

MIN Faculty Department of Informatics

Applying Deep Reinforcement Learning in the Navigation of Mobile Robots in Static and Dynamic Environments

Ronja Güldenring

University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems

16. April 2019

- 1. Introduction
- 2. Background
- 3. Simulation environment
- 4. Methods and setup
- 5. Evaluation
- 6. Conclusion

Table of Contents

Introduction Background Simulation environment		
--	--	--

hods and setup

Evaluatio

Conclusion

1. Introduction

- 2. Background
- 3. Simulation environment
- 4. Methods and setup
- 5. Evaluation
- 6. Conclusion

Motivation

Introduction

auction	Buckground	official city for the	meenous and seeup	 conclusion	

uction	

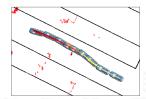


Figure 1: Multi robot scenario [1]

Figure 2: Self-driving car [2]

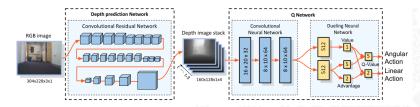


Figure 3: Dueling-Double DQN applied to very noisy depth images. [3]

Table of Contents

	Background		

1. Introduction

2. Background

- 3. Simulation environment
- 4. Methods and setup
- 5. Evaluation
- 6. Conclusion

Figure 4: MiR100 robot of the company Mobile Industrial Robots ApS¹.

navigation: global planner + local planner

http://www.mobile-industrial-robots.com/de/products/mir100/

R. Güldenring – Applying Deep Reinforcement Learning in the Navigation of Mobile Robots in Static and Dynamic Environments 7/36

¹accessed 2019-01-27:

Reinforcement Learning (RL)

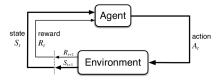


Figure 5: Reinforcement Learning Loop.[5]

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$
(1)

- Policy: Agent samples action from probability distribution $\pi(a|s)$.
- ► Value function v_π(s): estimate of how good it is for the agent to be in state s.
- Action-value function q_π(s, a): estimate of how good it is to take action a in state s.

RL – Q-Learning

Introduction

Background

Conclusion

Data:
$$\pi$$
, $\alpha \in (0, 1]$
Initialize Q(s), for all $s \in S$ arbitrarily;
for *each episode* **do**
Initialize S_t **do**
 $A_t \leftarrow \text{ action given by } \pi \text{ for } S_t;$
Take action A_t , observe R_{t+1} and S_{t+1} ;
 $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha[R_{t+1} + \gamma \max_a Q(S_{t+1}, a) - Q(S_t, A_t)]$
 $S_t \leftarrow S_{t+1}$
while S *is not terminal*;
end

 \rightarrow Deep RL (DRL): replace table Q(s,a) with function approximator

DRL – Proximal Policy Optimization (PPO) [7]

Background

- Policy Gradient Method
 - optimization of the policy $\pi(a|s,\theta)$ directly
 - Actor-Critic Architecture
- builds on TRPO [6].
- learns relatively quickly/stable
- easy to tune

Clipped Surrogate Objective

- restricting the update size from one policy to another
- stable updates
- prevents optimization overshooting the maximum

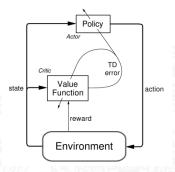


Figure 6: Actor-Critic

Architecture.[5]

Table of Contents

	ckground Sin	mulation environment			
--	--------------	----------------------	--	--	--

- 1. Introduction
- 2. Background
- 3. Simulation environment
- 4. Methods and setup
- 5. Evaluation
- 6. Conclusion

Simulation Environment

- Restricted to 2D-problem
- \blacktriangleright \rightarrow 2D laser scanner as sensor source
 - + data approximates real world more realistically
 - + less computational expensive
 - provides less features
- Flatland as base simulator [10]
- Pedsim for crowd simulation [9]
- three different obstacle types:
 - global static obstacle
 - local static obstacle
 - dynamic obstacle (pedestrian)

PedSim Crowd Simulator [9]

- Helbing's Social Force Model [8]
 - Desired Force f_{des}
 - Pedestrian Force f_{ii}
 - Wall Force f_{iW}
 - **Robot Force** *f_r*
- Semi-polite pedestrian
- Pedestrian-plugin: synchronises the pedestrian state of the PedSim simulator with the Flatland simulator

$$F_{sum} = f_{des} + \sum_{j} f_{ij} + \sum_{W} f_{iW} \left(+f_{r}\right)$$
(2)

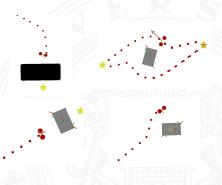
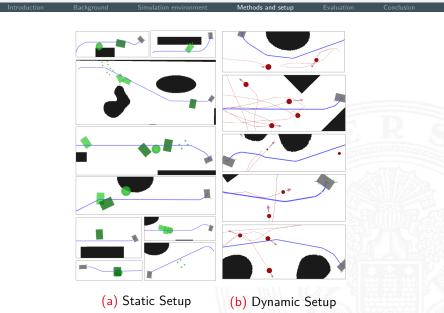


Table of Contents

		Methods and setup	

- 1. Introduction
- 2. Background
- 3. Simulation environment
- 4. Methods and setup
- 5. Evaluation
- 6. Conclusion

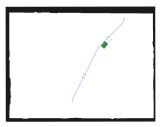


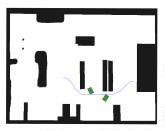
Global world setup

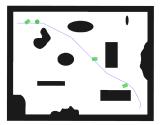
	X	
	X	

uction	

Background







- RL-agent replaces traditional local planner
- Proximal Policy Optimization
 - ▶ PPO1/PPO2 implementation stable baselines library [11]
 - Tensorflow
- Wrapper class Ros_env
 - ▶ implements *gym.Env*-interface.
 - communicates with ROS side.

Observation and action space

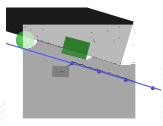
ntroductior

Observation Space

- Raw Data Representation
- X-Image Representation
- X-Image Speed Representation

Action Space

▶ 6 discrete actions as combination of tranlational and rotational velocity.
 [0, -ω_{max}],
 [v_{max}, 0],
 [0, ω_{max}],
 [v_{max}, ω_{max}/2],
 [v_{max}, -ω_{max}/2],
 [0, 0],
 ([0.09, 0])



Reward function 1

$$r_t = r_t(wp) + r_t(o) + r_t(g)$$
 (3)

$$r_t(g) = egin{cases} R_g & ext{if } d(p_{r,t},p_g) < D_g \ 0 & ext{otherwise} \end{cases}$$
 (4)

$$r_t(o) = egin{cases} -R_o & ext{if collision with an obstacle } \in O \\ 0 & ext{otherwise} \end{cases}$$
 (5)

$$r_t(wp) = \begin{cases} 0 & \text{if } \min_{o_i \in O} (d(p_{o_i,t}, p_{r,t})) < D_o \\ r'_t(wp) & \text{otherwise} \end{cases}$$
(6)

$$r'_t(wp) = r_{1t}(wp) + r_{2t}(wp) + r_{3t}(wp)$$
(7)

$$diff(p_{r,t}, p_{wp,t}) = d(p_{r,t-1}, p_{wp,t-1}) - d(p_{r,t}, p_{wp,t})$$
(8)

$$r_{1t}(wp) = \begin{cases} w_1 \cdot \text{diff}(p_{r,t}, p_{wp,t}) & \text{if diff}(p_{r,t}, p_{wp,t}) > 0\\ 0 & \text{otherwise} \end{cases}$$
(9)

$$r_{2t}(wp) = \begin{cases} w_2 \cdot \operatorname{diff}(p_{r,t}, p_{wp,t}) & \text{if } \operatorname{diff}(p_{r,t}, p_{wp,t}) < 0\\ 0 & \text{otherwise} \end{cases}$$
(10)

$$r_{3t}(wp) = \begin{cases} R_{wp} & \text{if } d(p_{r,t}, p_{wp,t}) < D_{wp} \\ 0 & \text{otherwise} \end{cases}$$
(11)

Reward function 2

$$r_{t,2} = r_t(wp) + r_{t,2}(o) + r_t(g) + r_t(vel)$$
(12)

$$r_{t,2}(o) = \min(r_t(so), r_t(ped))$$
(13)

 $r_t(so) = \begin{cases} -R_{so} & \text{if collision with a static obstacle } \in SO \\ 0 & \text{otherwise} \end{cases}$ (14)

$$r_t(ped) = \begin{cases} 0\\ -R_{ped} \end{cases}$$

 $if \min_{\substack{p \in d_i \in PED}} (d(p_{ped_i,t}, p_{r,t})) > D_{ped} \\ or v \leq v_{reaction,max} \ \text{for a duration of } t_{reaction} \\ otherwise$

(15)

$$r_t(vel) = \begin{cases} -R_{vel1} & \text{if } v_t = 0 \text{ and } \omega_t = 0\\ -R_{vel2} & \text{if } v_t = 0\\ 0 & \text{otherwise} \end{cases}$$
(16)

Table of Contents

		Evaluation	

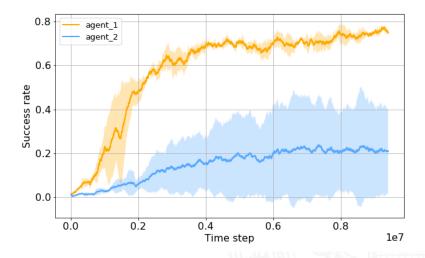
- 1. Introduction
- 2. Background
- 3. Simulation environment
- 4. Methods and setup
- 5. Evaluation
- 6. Conclusion

	agent_1	agent_3		
Action Space	discrete v _{max}	$= 0.5 \ \omega_{max} = 0.5$		
State Input	1-lmage	Raw Data		
	Representa-	Representa-		
	tion	tion		
Network archi-	4-layered	1D-CNN		
tecture	2D-CNN	10000		
Reward function	reward function 1			
Reward function	ta	able 1		
parameters				

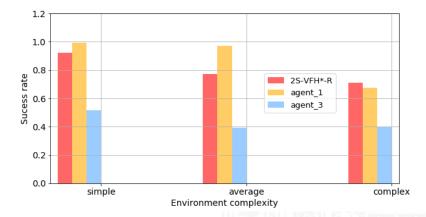
Evaluation

Static Agents – training results

Introduction	Background	Simulation environment	Methods and setup	Evaluation	Conclusion



		Evaluation	



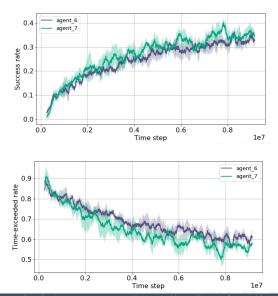
Dynamic agents

	agent_6	agent_7	
Reward function	reward function 2		
Reward function parameters	table 2	table 3	
Action Space	discrete $v_{max} = 0.5$ $\omega_{max} = 0.7$	$discrete$ $v_{max} = 0.5$ $\omega_{max} = 0.7$ + [0.09, 0]	
State Input	4-Image Spee	d Representation	
Network archi- tecture	6-layere	d 2D-CNN	

Evaluation

Dynamic agents – training results

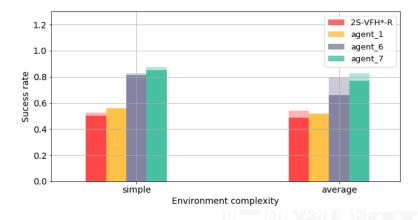
		Evaluation	



R. Güldenring - Applying Deep Reinforcement Learning in the Navigation of Mobile Robots in Static and Dynamic Environments 27 / 36

Dynamic agents – test results

			Evaluation	



$https://www.youtube.com/watch?v{=}laGrLaMaeT4$

Table of Contents

			Conclusion

- 1. Introduction
- 2. Background
- 3. Simulation environment
- 4. Methods and setup
- 5. Evaluation
- 6. Conclusion

Implementation

- successful integration of the DRL-library stable-baselines [11] in the ROS navigation stack.
- fusion of the Flatland simulator with the PedSim crowd simulator.

Static Training

- Image Representation and discrete action space generates the best results.
- stable avoidance of static objects.

Dynamic Setup

- different reasonable policies were trained.
- high potential for improvements, but "proof-of-concept" is fulfilled.

- Increase success rate and improve learned policy of agent_6 and agent_7.
- Train in a more complex and realistic dynamic (and static) setup.
 - Apply normal walking speed of the pedestrians.
 - Train in more complex maps with more clutter and narrow corridors.
 - ► Train with more complex pedestrian behaviors → learning social behavior.
- Fusion of the traditional local planner with the rl-local planner. The rl-local planner is triggered, when moving objects are detected.

Questions?

Appendix: reward parameter sets

ntroduction

Backgroun

nulation environme

Methods and s

Evalua

Conclusion

Parameter	Value
Rg	10
Ro	15
Do	0.96
w ₁	2.5
W2	3.5
R _{wp}	1.0
Dwp	0.2

Parameter	Value
Dped	0.85
Do	0.66
D _{wp}	0.2
Rg	10
Rped	7
R _{so}	15
R _{vel1}	0.001
R _{vel2}	0.01
R _{wp}	0.3
t _{reaction}	0.8
Vreaction,max	0.0
w ₁	4.5
W2	5.5

Table 2: Parameter set 1for Reward Function 2.

Table 1: Parameter set	
for Reward Function 1.	

Parameter	Value
Dped	0.85
Do	0.66
D _{wp}	0.2
Rg	10
Rped	7
R _{so}	15
R _{vel1}	0
R _{vel2}	0
R _{wp}	0.3
treaction	0.8
Vreaction, max	0.1
w1	4.5
W2	5.5

Table 3: Parameter set 2for Reward Function 2.

R. Güldenring - Applying Deep Reinforcement Learning in the Navigation of Mobile Robots in Static and Dynamic Environments 34 / 36

Appendix: Neural Network architectures (1)

Introduction	Background	Simulation environment	Methods a

hods and setup

ation

Conclusion

Layer	Туре	Activation	Size	Filter Size	Filter Stride
1	Convolution	ReLu	32 Filter	[5 imes 1]	[2 × 0]
2	Convolution	ReLu	32 Filter	[3 × 1]	[2 × 0]
3	Fully-Connected	ReLu	256 Neurons	-	-
4	Fully-Connected	ReLu	128 Neurons	- /	
5	Fully-Connected	Linear	Output Size		Q - D

Table 4: 1D-Convolutional Neural Network

Layer	Туре	Activation	Size	Filter Size	Filter Stride
1	Convolution	ReLu	32 Filter	[8 × 8]	[4 × 4]
2	Convolution	ReLu	64 Filter	[4 × 4]	[2 × 2]
3	Convolution	ReLu	64 Filter	[3 × 3]	$[1 \times 1]$
4	Fully-Connected	ReLu	512 Neurons		1 a 2 a
5	Fully-Connected	Linear	Output Size	H KS	

Table 5: 4-layered 2D-Convolutional Neural Network

Appendix: Neural Network architectures (2)

ntroduction

Layer	Туре	Activation	Size	Filter Size	Filter Stride
1	Convolution	ReLu	64 Filter	[8 × 8]	[4 × 4]
2	Convolution	ReLu	64 Filter	[4 × 4]	[2 × 2]
3	Convolution	ReLu	32 Filter	[3 × 3]	$[1 \times 1]$
4	Convolution	ReLu	32 Filter	[2 × 2]	$[1 \times 1]$
5	Fully-Connected	ReLu	512 Neurons	//-2	- LC
6	Fully-Connected	ReLu	216 Neurons	14-	mar-man
7	Fully-Connected	Linear	Output Size	- 00	- mark

Table 6: 6-layered 2D-Convolutional Neural Network

- P. Long, T. Fan, X. Liao, W. Liu, H. Zhang, and J. Pan, "Towards optimally decentralized multi-robot collision avoidance via deep reinforcement learning," *Computing Research Repository (CoRR)*, vol. abs/1709.10082, 2017. [Online]. Available: http://arxiv.org/abs/1709.10082
- [2] A. Folkers, "Steuerung eines autonomen Fahrzeugs durch Deep Reinforcement Learning," Master's thesis, University Bremen, Bremen, Germany, 2018.
- [3] L. Xie, S. Wang, A. Markham, and N. Trigoni, "Towards monocular vision based obstacle avoidance through deep reinforcement learning," *Computing Research Repository* (*CoRR*), vol. abs/1706.09829, 2017. [Online]. Available: http://arxiv.org/abs/1706.09829
- [4] I. Ulrich and J. Borenstein, "Vfh*: Local obstacle avoidance with look-ahead verification," 2000.
- [5] R. S. Sutton and A. G. Barto, "Reinforcement learning: An introduction," *IEEE Trans. Neural Networks*, vol. 9, no. 5, pp.

R. Güldenring – Applying Deep Reinforcement Learning in the Navigation of Mobile Robots in Static and Dynamic Environments 36 / 36

1054–1054, 1998. [Online]. Available: https://doi.org/10.1109/TNN.1998.712192

- [6] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, "Trust region policy optimization," in *Proceedings of the 32nd International Conference on Machine Learning*, ser. Proceedings of Machine Learning Research, F. Bach and D. Blei, Eds., vol. 37. Lille, France: PMLR, 07–09 Jul 2015, pp. 1889–1897. [Online]. Available: http://proceedings.mlr.press/v37/schulman15.html
- J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, "Proximal policy optimization algorithms," *Computing Research Repository (CoRR)*, vol. abs/1707.06347, 2017. [Online]. Available: http://arxiv.org/abs/1707.06347
- [8] P. M. Dirk Helbing, "Social force model for pedestrian dynamics," 1998. [Online]. Available: https://arxiv.org/abs/cond-mat/9805244

- [9] B. Okal, T. Linder, D. Vasquez, and L. P. Sven Wehner, Omar Islas, "pedsim_ros," https://github.com/srl-freiburg/pedsim_ros, 2018.
- [10] Avidbots, "Flatland," https://github.com/avidbots/flatland, 2018.
- [11] A. Hill, A. Raffin, M. Ernestus, R. Traore, P. Dhariwal,
 C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,
 J. Schulman, S. Sidor, and Y. Wu, "Stable baselines," https://github.com/hill-a/stable-baselines, 2018.