboter. Springer-Lehrbuch, Springer Berlin Heidelberg, 2013.

- [30] R. Schilling, Fundamentals of robotics: analysis and control. Prentice Hall, 1990.
- [31] T. Yoshikawa, *Foundations of Robotics: Analysis and Control*. Cambridge, MA, USA: MIT Press, 1990.
- [32] M. Spong, *Robot Dynamics And Control*. Wiley India Pvt. Limited, 2008.