

MIN Faculty Department of Informatics

Playing Piano with the Shadow Dexterous Hand

Benjamin Scholz

University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems

09. July 2019

1. Motivation

2. Related Work

Robots Designed to Play Piano Playing Piano in Simulation Comparison to Human Performance

3. Basics

MIDI

4. Implementation

Keyboard Model & Localization First Prototype Fast/Predictable Motions timing Pressing Keys Thumb Pipeline

Staccato and Legato

5. Experiments

Velocity Timing

- 6. Future Work
- 7. References

Motivation

Motivation

elated Work

Implementa

References

- Shadow Hand good fit for instruments
- challenging even for humans
- piano is versatile
- using MIDI feedback
- what is possible?

Figure: PR2 in front of the keyboard.

Related Work: Robots Designed to Play Piano

ementation

Experime

Future Wo

References

- fingers positioned directly over keys [1]
- movement restricted on one axis (rail/motor stage) [2] [3]

Figure: piano playing robot hands restricted on a motor stage [2]

Related Work: Robots Designed to Play Piano

lotivation

lementation

ation

Future '

References

passive hand (no motors) [4]

Figure: the passive hand playing piano [4]

Related Work: Playing Piano in Simulation

tivation

Implementa

Exper

ts Fu

References

record human motions, generate motions in simulation [5]

Figure: markers used to record human motions [5]

Figure: generated motions in simulation [5]

Related Work: Comparison to Human Performance

Implement

ation

Experime

Future Wo

References

compare human performance with robotic hand [6]

Figure: the ACT hand hitting a key [6]

Musical Instrument Digital Interface

Basics

- possibility to connect to PC
- trigger sound in software synthesizer
- relevant data:
 - key on/key off
 - velocity

Implementation

- urdf model
- frame for every key

Figure: Model of the keyboard.

- **Notivation**
- elated Work

Implementatio

Experin

Future

References

- visual methods can be inaccurate due to calibration errors
- better solution: physical method
- mannequin mode on PR2 (http://wiki.ros.org/pr2_mannequin_mode)
- lead finger to push down key and record data:
 - which key: MIDI data
 - finger pose: tf (http://wiki.ros.org/tf)

Implementation

Figure: Video of the localization process.

- Implementation

- known:
 - position of two keys
 - distance from keys to origin in model
- trigonometry to calculate position of piano's origin
- difference of key positions to compute orientation

Figure: Using the difference of the keys position to determine the orientation.

Implementation: First Prototype

Mation

References

- use only index finger
- bio_ik [7] for inverse kinematics:
 - pose goal above key
 - goal in key, variable range for position along key
- plan and execute trajectories sequentially

Figure: Playing piano with one finger.

Implementation: First Prototype

References

- planning between presses takes time
- solution: plan all trajectories beforehand, connect them
- arm movements between keys can be slow
- solution: adjust joint limits, use different planner

- Motivation
- Related Work

Implement

lementation

xperiments

ıre Work

References

- RRT-Connect -> randomization [8]
- arm movements not complex
- use point to point joint space motion planning instead (https://github.com/PilzDE/pilz_industrial_motion)

Figure: point to point motion planning. Retrieved from https://github.com/PilzDE/pilz_industrial_motion/blob/ melodic-devel/pilz_trajectory_generation/doc/figure/ptp.

png

- Motivation Related Work Basics Implementation Experiments Future Work Reference
 - blend 2 trajectories, so movement does not stop
 - blending trajectory for connection:
 - $x(s) = x_1(s) + \alpha(s)(x_2(s) x_1(s))$
 - ► x₁, x₂: trajectories
 - ▶ $s \in [0, 1]$: normalized time parameter
 - α(s) ∈ [0, 1] for s ∈ [0, 1]:
 polynomial function that ensures smooth increase, boundary
 conditions

Motivation	Related Work	Basics	Implementation	Experiments	Future Work	References

blending radius

Figure: Blending radius to connect trajectories. Retrieved from https://github.com/PilzDE/pilz_industrial_motion/blob/ melodic-devel/pilz_trajectory_generation/doc/figure/blend_ radius.png

Ρ4

Related W

rk Basi

Implementation

Experiment

iture Work

References

- trajectory for pressing key is more fluent
- drawback: no control over timing
- solution: scale trajectory segments to fit note timing

- musical notes determine timing
- length between hitting two keys

Figure: Whole note to sixteenth note. Retrieved from https://wsfcs.learning.powerschool.com/8142864827/ 5thgrade/cms_page/view/24925885

Implementation: timing

otivation Rel

- segment: lifting the finger, moving to next key and pressing it
- determine length of whole note:
 - largest value for whole_note = segment_duration
 note divisor
- scale trajectory time parameterization to fit note length
- scale velocity and acceleration

Implementation

- notes can be hit on roughly the right time
- drawback: no control how keys are pressed
- solution: training data to learn pressing keys

References

- MIDI velocity depends on how fast key is hit
- playing loud vs. quiet

otivation Relate

Future

References

- collecting training data
- situation at start:
 - finger over key
 - joint 2 and joint 3 at 0 (extended finger)
- to move finger:
 - use trajectory controller with single target
 - varying: joint 2, joint 3, time_from_start
- recorded MIDI data: duration to signal, velocity

Figure: Joints used to press the keys.

Implementation

Figure: joint positions and time_from_start to velocity

- input: MIDI velocity
- output: joint 2, joint 3, time_from_start
- inverse problem/multivalued function

Figure: Example of multivalued function. Retrieved from https://en.wikipedia.org/wiki/Multivalued_function#/media/ File:Multivalued_function.svg

- conventional regression not able to represent function
- learns average of target value

Figure: Attempt to use neural network regression to solve an inverse problem. Retrieved from https://www.katnoria.com/mdn/

- vation Re
- lated Work

Implementation

Experiment

Future

References

- solution: mixture density networks (MDN) [9]
- use neural network to learn parameters of Gaussian mixture model
- learn the underlying probability distribution
- parameters:
 - number Gaussians
 - number of hidden nodes
- tensorflow [10] with keras-mdn-layer
 (https://github.com/cpmpercussion/keras-mdn-layer)

l				0 ,				
	Motivation	Related Work	Basics	Implementation	Experiments	Future Work	References	
	► inpu	ıt: velocity						
	🕨 outp	out for each	Gaussi	an:				
	► 3	3 means (π_i)						
	▶ 3	3 variances (μ_i)					
		1 weight (σ_i))					
	🕨 outp	out from sai	mpling	from Gaussia	an mixture	model:		
	ر 🕨	ioint 2						
	J	ioint 3						
		time_from_s	start					

		Implementation		

Figure: predicted joint positions and time_from_start from velocity

Implementation

Figure: Comparison of recorded data (top) and predicted values (bottom).

Implementation

- hitting keys takes differently long
- solution: learn duration to signal

Figure: joint positions and time_from_start to duration

- predict duration from sending command till hitting the key
- neural network regression
- ▶ input:
 - ▶ joint 2
 - ▶ joint 3
 - time_from_start
- output:
 - duration until signal
- using TensorFlow [10] with keras https://github.com/keras-team/keras

		Implementation		

Figure: *time_from_start* to duration until signal with static joint positions

		Implementation		

Figure: joint 2 + joint 3 to duration until signal with static joint positions

Implementation

Future V

References

- thumb has different joints
- same method to learn, just 1 joint used
- harder to reach keys

Implementation

Figure: Video of thumb pressing keys.

Notivation

References

- alternative hand pose with better reach
- also useful to play white and black keys

Figure: Alternative pose for hand.

Motivatio

Related Work

Implementation

mentation

periments

Future Wor

References

Figure: Video of thumb pressing keys with alternative hand pose.

Implementation: Pipeline

Motivation

Implementation

ntation E

eriments

uture Work

References

- putting everything together
- interface to press keys:
 - keys
 - fingers
 - velocities
 - press duration
 - note timing (whole note, 1/2 note etc.)

Implementation: Pipeline

Motivation Rela

lated Work

Implementation

Experiments

Future Work

References

- keys and fingers:
 - bio_ik to get arm pose with fingers over keys
 - create trajectory to move fingers above keys (no pressing yet)
- velocities:
 - predict presses for given velocities
 - add presses and lifts to previously created trajectories
- press duration:
 - add pause after pressing
- note timing:
 - use prediction of press durations and segment lenghts for scaling

Staccato: short duration, detached from following note

Legato: smoothly connected

Figure: Staccato notes. (Retrieved from https://en.wikipedia. org/wiki/Staccato)

Figure: Legato notes. (Retrieved from https://en.wikipedia.org/wiki/Legato)

Figure: Video of explanation of staccato and legato. (Retrieved from https://www.youtube.com/watch?v=N3XDpc2WBeI)

 legato requires next finger to press, while previous finger is still lifting

Implementation

- use bio_ik to keep both fingers over keys
 - specific goal type to be more flexible with orientation
- use press duration parameter to keep finger down longer

Notivation

elated Work

Implementation

Experimen

Future

References

Figure: Video of playing staccato.

Notivation

elated Work

Implementation

Experime

Future

References

Figure: Video of playing legato.

Experiments: Velocity

- start with target velocity of 1
- increase target velocity by 5 up to 70
- human for comparison

Experiments: Velocity

Experiments

Figure: Video of the velocity experiment.

Experiments

Figure: Result of the robot pressing keys.

		Experiments	

Figure: Result of the human pressing keys.

Notivation

elated Work

Implemer

on Experiments

References

- play keys with and without scaling
- compare results

Experiments

Figure: Video of hitting keys without trajectory scaling.

Experiments

Figure: Video of hitting keys with trajectory scaling.

		Experiments	

Figure: duration between hitting keys without trajectory scaling

Motivation	Related Work	Basics	Implementation	Experiments	Future Work	References

Figure: duration between hitting keys with trajectory scaling

Related Work

Figure: Video of failing to hit correct keys.

- increase accuracy:
 - use BioTac sensors
 - use MIDI feedback
- integration
 - mix both finger poses
 - play black keys with alternative pose
 - legato with thumb
- play with increased speed

References

Related Wo

- S. Sugano and I. Kato, "Wabot-2: Autonomous robot with dexterous finger-arm-finger-arm coordination control in keyboard performance," in *Proceedings. 1987 IEEE International Conference on Robotics and Automation*, vol. 4, pp. 90–97, IEEE, 1987.
- J.-C. Lin, H.-H. Huang, Y.-F. Li, J.-C. Tai, and L.-W. Liu, "Electronic piano playing robot," in 2010 International Symposium on Computer, Communication, Control and Automation (3CA), vol. 2, pp. 353–356, IEEE, 2010.
- [3] D. Zhang, J. Lei, B. Li, D. Lau, and C. Cameron, "Design and analysis of a piano playing robot," in 2009 International Conference on Information and Automation, pp. 757–761, IEEE, 2009.

References (cont.)

tivation

ed Work

- [4] J. A. E. Hughes, P. Maiolino, and F. Iida, "An anthropomorphic soft skeleton hand exploiting conditional models for piano playing," *Science Robotics*, vol. 3, no. 25, 2018.
- K. Yamamoto, E. Ueda, T. Suenaga, K. Takemura, J. Takamatsu, and T. Ogasawara, "Generating natural hand motion in playing a piano," in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3513–3518, IEEE, 2010.
- [6] A. Zhang, M. Malhotra, and Y. Matsuoka, "Musical piano performance by the act hand," in 2011 IEEE International Conference on Robotics and Automation, pp. 3536–3541, IEEE, 2011.

References (cont.)

tivation

- [7] P. S. Ruppel, "Performance optimization and implementation of evolutionary inverse kinematics in ROS," Master's thesis, Universität Hamburg, Germany, 2017.
- [8] J. J. Kuffner and S. M. LaValle, "Rrt-connect: An efficient approach to single-query path planning," in *Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference* on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), vol. 2, pp. 995–1001 vol.2, April 2000.
- [9] C. M. Bishop, "Mixture density networks." 1994.

References (cont.)

otivation

[10] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, "TensorFlow: Large-scale machine learning on heterogeneous systems," 2015. Software available from tensorflow.org.