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Figure 1: Multi robot scenario [1] Figure 2: Self-driving car [2]

Figure 3: Dueling-Double DQN applied to very noisy depth images. [3]
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MiR100 robot
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Figure 4: MiR100 robot of the company Mobile Industrial Robots ApS 1.

navigation: global planner + local planner

1accessed 2019-01-27:
http://www.mobile-industrial-robots.com/de/products/mir100/
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Reinforcement Learning (RL)
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Figure 5: Reinforcement Learning Loop.[5]

Gt = Rt+1 + γRt+2 + γ2Rt+2 + ... =
∞∑

k=0
γkRt+k+1 (1)

I Policy: Agent samples action from probability distribution
π(a|s).

I Value function vπ(s): estimate of how good it is for the agent
to be in state s.

I Action-value function qπ(s, a): estimate of how good it is to
take action a in state s.
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RL – Q-Learning
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→ Deep RL (DRL): replace table Q(s,a) with function
approximator
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DRL – Proximal Policy Optimization (PPO) [7]
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I Policy Gradient Method
I optimization of the policy π(a|s, θ) directly
I Actor-Critic Architecture

I builds on TRPO [6].
I learns relatively quickly/stable
I easy to tune

I Clipped Surrogate Objective
I restricting the update size

from one policy to another
I stable updates
I prevents optimization overshooting the maximum
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Figure 6: Actor-Critic
Architecture.[5]
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Simulation Environment
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I Restricted to 2D-problem
I → 2D laser scanner as sensor source

I + data approximates real world more realistically
I + less computational expensive
I – provides less features

I Flatland as base simulator [10]
I Pedsim for crowd simulation [9]
I three different obstacle types:

I global static obstacle
I local static obstacle
I dynamic obstacle (pedestrian)
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PedSim Crowd Simulator [9]
Introduction Background Simulation environment Methods and setup Evaluation Conclusion

I Helbing’s Social Force Model [8]
I Desired Force fdes
I Pedestrian Force fij
I Wall Force fiW
I Robot Force fr

I Semi-polite pedestrian

I Pedestrian-plugin:
synchronises the pedestrian state
of the PedSim simulator
with the Flatland simulator
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Fsum = fdes +
∑

j
fij +

∑
W

fiW (+fr ) (2)
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Task setup
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(a) Static Setup (b) Dynamic Setup
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Global world setup
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RL-agent setup
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I RL-agent replaces traditional local planner
I Proximal Policy Optimization

I PPO1/PPO2 implementation stable baselines library [11]
I Tensorflow

I Wrapper class Ros_env
I implements gym.Env -interface.
I communicates with ROS side.
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Observation and action space
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Observation Space
I Raw Data Representation
I X-Image Representation
I X-Image Speed Representation

Action Space
I 6 discrete actions as combination of

tranlational and rotational velocity.
[0,−ωmax ],
[vmax , 0],
[0, ωmax ],
[vmax , ωmax/2],
[vmax ,−ωmax/2],
[0, 0],
( [0.09, 0])
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Reward function 1
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rt = rt(wp) + rt(o) + rt(g) (3)

rt(g) =
{

Rg if d(pr ,t , pg) < Dg

0 otherwise
(4)

rt(o) =
{
−Ro if collision with an obstacle ∈ O
0 otherwise

(5)

rt(wp) =

0 if min
oi∈O

(d(poi ,t , pr ,t)) < Do

r ′t(wp) otherwise
(6)
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r ′t(wp) = r1t(wp) + r2t(wp) + r3t(wp) (7)

diff(pr ,t , pwp,t) = d(pr ,t−1, pwp,t−1)− d(pr ,t , pwp,t) (8)

r1t(wp) =
{

w1 · diff(pr ,t , pwp,t) if diff(pr ,t , pwp,t) > 0
0 otherwise

(9)

r2t(wp) =
{

w2 · diff(pr ,t , pwp,t) if diff(pr ,t , pwp,t) < 0
0 otherwise

(10)

r3t(wp) =
{

Rwp if d(pr ,t , pwp,t) < Dwp

0 otherwise
(11)
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Reward function 2
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rt,2 = rt(wp) + rt,2(o) + rt(g) + rt(vel) (12)

rt,2(o) = min(rt(so), rt(ped)) (13)

rt(so) =
{−Rso if collision with a static obstacle ∈ SO
0 otherwise (14)

rt(ped) =

0 if min
pedi∈PED

(d(ppedi ,t , pr ,t)) > Dped

or v ≤ vreaction,max for a duration of treaction
−Rped otherwise

(15)

rt(vel) =
{
−Rvel1 if vt = 0 and ωt = 0
−Rvel2 if vt = 0
0 otherwise

(16)
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Static agents
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agent_1 agent_3
Action Space discrete vmax = 0.5 ωmax = 0.5
State Input 1-Image

Representa-
tion

Raw Data
Representa-
tion

Network archi-
tecture

4-layered
2D-CNN

1D-CNN

Reward function reward function 1
Reward function
parameters

table 1
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Static Agents – training results
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Static agents – test results
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Dynamic agents
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agent_6 agent_7
Reward function reward function 2
Reward function
parameters

table 2 table 3

Action Space
discrete

vmax = 0.5
ωmax = 0.7

discrete
vmax = 0.5
ωmax = 0.7
+ [0.09, 0]

State Input 4-Image Speed Representation
Network archi-
tecture

6-layered 2D-CNN
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Dynamic agents – training results
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Dynamic agents – test results
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Video
Introduction Background Simulation environment Methods and setup Evaluation Conclusion

https://www.youtube.com/watch?v=laGrLaMaeT4
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Conclusion
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Implementation
I successful integration of the DRL-library stable-baselines [11] in

the ROS navigation stack.
I fusion of the Flatland simulator with the PedSim crowd

simulator.

Static Training
I Image Representation and discrete action space generates the

best results.
I stable avoidance of static objects.

Dynamic Setup
I different reasonable policies were trained.
I high potential for improvements, but "proof-of-concept" is

fulfilled.
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Future Work
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I Increase success rate and improve learned policy of agent_6
and agent_7.

I Train in a more complex and realistic dynamic (and static)
setup.
I Apply normal walking speed of the pedestrians.
I Train in more complex maps with more clutter and narrow

corridors.
I Train with more complex pedestrian behaviors → learning social

behavior.
I Fusion of the traditional local planner with the rl-local planner.

The rl-local planner is triggered, when moving objects are
detected.
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Questions?
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Appendix: reward parameter sets
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Parameter Value
Rg 10
Ro 15
Do 0.96
w1 2.5
w2 3.5
Rwp 1.0
Dwp 0.2

Table 1: Parameter set
for Reward Function 1.

Parameter Value
Dped 0.85
Do 0.66
Dwp 0.2
Rg 10

Rped 7
Rso 15

Rvel1 0.001
Rvel2 0.01
Rwp 0.3

treaction 0.8
vreaction,max 0.0

w1 4.5
w2 5.5

Table 2: Parameter set 1
for Reward Function 2.

Parameter Value
Dped 0.85
Do 0.66
Dwp 0.2
Rg 10

Rped 7
Rso 15

Rvel1 0
Rvel2 0
Rwp 0.3

treaction 0.8
vreaction,max 0.1

w1 4.5
w2 5.5

Table 3: Parameter set 2
for Reward Function 2.



Appendix: Neural Network architectures (1)
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Layer Type Activation Size Filter Size Filter Stride
1 Convolution ReLu 32 Filter [5× 1] [2× 0]
2 Convolution ReLu 32 Filter [3× 1] [2× 0]
3 Fully-Connected ReLu 256 Neurons - -
4 Fully-Connected ReLu 128 Neurons - -
5 Fully-Connected Linear Output Size - -

Table 4: 1D-Convolutional Neural Network

Layer Type Activation Size Filter Size Filter Stride
1 Convolution ReLu 32 Filter [8× 8] [4× 4]
2 Convolution ReLu 64 Filter [4× 4] [2× 2]
3 Convolution ReLu 64 Filter [3× 3] [1× 1]
4 Fully-Connected ReLu 512 Neurons - -
5 Fully-Connected Linear Output Size - -

Table 5: 4-layered 2D-Convolutional Neural Network
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Appendix: Neural Network architectures (2)
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Layer Type Activation Size Filter Size Filter Stride
1 Convolution ReLu 64 Filter [8× 8] [4× 4]
2 Convolution ReLu 64 Filter [4× 4] [2× 2]
3 Convolution ReLu 32 Filter [3× 3] [1× 1]
4 Convolution ReLu 32 Filter [2× 2] [1× 1]
5 Fully-Connected ReLu 512 Neurons - -
6 Fully-Connected ReLu 216 Neurons - -
7 Fully-Connected Linear Output Size - -

Table 6: 6-layered 2D-Convolutional Neural Network
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