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Overview
Learning manipulation with multi-fingered robot hands from human demonstration

1. Hardware setup
2. Motion tracking
3. Pneumatic robot control
4. Learning from humand demonstration
5. Learning + kinodynamic online trajectory optimization
6. Videos
7. Future work
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CML Demo in September
Learning manipulation with multi-fingered robot hands from human demonstration

I Open “medicine bottle”
I Humanoid robot hand
I Learning from human demonstration
I Machine learning / neural networks
I Crossmodal Learning
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Hardware setup
Hardware setup Learning manipulation with multi-fingered robot hands from human demonstration

I KUKA LWR arm, pneumatic C5 hand, Phasespace Impulse X2
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Phasespace
Motion tracking Learning manipulation with multi-fingered robot hands from human demonstration

I Phasespace Impulse X2
I Line Cameras
I High FPS, up to 960 Hz
I Output:

I 3D marker positions
I 6D rigid body poses
I 1D marker positions on line sensors

I 3D positions inaccurate
I Custom reconstruction
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Tracking
Motion tracking Learning manipulation with multi-fingered robot hands from human demonstration
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Tracking glove and bottle
Motion tracking Learning manipulation with multi-fingered robot hands from human demonstration
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Pneumatic Robot Control
Pneumatic robot control Learning manipulation with multi-fingered robot hands from human demonstration

Previous
I Position error => Proportional controller => Valve commands
I Hardware support on Shadow hand valve boards
I Unstable under contact
New
I Position error => P controller => Forces
I Forces => P controller => Valve commands
I Current state-of-the-art method
I Stable under contact
I No hardware support, run in software
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Hand / Bus System
Pneumatic robot control Learning manipulation with multi-fingered robot hands from human demonstration

Previous
I Hardware: PC => Ethernet => Second PC => Parallel port

=> Converter => CAN bus => Shadow hand
I Software Software: ROS + network client + network server +

Shadow software
I Too slow and unreliable to run controllers in software

New
I Hardware: PC => USB => CAN bus
I Software: Roscontrol + custom driver
I Fast enough to run controllers in software
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Learning from humand demonstration
Learning from humand demonstration Learning manipulation with multi-fingered robot hands from human demonstration

Sub-tasks
I Record demonstrations (see above)
I Learning
I Transfer from human to robot

I First record demonstrations and pre-process data, then learn
I How to combine learning and transfer?
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Learning + Transfer, 1/5, Retargeting + Policy Cloning
Learning from humand demonstration Learning manipulation with multi-fingered robot hands from human demonstration

I First map marker positions to matching robot states (IK or
trajectory optimization), then learn robot joint angles

I Problem: Redundancies
I Problem: Accurate non-linear regression using neural networks

I Policy cloning: state2 = policy(current_state, observations)
I Problem: unstable, errors accumulate over time, but network

has only been trained on single time steps
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Learning + Transfer, 2/5, Learned Transfer
Learning from humand demonstration Learning manipulation with multi-fingered robot hands from human demonstration

I Also learn human-to-robot mapping from demonstrations
I E.g. robot assumes random poses, human imitates them, invert

and learn human-to-robot mapping through supervised learning
I Popular approach in literature
I Problem: requires huge amounts of training data
I Problem: usually inaccurate
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Learning + Transfer, 3/5, Reinforcement Learning
Learning from humand demonstration Learning manipulation with multi-fingered robot hands from human demonstration

I End-to-end reinforcement learning
I Input marker positions, learn joint angles or velocities
I Network could learn redundancy resolution
I Rewards across multiple time steps => robust policy
I Could improve policy autonomously
I Reinforcement learning currently slow and inefficient (even in

simulation), good differentiable robot simulators not (yet)
available (future work?)

I Network would have to learn technical details about a specific
robot

I Physics equations already exist / why learn them?
I Want to focus on (higher-level) manipulation problem
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Learning + Transfer, 4/5, Inverse Optimal Control
Learning from humand demonstration Learning manipulation with multi-fingered robot hands from human demonstration

I Learn a cost function + trajectory optimization
I Assume that human actions are close-to-optimal according to a

reward function, try to learn reward function
I Usually requires accurate models of humans and objects
I "Inverse Reinforcement Learning"
I Often solved using (inefficient) reinforcement learning methods

("inverse reinforcement learning")
I Ill-posed problem: many different reward functions could

explain a specific action
I Strong regularization / sparsity
I How to represent the cost function?
I Neural network = very general but many variables, hard to find a

meaningful cost function from few examples
I Huge number of demonstrations usually required for non-trivial

tasks
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Learning + Transfer, 5/5
Learning from humand demonstration Learning manipulation with multi-fingered robot hands from human demonstration

I Simplified differentiable template model: 5 points = finger tip
positions, learn 3D cartesian velocity commands

I Online trajectory optimization
I Compromise between 3 and 4: Position goals = simplified

template model (3) or learned cost function (4)
I Less ill-posed than general IRL, differentiable, can be solved

efficiently
I Does not have to learn technical details about a specific robot,

network can focus on high-level aspects related to
manipulation, learned policies mostly robot-independent

I Consider multiple time steps and use differentiable model to
propagate gradients back in time to improve robustness (s.
option 1)

I Prediction + trajectory optimization for redundancy resolution
I Fast trajectory optimizer needed, online, many DOF: 20 (hand)

+ 7 (arm)
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Architecture
Learning + kinodynamic online trajectory optimization Learning manipulation with multi-fingered robot hands from human demonstration

Philipp Ruppel 16 / 36



Training
Learning + kinodynamic online trajectory optimization Learning manipulation with multi-fingered robot hands from human demonstration

I Train with simplified dynamic template model on complete
trajectories

I Minimize mean absolute error between predicted trajectories
and demonstrations

I Reset robot states to recorded tracking data at randomly
selected time steps
I Many resets = faster learning, but less stable policy
I How to choose reset probability?
I Per-trajectory reset density = c rand()

I Per-sample reset probability = rand() ∗ density
I => Parameter choice simple (exponential, from almost zero to

almost 1)
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Pose Invariance and Augmentation
Learning + kinodynamic online trajectory optimization Learning manipulation with multi-fingered robot hands from human demonstration

I Input: relative finger-to-object vectors
=> position invariance

I Random rotations (augmentation)
=> rotation invariance

I Random hand/object offsets (augmentation)
=> Learn to control hand pose relative to object
=> Generalize approach motions

I Arbitrary random mutations (augmentation)
=> Learn to control finger poses relative to each other

I Per-trajectory random scaling: c rand()

I Per-sample offsets: gaussian() ∗ scaling
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Learning
Learning + kinodynamic online trajectory optimization Learning manipulation with multi-fingered robot hands from human demonstration
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Learning
Learning + kinodynamic online trajectory optimization Learning manipulation with multi-fingered robot hands from human demonstration

Philipp Ruppel 20 / 36



Learning
Learning + kinodynamic online trajectory optimization Learning manipulation with multi-fingered robot hands from human demonstration
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Trajectory Optimization
Learning + kinodynamic online trajectory optimization Learning manipulation with multi-fingered robot hands from human demonstration

I Online
I Kinematics + dynamics
I Many degrees of freedom: 20 (hand) + 7 (arm)
I Doing it efficiently - interesting problem
I Custom trajectory optimizer
I Goal programming interface

I PositionGoal (finger tips)
I MinimalAccelerationGoal (smooth trajectories)
I CollisionAvoidanceGoal (2x: hard + soft w. padding)
I etc.
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Trajectory Optimization
Learning + kinodynamic online trajectory optimization Learning manipulation with multi-fingered robot hands from human demonstration

I Sequential Quadratic Programming
I Locally approximate non-linear trajectory optimization problem

via linearly constrained quadratic equations
I Solve QP (many existing methods available)
I Repeat until convergence
I One of the standard methods for solving non-linear problems

I Several different solvers
I Interior-point method (usually fastest, as expected)
I Penalty method (ok for simple problems)
I Active-set method (interesting but in practice often slow)
I Projected Gauss-Seidel (sometimes faster for highly

under-determined problems)
I EnsembleQP: Run different methods in parallel, take first valid

solution
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Videos
Videos Learning manipulation with multi-fingered robot hands from human demonstration

Video
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Videos
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Videos
Videos Learning manipulation with multi-fingered robot hands from human demonstration

Video
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Future Work - Bottle Opening
Future work Learning manipulation with multi-fingered robot hands from human demonstration

I Try new recurrent network on robot
I How fast can the robot do it?
I Object detection
I Different bottle types and sizes
I Different strategies?
I Collect data from different test subjects
I Crossmodal learning, instrumented objects, tactile glove
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Tactile Sensing
Future work Learning manipulation with multi-fingered robot hands from human demonstration

I Tactile sensor
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Tactile Sensing
Future work Learning manipulation with multi-fingered robot hands from human demonstration

I Torque sensor, motor, tactile matrix
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Tactile Sensing
Future work Learning manipulation with multi-fingered robot hands from human demonstration

I Tactile matrix
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Tactile Sensing
Future work Learning manipulation with multi-fingered robot hands from human demonstration

I Tactile glove prototype
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Future Work - Trajectory Optimization
Future work Learning manipulation with multi-fingered robot hands from human demonstration

I Dual interior points for collision prevention
I Interior-point methods known for decades
I Currently popular robot trajectory optimizers often use

penalty-like formulations
I Dual interior points = simultaneously solve for objectives and

constraint feasibility, starting point does not have to be feasible
I Weights AND hard priorities

I Collisions > position goals > smoothness
I Special contact models for planning (e.g. Contact Invariant

Optimization, results currently unrealistic + bad scalability)
I Exploit problem structure

I Hessian (H) / model (M) and problem (P): H = MT PT P M
I P: usually O(n) sparse, maybe pre-multiply
I M: worst case O(n2) for n links but sparse O(n) internal

structure (kinematic tree)
I Auto-diff through kinematic tree inefficient (rotations)
I High-performance matrix replacement
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Future Work - Learning From Simulation
Future work Learning manipulation with multi-fingered robot hands from human demonstration

I Discover manipulation strategies autonomously
I Standard RL slow
I Run in simulation, still slow
I RL = useful for unknown environments
I Simulated environments exactly known

(even with pseudo-random "domain randomization")
I Simulation + learning = single well-defined optimization

problem (vs. RL algorithm), but non-convex
I Supervised learning = usually convex? (exception: sparse

regularization)
I Many learning problems in robotics hard-to-solve non-convex

optimization problems (manipulation + locomotion)
I Convex = "easy", non-convex = "hard"
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Future Work - Learning From Simulation
Future work Learning manipulation with multi-fingered robot hands from human demonstration

I Can we convexify robot simulation?
I Quite complex, full and provable convexification unlikely
I Find something that works in practice
I In machine learning: neural networks not provably convex, but

can be trained through convex optimization in practice
I Soft contact models
I Relax physical consistency, simultaneously optimize for rewards

and physical consistency
I Walking = fly from A to B, then learn to move legs via soft

ground model = learning to walk via convex optimization !!!
I Manipulation?
I Soft contact models + physical consistency relaxation -> solve

efficiently through convex optimization
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