

MIN Faculty Department of Informatics

Creating a pick and place solution for 3D printers Bachelor Thesis

Felix Kolwa

University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems

2.7.2019

CV based PNP

CV Pipeline

Festing

Outlook

- 1. Motivation
- 2. CV based PNP
- 3. CV Pipeline
- 4. Testing
- 5. Outlook

- 3D printers are getting more popular and affordable
- Great similarities between 3 axis 3D printers and PNP machines
- A lack of established soft- and hardware to combine both

SMT PNP Machines

based PNP

CV Pipeline

Testing

Outlook

Figure: DIY PNP machine designed by anthony.webb. [hac19]

SMT PNP Machines

Motivation

V based PNP

CV Pipeline

Testing

Outlook

Figure: Commercial Pick and Place Machine by Essemtec. [ess19]

Motivation CV based PNP CV Pipeline Testing Outlook

Requirements

- Cameras to see the components
- A gripper to pick and place the components
- A tray to hold the components

Hardware Setup

Motivation

V Pipeline

Festing

Outlook

Figure: Modified Kühling&Kühling Reprap 3D printer.

Hardware Setup

Motivation

CV based PNP

CV Pipeline

Figure: The cameras.

Testing

Outlook

Figure: The vacuum gripper.

Testing

Outlook

Figure: The component tray.

The existing Computer Vision Pipeline

The existing Computer Vision Pipeline

Pipeline output: Good case

Motivation	CV based PNP	CV Pipeline	Testing	Outlook

(a) Detected position

(b) Detected rotation

Motivation	CV based PNP	CV Pipeline	Testing	Outlook

(a) Detected position

(b) Detected rotation

Room for improvement

CV Pipeline

Festing

Outlook

- Dependent on manual configuration
 - Threshold values
 - Color range for background masking
 - Conditions change with components
- Imprecise bounding rectangles
 - Position offsets
 - Rotation offsets

The new Computer Vision Pipeline

vation CV based PNP

CV Pipeline

Testing

Outlook

Goals

- Improve reliability
 - Automate manually configured values
- Improve precision
 - Replace bounding rectangles
 - Implement shape detection

Picking: Example output

Motivation

Testing

Outlook

Template matching

Resource Image

Result Image

Figure: Simple template matching [tem19]

Pro:

- Easy to Implement
- Fast

Contra:

- No scaling or rotation
- Needs precise image data for successful matching

CV Pipeline

Testing

Outlook

RANSAC RANdom SAmple Consensus

Figure: Feature Matching+Homography [ope19]

Pro:

- Well documented
- Efficient for calculating homography between two images

Contra:

 Most implementations relying on *non-free* algorithms

/ based PNP

CV Pipeline

Testing

Outlook

Generalized Hough Transform

Pro:

- Robust to partial or slightly deformed shapes
- Robust to the presence of additional structures
- Tolerant to noise
- Can find multiple occurences of a shape during the same processing pass

Contra:

- Computation intensive
- Memory intensive
- Slow

Generalized Hough Transform

Generalized Hough Transform

CV

CV Pipeline

Testing

Outlook

Figure: Matched template

Picking: Template source

Motivation	CV based PNP	CV Pipeline	Testing	Outlook

```
<part id="2" name="ATTiny2">
 <position box="2"/>
 <size height="1.87" width="5.38"/>
 <shape>
   <point x="-2.6" y="-2.6"/>
   <point x="-2.6" y="2.6"/>
   <point x="2.6" v="2.6"/>
   <point x="2.6" y="-2.6"/>
 </shape>
 <pads>
   <pad x1="-2.155" y1="-4.0" x2="-1.655" y2="-2.054"/>
   <pad x1="-0.895" y1="-4.0" x2="-0.395" y2="-2.054"/>
   <pad x1="0.375" y1="-4.0" x2="0.875" y2="-2.054"/>
   <pad x1="1.645" v1="-4.0" x2="2.145" v2="-2.054"/>
   <pad x1="-2.155" y1="2.054" x2="-1.655" y2="4.0"/>
   <pad x1="-0.885" y1="2.054" x2="-0.385" y2="4.0"/>
   <pad x1="0.385" y1="2.054" x2="0.885" y2="4.0"/>
   <pad x1="1.655" y1="2.054" x2="2.155" y2="4.0"/>
 </pads>
 <destination x="20" v="10" z="0" orientation="45"/>
</part>
```

(a) G-Code

(b) Template output

Picking: Example output

Motivation	CV based PNP	CV Pipeline	Testing	Outlook

(a) Matched template exported from Eagle CAD

(b) Matched template based on rough approximation

Testing

Outlook

Figure: A 3D printed calibration cube [thi19]

		Testing	

Figure: The paper template

Testing

Outlook

Figure: The paper template attached to the print bed

The components

Motivation

CV based PNP

CV Pipeline

Testing

Outlook

Figure: The chosen components

Outlook

Test structure

Running the test

Motivation

V based PNP

Testing

Outlook

Figure: A PNP test in progress

Felix Kolwa - Creating a pick and place solution for 3D printers

Motivation CV based PNP

CV Pipeline

Testing

Outlook

Motivation	CV based PNP	CV Pipeline	Testing	Outlook
			2	
	4		F	
	8. 18°			

Figure: 90 degree rotation offset

Figure: Bad template matching

Felix Kolwa - Creating a pick and place solution for 3D printers

Testing

Testing

Outlook

Figure: Modified template

CV based PNP

CV Pipeline

Testing

Outlook

Further planning

- Improve template matching
- More precise templates
- Continue testing

Outlook

Thank you for your time!

Questions?

CV based PNP

Testin

Outlook

- [Bal81] D. H. Ballard., Generalizing the hough transform to detect arbitrary shapes., Pattern Recognition, 1981, pp. 13(2):111–122.
- [cha17] Visual servoing based object pick and place manipulation system., Shawn X. Wang (editor) Current Trends in Computer Science and Mechanical Automation Vol.2: Selected Papers from CSMA2016, 2017, pp. 334—-341.
- [ess19] Essemtec, https://essemtec.com/en/products/ pick-and-place/puma/, Accessed: 01.07.2019.
- [hac19] A diy pnp machine designed by anthony webb, https://hackaday.io/project/ 9319-diy-pick-and-place, Accessed: 01.07.2019.

Outlook

[MCA03] Ulrich M., Steger C., and Baumgartner. A., Real-time object recognition using a modified generalized hough transform., Pattern Recognition, 2003, pp. 36(11):2557–2570.

[oct19a] Octopnp - octoprint plugin for camera based pick 'n place operations, https://github.com/platsch/OctoPNP, Accessed: 01.07.2019.

- [oct19b] Octoprint web interface for your 3d printer, https://octoprint.org/, Accessed: 01.07.2019.
- [ope19] Opencv documentation about ransac, https://docs.opencv.org/3.0-beta/doc/py_ tutorials/py_feature2d/py_feature_homography/ py_feature_homography.html, Accessed: 01.07.2019.

[tem19] Blog about template matching, https://riptutorial.com/opencv/example/22915/ template-matching-with-java, Accessed: 01.07.2019. [thi19] Calibration cube by idig3dprinting. thingiverse, https://www.thingiverse.com/thing:1278865, Accessed: 01.07.2019. [Was15] Florens Wasserfall, Embedding of smd populated circuits into fdm printed objects., Proceedings of the 26th

International Solid Freeform Fabrication Symposium,

2015, pp. 180-189.

Outlook