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Trajectory
Trajectory planning Introduction to Robotics

Definition
A trajectory is a time history of

position,
velocity and
acceleration

for each DOF

Describes motion of TCP frame relative to base frame
I abstract from joint configuration
Series of discrete poses (TCP or joint configuration)
I usually fixed temporal intervals
I possibly fixed distances, key frames
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Trajectory planning
Trajectory planning Introduction to Robotics

Problem
I am at point A and want move to point B.
I How do I get to point B?
I How long does it take me to get to point B?
I Which constraints exist for moving from A to B?

Solution
I generate a possible trajectory
I trajectory planning
I describe intermediate poses (waypoints)
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Requirement
Trajectory planning Introduction to Robotics

The methods for path generation should be applicable for
I calculation of cartesian trajectories for the TCP
I calculation for trajectories in joint space
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Primitive solution
Trajectory planning - Trajectory generation Introduction to Robotics

Naive approach
Set the pose for the next time step (e.g. 10ms later) to B.

I possible only in simulation
I the moving distance for a manipulator at the next time step

may be too large (velocity approaches ∞)
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Linear interpolation
Trajectory planning - Trajectory generation Introduction to Robotics

Next best approach
I divide distance between A and B to shorter (sub-)distances
I use linear interpolation for these (sub-)distances
I respect the maximum velocity constraint
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Linear interpolation – visualization
Trajectory planning - Trajectory generation Introduction to Robotics
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Linear interpolation – constraints
Trajectory planning - Trajectory generation Introduction to Robotics

Problem
The physical constraints are violated
I joint velocity is limited by maximum motor rotation speed
I joint acceleration is limited by maximum motor torque
Implicitly these contraints are valid for motion in cartesian space.

I robot dynamics (joint moments resulting from the robot
motion) affect the boundary condition

Solution
I dynamical trajectory planning
I advanced optimization methods → current topic of research
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Linear interpolation – improvement
Trajectory planning - Trajectory generation Introduction to Robotics

Next best approach
I Limitation of joint velocity and acceleration
I Two different methods

I trapezoidal interpolation
I polynomial interpolation
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Trapezoidal interpolation – visualization
Trajectory planning - Trajectory generation Introduction to Robotics
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Trapezoidal interpolation
Trajectory planning - Trajectory generation Introduction to Robotics

I consider joint velocity and acceleration contraints
I optimal time usage (move with maximum acceleration and

velocity)
I acceleration is not differentiable (the jerk is not continuous)
I start and end velocity equals 0

I not sensible for concatenating trajectories
I improved by polynomial interpolation
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Trapezoidal interpolation – constraints
Trajectory planning - Trajectory generation Introduction to Robotics

Problem
Multidimensional trapezoidal interpolations
I different run time for joints (or cartesian dimensions)
I multiple velocity and acceleration contraints
I results in various time switch points

I from acceleration to continuous velocity
I from continuous velocity to deceleration
I moving along a line in joint/cartesian space is impossible.

Solution
I Normalization to the slowest joint
I Use jerk and arrival time of the slowest joint instead of velocity.
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Trapezoidal interpolation – normalization
Trajectory planning - Trajectory generation Introduction to Robotics

Normalize to the slowest joint

time
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Trapezoidal interpolation – normalization (cont.)
Trajectory planning - Trajectory generation Introduction to Robotics

Normalize to the slowest joint

Integral (= driven distance)
has to stay constant

time
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Polynomial interpolation
Trajectory planning - Trajectory generation Introduction to Robotics

I Consider velocity and acceleration boundary conditions
I calculation of extremum and duration of trajectory

I Acceleration differentiable
I continous jerk
I smooth trajectory
I interesting only in the theory – for momentum control

I Start and end velocity may be 6= 0
I sensible for concatenating trajectories
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Polynomial interpolation (cont.)
Trajectory planning - Trajectory generation Introduction to Robotics

I Usually a polynom with degree of 3 (cubic spline) or 5
I Calculation of coefficient with respect to boundary constraints

I 3rd -degree polynomial: consider 4 boundary constraints
I position and velocity; start and goal

I 5th-degree polynomial: consider 6 boundary constraints
I position, velocity and acceleration; start and goal
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Polynomial interpolation (cont.)
Trajectory planning - Trajectory generation Introduction to Robotics

Example 5th-degree
f (x) = a0 + a1x + a2x2 + a3x3 + a4x4 + a5x5

Boundary conditions for start (x = t0) and goal (x = td):
I f (t0) = posStart , f (td) = posGoal

I f ′(t0) = velStart , f ′(td) = velGoal

I f ′′(t0) = accStart , f ′′(td) = accGoal

t: formal time from the interval [0;1]

Proper position interpolation from start (A) to goal (B)

P(t) = Af (t) + Bf (1− t)
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Polynomial interpolation (cont.)
Trajectory planning - Trajectory generation Introduction to Robotics
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Boundary constraints
Pick-and-Place example
Trajectory planning - Trajectory generation Introduction to Robotics
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Boundary constraints (cont.)
Pick-and-Place example
Trajectory planning - Trajectory generation Introduction to Robotics

Pick posStart = object, velStart = 0, accStart = 0
Lift-off limited velocity and acceleration
Motion continuous via waypoints, full velocity and acceleration

Set-down similar to Lift-off
Place similar to Pick
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Generation of trajectories
Trajectory planning - Generation of trajectories Introduction to Robotics

Task
I find trajectory for moving the robot from start to goal pose

I calculate
I interpolate
I approximate

I use continous functions of time

Solution:
I Cartesian space
I Joint Space
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Generation of trajectories (cont.)
Trajectory planning - Generation of trajectories Introduction to Robotics

Cartesian space:
I near to the task specification
I advantageous for collision avoidance
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Generation of trajectories (cont.)
Trajectory planning - Generation of trajectories Introduction to Robotics

Joint space:
I no inverse kinematics in joint space required
I the planned trajectory can be immediately applied
I physical joint constraints can be considered

Trajectory
generation

in joint space

Path constraints

Dynamic constraints

Path specification {q(t),q̇(t),q̈(t)}
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Trajectories in multidimensional space
Trajectory planning - Trajectories in multidimensional space Introduction to Robotics

I Changes in position, velocity and acceleration of all joints are
analyzed over a period of time

I Trajectory with n DOF is a parameterized function q(t) with
values in its motion region.

I Trajectory q(t) of a robot with n DOF is then a vector of n
parameterized functions qi(t), i ∈ {1 . . . n} with one common
parameter t:

q(t) = [q1(t), q2(t), . . . , qn(t)]T
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Continuity of Trajectories
Trajectory planning - Trajectories in multidimensional space Introduction to Robotics

I A trajectory is Ck -continuous, if all derivatives up to the k-th
(including) exist and are continuous.

I A trajectory is called smooth, if it is at least C2-continuous

I q(x) is the trajectory,
I q̇(x) is the velocity,
I q̈(x) is the acceleration,
I

...q (x) is the jerk
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Remarks on generation of trajectories
Trajectory planning - Trajectories in multidimensional space Introduction to Robotics

I The smoothest curves are generated by infinitly often
differentiable functions.
I ex

I sin(x), cos(x)
I log(x) (for x > 0)
I . . .

I Polynomials are suitable for interpolation
I Problem: oscillations caused by a degree which is too high

I Piecewise polynomials with specified degree are applicable
I cubic polynomial
I splines
I B-Splines
I . . .
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Cubic polynomials between two configurations
Trajectory planning - Cubic polynomials between two configurations Introduction to Robotics

I third-degree polynomial ⇒ four constraints:

θ(t) = a0 + a1t + a2t2 + a3t3

I if the start and end velocity is 0 then

θ(0) = θ0 (70)

θ(tf ) = θf (71)

θ̇(0) = 0 (72)

θ̇(tf ) = 0 (73)
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Cubic polynomials between two configurations (cont.)
Trajectory planning - Cubic polynomials between two configurations Introduction to Robotics

I The solution

eq. (70) a0 = θ0

eq. (72) a1 = 0

a2 = 3
t2f

(θf − θ0)

a3 = − 2
t3f

(θf − θ0)
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Cubic polynomials with waypoints and velocities
Trajectory planning - Cubic polynomials between two configurations Introduction to Robotics

I Similar to the previous example:
I positions of waypoints are given (same)
I velocities of waypoints are different from 0 (different)

θ(0) = θ0 (74)

θ(tf ) = θf (75)

θ̇(0) = θ̇0 (76)

θ̇(tf ) = θ̇f (77)
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Cubic polynomials with waypoints and velocities (cont.)
Trajectory planning - Cubic polynomials between two configurations Introduction to Robotics

I The solution

eq. (74) a0 = θ0

eq. (76) a1 = θ̇0

a2 = 3
t2f

(θf − θ0)−
2
tf
θ̇0 −

1
tf
θ̇f

a3 = − 2
t3f

(θf − θ0) + 1
t2f

(θ̇f + θ̇0)
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Velocity calculation at the waypoints
Trajectory planning - Optimizing motion Introduction to Robotics

I Manually specify waypoints
I based on cartesian linear and angle velocity of the tool frame

I Automatic calculation of waypoints in cartesian or joint space
I based on heuristics

I Automatic determination of the parameters
I based on continous acceleration at the waypoints

J. Zhang, L. Einig 228 / 550



Factors for time optimal motion – Arc Length
Trajectory planning - Optimizing motion Introduction to Robotics

If the curve in the n-dimensional K space is given by

q(t) = [q1(t), q2(t), . . . , qn(t)]T

then the arc length can be defined as follows:

s =
∫ t

0
‖q̇(t)‖2 dt

where ‖q̇(t)‖2 is the euclidean norm of vector dq(t)/dt and is
labeled as a flow velocity along the curve.

‖x‖2 :=
√
x21 + · · ·+ x2n
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Factors for time optimal motion – Arc Length (cont.)
Trajectory planning - Optimizing motion Introduction to Robotics

With the following two points given
p0 = q(ts) und p1 = q(tf ),
the arc length L between p0 and p1 is the integral:

L =
∫ p0

p1
ds =

∫ tf

ts
‖q̇(t)‖2 dt

“The trajectory parameters should be calculated in the way
that the arc length L under the given constraints has the
shortest possible value.”
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Factors for time optimal motion – Arc Length (cont.)
Trajectory planning - Optimizing motion Introduction to Robotics

I trajectory of circle

q(t) = c(t) = [r cos(t), r sin(t)]T

I arc length L of circle (circumference)

L =
∫ 2π

0
‖ċ(t)‖2 dt (78)

=
∫ 2π

0

∥∥∥[−r sin(t), r cos(t)]T
∥∥∥
2
dt (79)

=
∫ 2π

0

√
r2(sin2(t) + cos2(t))dt (80)

=
∫ 2π

0
rdt (81)

L = 2π r (82)
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Factors for time optimal motion – Curvature
Trajectory planning - Optimizing motion Introduction to Robotics

Curvature
Defines the sharpness of a curve. A straight line has zero
curvature. Curvature of large circles is smaller than of small circles.

At first the unit vector of a curve q(t) can be defined as

U = dq(t)
ds = dq(t)/dt

ds/dt = q̇(t)
|q̇(t)|

If s is the parameter of the arc length and U as the unit vector is
given, the curvature of curve q(t) can be defined as

κ(s) =
∣∣∣∣dU
ds

∣∣∣∣
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Factors for time optimal motion – Curvature (cont.)
Trajectory planning - Optimizing motion Introduction to Robotics

with κ(s) =
∣∣∣dU

ds

∣∣∣ → curvature

If the parameter t, the first derivative q̇ = dq(t)/dt and the second
derivative q̈ = d q̇(t)/dt for the curve q(t) are given, then the
curvature can be calculated from the following representation

κ(t) = |q̇× q̈|
|q̇3|

= (q̇2 · q̈2 − (q̇ · q̈)2)1/2

|q̇|3

where q̇× q̈ is the cross product and q̇ · q̈ is the dot product

http://web.cs.iastate.edu/~cs577/handouts/curvature.pdf
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Factors for time optimal motion – Curvature (cont.)
Trajectory planning - Optimizing motion Introduction to Robotics

with q(t) = c(t) = [r cos(t), r sin(t)]T → trajectory of a circle

ċ(t) = [−r sin(t), r cos(t)]T

c̈(t) = [−r cos(t),−r sin(t)]T

ċ2(t) = r2 sin2(t) + r2 cos2(t) = r2

c̈2(t) = r2 cos2(t) + r2 sin2(t) = r2

ċ(t) · c̈(t) = r2 sin(t) cos(t)− r2 cos(t) sin(t) = 0

Curvature of a circle

κ(t) = (ċ2 · c̈2 − (ċ · c̈)2)1/2

|ċ|3
=
√
r4
r3 = 1

r
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Factors for time optimal motion – Bending Energy
Trajectory planning - Optimizing motion Introduction to Robotics

The bending energy of a smooth curve q(t) over the interval
t ∈ [0,T ] is defined as

E =
∫ L

0
κ(s)2ds =

∫ T

0
κ(t)2|q̇(t)|dt

where κ(t) is the curvature of q(t).

“The bending energy E of a trajectory should be as small as
possible under consideration of the arc length.”
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Factors for time optimal motion – Motion Time
Trajectory planning - Optimizing motion Introduction to Robotics

If a motion consists of n successive segments

qj , j ∈ {1 . . . n}

then
uj = tj+1 − tj

is the required time for the motion in the segment qj . The total
motion time is

T =
n−1∑
j=1

uj
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Dynamical constraints for all joints
Trajectory planning - Optimizing motion Introduction to Robotics

The borders for the minimum motion time Tmin for the trajectory
qi

j(t) are defined over dynamical parameters of all joints.

For joint i ∈ {1 . . . n} of trajectory part j ∈ {1 . . .m} this kind of
constraint can be described as follows

|q̇i
j (t)| ≤ q̇i

max (83)
|q̈i

j (t)| ≤ q̈i
max (84)

|mi
j(t)| ≤ mi

max (85)

I mi is the torque (moment of force) for the joint i and can be
calculated from the dynamical equation (motion equation).

I q̇i
max , q̈i

max and mi
max represent the important parameters of

the dynamical capacity of the robot.
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Difficulties for cartesian space trajectory generation
Trajectory planning - Optimizing motion Introduction to Robotics

I Waypoints cannot be realized
I workspace boundaries, object collision, self-collision

I Velocities in the vicinity of singular configurations are too high
I Start and end configurations can be achieved, but there are

different solutions
I ambiguous solutions
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Motion along a line < w0, w1 >
Trajectory planning - Optimizing motion Introduction to Robotics

I The following algorithm should create the smallest set of
waypoints in the joint space under a predefined deviation ε > 0.

I Therefore the deviation between the trajectory q(t) and the
given line < w0,w1 > must be smaller than ε.

Algorithm(Bounded_Deviation)
1. Calculation of possible configurations q0,q1 from w0,w1

with the help of the inverse kinematics.
2. Calculation of the center in joint space:

qm = q0 + q1
2
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Motion along a line < w0, w1 > (cont.)
Trajectory planning - Optimizing motion Introduction to Robotics

3. Calculation of the corresponding point of qm in the workspace
with usage of direct kinematics:

wm = W (qm)

4. Calculation of the center in the workspace:

wM = w0 + w1
2

5. If the deviation ||wm −wM|| ≥ ε, then cancel; else add the wM
as node point between w0 and w1.

6. Recursive application of the algorithm for two new segments
(w0,wM) und (wM ,w1).
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