DER FORSCHUNG \| DER LEHRE \| DER BILDUNG

Introduction to Robotics

Lecture 4

Lasse Einig, Jianwei Zhang
[einig, zhang]@informatik.uni-hamburg.de

University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences
Department of Informatics
Technical Aspects of Multimodal Systems

May 03, 2018

Outline

Introduction
Coordinate systems
Kinematic Equations
Robot Description
Inverse Kinematics for Manipulators
Differential motion with homogeneous transformations
Differential translation and rotation
Differential homogeneous transformation
Differential rotation around the x, y, z axes
Jacobian
Trajectory planning
Trajectory generation
Dynamics
Principles of Walking

Outline (cont.)

Robot Control

Task-Level Programming and Trajectory Generation
Task-level Programming and Path Planning
Task-level Programming and Path Planning
Architectures of Sensor-based Intelligent Systems
Summary
Conclusion and Outlook

Differential motion

$$
p_{\text {end }}
$$

$$
\begin{aligned}
\Delta \boldsymbol{p}(t) & =\boldsymbol{p}(t+\Delta t)-\boldsymbol{p}(t) \\
& =H(t+\Delta t) \boldsymbol{p}_{0}-H(t) \boldsymbol{p}_{0} \\
& =(H(t+\Delta t)-H(t)) \boldsymbol{p}_{0} \\
& =(\Delta H(t)) \boldsymbol{p}_{0}
\end{aligned}
$$

Differential motion (cont.)

H is a 4×4 homogeneous transformation from world-frame to object-frame and \boldsymbol{p}_{0} is given with reference to the world-frame.

Hence it is:

$$
\begin{align*}
\dot{\boldsymbol{p}}(t) & =\lim _{\Delta t \rightarrow 0} \frac{\Delta \boldsymbol{p}(t)}{\Delta t} \tag{30}\\
& =\frac{d H(t)}{d t} \mathbf{p}_{0} \tag{31}\\
& =\left(\frac{d H(t)}{d t} H^{-1}(t)\right) H(t) \mathbf{p}_{\mathbf{0}} \tag{32}\\
& =\left(\frac{d H(t)}{d t} H^{-1}(t)\right) \mathbf{p}(t) \tag{33}
\end{align*}
$$

Derivative of a homogeneous transformation

Consider the homogeneous transformation H

$$
H=\left[\begin{array}{cccc}
h_{11} & h_{12} & h_{13} & h_{14} \\
h_{21} & h_{22} & h_{23} & h_{24} \\
h_{31} & h_{32} & h_{33} & h_{34} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

where each element is a function of a variable t :

$$
d H=\left[\begin{array}{cccc}
\frac{\partial h_{11}}{\partial t} & \frac{\partial h_{12}}{\partial t} & \frac{\partial h_{13}}{\partial t} & \frac{\partial h_{14}}{\partial t} \\
\frac{\partial h_{21}}{\partial t} & \frac{\partial h_{22}}{\partial t} & \frac{\partial h_{23}}{\partial t} & \frac{\partial h_{24}}{\partial t} \\
\frac{\partial h_{31}}{\partial t} & \frac{\partial h_{32}}{\partial t} & \frac{\partial h_{33}}{\partial t} & \frac{\partial h_{34}}{\partial t} \\
0 & 0 & 0 & 1
\end{array}\right] d t
$$

Differential translation and rotation - World-frame

Case 1 The differential translation and rotation are executed with reference to a fixed coordinate frame.

$$
\begin{equation*}
H+d H=\operatorname{Trans}_{d x, d y, d z} \operatorname{Rot}_{k, d \theta} H \tag{34}
\end{equation*}
$$

$\operatorname{Trans}_{d x, d y, d z}$: is a differential translation $d z, d y, d z$ with reference to the fixed coordinate frame.
$\operatorname{Rot}_{k, d \theta}$: is a differential rotation $d \theta$ around an arbitrary vector \mathbf{k} with reference to the fixed coordinate frame.
$d H$ is calculated as follows:

$$
\begin{equation*}
d H=\left(\operatorname{Trans}_{d x, d y, d z} \operatorname{Rot}_{k, d \theta}-I\right) H \tag{35}
\end{equation*}
$$

Differential translation and rotation - Object-frame

Case 2 The differential translation and rotation are executed with reference to a current object coordinate frame:

$$
\begin{equation*}
H+d H=H \operatorname{Trans}_{d x, d y, d z} \operatorname{Rot}_{k, d \theta} \tag{36}
\end{equation*}
$$

$\operatorname{Trans}_{d x, d y, d z}$: is a differential translation $d z, d y, d z$ with reference to the current object coordinate frame.
$\operatorname{Rot}_{k, d \theta}$: is a differential rotation $d \theta$ around an arbitrary vector \mathbf{k} with reference to the current object coordinate frame.
$d H$ is calculated as follows:

$$
\begin{equation*}
d H=H\left(\operatorname{Trans}_{d x, d y, d z} \operatorname{Rot}_{k, d \theta}-I\right) \tag{37}
\end{equation*}
$$

Differential homogeneous transformation

Definition

$$
\Delta=\operatorname{Trans}_{d x, d y, d z} \operatorname{Rot}_{k, d \theta}-I
$$

Thus (35) can be written as

$$
d H=\boldsymbol{\Delta} \cdot H
$$

and (37) can be written as:

$$
d H=H \cdot \Delta
$$

Differential homogeneous transformation (cont.)

The translation by \mathbf{d} is defined as:

$$
\operatorname{Trans}_{\boldsymbol{d}}=\left[\begin{array}{cccc}
1 & 0 & 0 & d_{x} \\
0 & 1 & 0 & d_{y} \\
0 & 0 & 1 & d_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

where \boldsymbol{d} is a differential vector that represents the differential change

$$
d_{x} \vec{i}+d_{y} \vec{j}+d_{z} \vec{k}
$$

$(\vec{i}, \vec{j}, \vec{k}$ are three unit vectors coinciding with $x, y, z)$.

Differential homogeneous transformation (cont.)

The transformation of the rotation with θ around an arbitrary vector $\boldsymbol{k}=k_{x} \vec{i}+k_{y} \vec{j}+k_{z} \vec{k} \quad$ is defined as:

$$
\operatorname{Rot}_{\boldsymbol{k}, \theta}=\left[\begin{array}{cccc}
k_{x} k_{x} V \theta+C \theta & k_{y} k_{x} V \theta-k_{z} S \theta & k_{z} k_{x} V \theta+k_{y} S \theta & 0 \tag{38}\\
k_{x} k_{y} V \theta+k_{z} S \theta & k_{y} k_{y} V \theta+C \theta & k_{z} k_{y} V \theta-k_{x} S \theta & 0 \\
k_{x} k_{z} V \theta-k_{y} S \theta & k_{y} k_{z} V \theta+k_{x} S \theta & k_{z} k_{z} V \theta+C \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

where $C \theta=\cos \theta, S \theta=\sin \theta$
and $V \theta=$ versine $\theta=2 \sin ^{2}\left(\frac{\theta}{2}\right)=1-\cos \theta$.
see R. Paul, Robot Manipulators: Mathematics, Programming, and Control: the Computer Control of Robot Manipulators. Artificial Intelligence Series, MIT Press, 1981, section 1.12 "General Rotation Transformation"

Differential homogeneous transformation (cont.)

With:

$$
\begin{aligned}
& \lim _{\theta \rightarrow 0} \sin \theta \rightarrow d \theta \\
& \lim _{\theta \rightarrow 0} \cos \theta \rightarrow 1 \\
& \lim _{\theta \rightarrow 0} \operatorname{vers} \theta \rightarrow 0
\end{aligned}
$$

(38) can be written as:

$$
\operatorname{Rot}_{\boldsymbol{k}, \theta}=\left[\begin{array}{cccc}
1 & -k_{z} d \theta & k_{y} d \theta & 0 \tag{39}\\
k_{z} d \theta & 1 & -k_{x} d \theta & 0 \\
-k_{y} d \theta & k_{x} d \theta & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Differential homogeneous transformation (cont.)

$$
\begin{align*}
\boldsymbol{\Delta} & =\left[\begin{array}{cccc}
1 & 0 & 0 & d_{x} \\
0 & 1 & 0 & d_{y} \\
0 & 0 & 1 & d_{z} \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{cccc}
1 & -k_{z} d \theta & k_{y} d \theta & 0 \\
k_{z} d \theta & 1 & -k_{x} d \theta & 0 \\
-k_{y} d \theta & k_{x} d \theta & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]-\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cccc}
0 & -k_{z} d \theta & k_{y} d \theta & d_{x} \\
k_{z} d \theta & 0 & -k_{x} d \theta & d_{y} \\
-k_{y} d \theta & k_{x} d \theta & 0 & d_{z} \\
0 & 0 & 0 & 0
\end{array}\right]
\end{align*}
$$

Differential rotation around the x, y, z axes

$$
\begin{align*}
R_{x, \psi} & =\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & C \psi & -S \psi & 0 \\
0 & S \psi & C \psi & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \tag{42}\\
R_{y, \theta} & =\left[\begin{array}{cccc}
C \theta & 0 & S \theta & 0 \\
0 & 1 & 0 & 0 \\
-S \theta & 0 & C \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \tag{43}\\
R_{z, \phi} & =\left[\begin{array}{cccc}
C \phi & -S \phi & 0 & 0 \\
S \phi & C \phi & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \tag{44}
\end{align*}
$$

Differential rotation around the x, y, z axes (cont.)

Considering the differential change:
$\sin \theta \rightarrow \delta \theta$ and
$\cos \theta \rightarrow 1$

$$
\begin{align*}
R_{x, \delta_{x}} & =\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & -\delta_{x} & 0 \\
0 & \delta_{x} & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \tag{45}\\
R_{y, \delta_{y}} & =\left[\begin{array}{cccc}
1 & 0 & \delta_{y} & 0 \\
0 & 1 & 0 & 0 \\
-\delta_{y} & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \tag{46}\\
R_{z, \phi} & =\left[\begin{array}{cccc}
1 & -\delta_{z} & 0 & 0 \\
\delta_{z} & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \tag{47}
\end{align*}
$$

Omitting terms of the 2nd order, one gets:

$$
R_{z, \delta_{z}} R_{y, \delta_{y}} R_{x, \delta_{x}}=\left[\begin{array}{cccc}
1 & -\delta_{z} & \delta_{y} & 0 \tag{48}\\
\delta_{z} & 1 & -\delta_{x} & 0 \\
-\delta_{y} & \delta_{x} & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Through comparison of (39) with (48) one determines:

$$
\begin{align*}
& k_{x} d \theta=\delta_{x} \tag{49}\\
& k_{y} d \theta=\delta_{y} \tag{50}\\
& k_{z} d \theta=\delta_{z} \tag{51}
\end{align*}
$$

Equation (41) can be rewritten as:

$$
\boldsymbol{\Delta}=\left[\begin{array}{cccc}
0 & -\delta_{z} & \delta_{y} & d_{x} \\
\delta_{z} & 0 & -\delta_{x} & d_{y} \\
-\delta_{y} & \delta_{x} & 0 & d_{z} \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Definition of differential transformation
$\boldsymbol{\Delta}$ is therefore fully defined by the vectors \boldsymbol{d} and $\boldsymbol{\delta}$.
[1] K. Fu, R. González, and C. Lee, Robotics: Control, Sensing, Vision, and Intelligence.
McGraw-Hill series in CAD/CAM robotics and computer vision, McGraw-Hill, 1987.
[2] R. Paul, Robot Manipulators: Mathematics, Programming, and Control: the Computer Control of Robot Manipulators. Artificial Intelligence Series, MIT Press, 1981.
[3] J. Craig, Introduction to Robotics: Pearson New International Edition: Mechanics and Control.
Always learning, Pearson Education, Limited, 2013.
[4] J. F. Engelberger, Robotics in service. MIT Press, 1989.
[5] W. Böhm, G. Farin, and J. Kahmann, "A Survey of Curve and Surface Methods in CAGD," Comput. Aided Geom. Des., vol. 1, pp. 1-60, July 1984.
[6] J. Zhang and A. Knoll, "Constructing Fuzzy Controllers with B-spline Models - Principles and Applications," International Journal of Intelligent Systems, vol. 13, no. 2-3, pp. 257-285, 1998.
[7] M. Eck and H. Hoppe, "Automatic Reconstruction of B-spline Surfaces of Arbitrary Topological Type," in Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH '96, (New York, NY, USA), pp. 325-334, ACM, 1996.
[8] M. C. Ferch, Lernen von Montagestrategien in einer verteilten Multiroboterumgebung. PhD thesis, Bielefeld University, 2001.
[9] J. H. Reif, "Complexity of the Mover's Problem and Generalizations - Extended Abstract," Proceedings of the 20th Annual IEEE Conference on Foundations of Computer Science, pp. 421-427, 1979.
[10] J. T. Schwartz and M. Sharir, "A Survey of Motion Planning and Related Geometric Algorithms," Artificial Intelligence, vol. 37, no. 1, pp. 157-169, 1988.
[11] J. Canny, The Complexity of Robot Motion Planning. MIT press, 1988.
[12] T. Lozano-Pérez, J. L. Jones, P. A. O'Donnell, and E. Mazer, Handey: A Robot Task Planner. Cambridge, MA, USA: MIT Press, 1992.
[13] O. Khatib, "The Potential Field Approach and Operational Space Formulation in Robot Control," in Adaptive and Learning Systems, pp. 367-377, Springer, 1986.
[14] J. Barraquand, L. Kavraki, R. Motwani, J.-C. Latombe, T.-Y. Li, and P. Raghavan, "A Random Sampling Scheme for Path Planning," in Robotics Research (G. Giralt and G. Hirzinger, eds.), pp. 249-264, Springer London, 1996.
[15] R. Geraerts and M. H. Overmars, "A Comparative Study of Probabilistic Roadmap Planners," in Algorithmic Foundations of Robotics V, pp. 43-57, Springer, 2004.
[16] K. Nishiwaki, J. Kuffner, S. Kagami, M. Inaba, and H. Inoue, "The Experimental Humanoid Robot H7: A Research Platform for Autonomous Behaviour," Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 365, no. 1850, pp. 79-107, 2007.
[17] R. Brooks, "A robust layered control system for a mobile robot," Robotics and Automation, IEEE Journal of, vol. 2, pp. 14-23, Mar 1986.
[18] M. J. Mataric, "Interaction and intelligent behavior.," tech. rep., DTIC Document, 1994.
[19] M. P. Georgeff and A. L. Lansky, "Reactive reasoning and planning.," in AAAl, vol. 87, pp. 677-682, 1987.

Bibliography (cont.)

[20] J. Zhang and A. Knoll, Integrating Deliberative and Reactive Strategies via Fuzzy Modular Control, pp. 367-385. Heidelberg: Physica-Verlag HD, 2001.
[21] J. S. Albus, "The nist real-time control system (rcs): an approach to intelligent systems research," Journal of Experimental \& Theoretical Artificial Intelligence, vol. 9, no. 2-3, pp. 157-174, 1997.
[22] A. Meystel, "Nested hierarchical control," 1993.
[23] G. Saridis, "Machine-intelligent robots: A hierarchical control approach," in Machine Intelligence and Knowledge Engineering for Robotic Applications (A. Wong and A. Pugh, eds.), vol. 33 of NATO ASI Series, pp. 221-234, Springer Berlin Heidelberg, 1987.
[24] T. Fukuda and T. Shibata, "Hierarchical intelligent control for robotic motion by using fuzzy, artificial intelligence, and neural network," in Neural Networks, 1992. IJCNN., International Joint Conference on, vol. 1, pp. 269-274 vol.1, Jun 1992.

Bibliography (cont.)

[25] R. C. Arkin and T. Balch, "Aura: principles and practice in review," Journal of Experimental \& Theoretical Artificial Intelligence, vol. 9, no. 2-3, pp. 175-189, 1997.
[26] E. Gat, "Integrating reaction and planning in a heterogeneous asynchronous architecture for mobile robot navigation," ACM SIGART Bulletin, vol. 2, no. 4, pp. 70-74, 1991.
[27] L. Einig, Hierarchical Plan Generation and Selection for Shortest Plans based on Experienced Execution Duration. Master thesis, Universität Hamburg, 2015.
[28] J. Craig, Introduction to Robotics: Mechanics \& Control. Solutions Manual.
Addison-Wesley Pub. Co., 1986.
[29] H. Siegert and S. Bocionek, Robotik: Programmierung intelligenter Roboter: Programmierung intelligenter Roboter. Springer-Lehrbuch, Springer Berlin Heidelberg, 2013.

Bibliography (cont.)

[30] R. Schilling, Fundamentals of robotics: analysis and control. Prentice Hall, 1990.
[31] T. Yoshikawa, Foundations of Robotics: Analysis and Control. Cambridge, MA, USA: MIT Press, 1990.
[32] M. Spong, Robot Dynamics And Control. Wiley India Pvt. Limited, 2008.

