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Motion planning [...] is a term used in robotics for the pro-
cess of breaking down a desired movement task into discrete
motions that satisfy movement constraints and possibly op-
timize some aspect of the movement.

https://en.wikipedia.org/wiki/Motion_planning
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I Robotic Manipulators
I Robotic arms
I CNC machines

I Path planning and execution
I Mobile robots
I Autonomous cars

I Computer animation
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Kinematics pertains to the motion of bodies in a robotic
mechanism without regard to the forces/torques that cause
the motion.

[1, p. 11]

J. Güldenstein – Motion Planning 5 / 36



Cartesian Coordinates
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Configuration Space
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I n dimensional space where n is the number degrees of freedom
in the robot

I limited by joint limits
I transforming from configuration space to Cartesian space:

Forward Kinematics
I transforming from Cartesian space to configuration space:

Inverse Kinematics

I live demo http://demonstrations.wolfram.com/
RobotMotionWithObstacles/
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[3, p. 45]
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[3, p. 46]
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Forward kinematics
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I can be calculated using transformation matrices (geometry)
I unambiguous
I fast
I DH-Parameters [4]
I URDF1 + robot_state_publisher2 + tf/tf23

1http://wiki.ros.org/urdf/
2http://wiki.ros.org/robot_state_publisher
3http://wiki.ros.org/tf | http://wiki.ros.org/tf2
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Inverse kinematics
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I not necessarily unambiguous
I much harder than Forward Kinematics
I analytic robot specific solution
I generic numeric solution
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Analytic Numeric
fast comparably slow
robot specific generic
guarantees correctness does not guarantee correctness

optimization for secondary goals
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I OpenRave [5] (analytic)
I TracIK [6] (numeric)
I BioIK [7] (numeric)
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Obstacles Initial position
(Source)

Final position
(Target)

[8]
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Potential Functions
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I attractive potential field for goal
I repulsive potential field for obstacles
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Gradient Descent
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Data: A means to compute the gradient ∇U(q) at a point q
Result: A sequence of points q(0), q(1), ..., q(n)
q(0) = qstart ;
i = 0;
while ∇U(q(i)) 6= 0 do

q(i + 1) = q(i) + α(i)∇U(q(i));
i = i + 1

end
[3, p. 85]
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Problem: local minima

qstart
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qgoal

inspired by [3, p. 85]
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Discrete Planning
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I discretization of configuration space
I collision check for each explored state
I variety of graph creation algorithms

I evenly spaced grid
I Probabilistic Roadmaps [9]
I Rapidly-Exploring Random Trees (RRT) [10]
I RRT-Connect [11]
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Probabilistic Roadmaps
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Data: A means to check for collision of a configuration c
Result: Graph in the configuration space
repeat n times

generate random configuration c;
if c is collision free then

find k closest points ;
try to connect c to closest points using local planner

end
end

local planner can be achieved using a set of interpolated vertices
between the points to be connected
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I single roadmap construction
I costly for changing environment
I fast path planning once roadmap has been constructed
I no guarantee for optimal path
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Rapidly-Exploring Random Trees (RRT)
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I instead of trying to connect a random configuration x directly
to the graph, a configuration y between the closest and the
new random state x is connected

I more states are connected while the tree still rapidly expands
I motion constraints of the robot can be added to the selection

function of y

I live demo http://demonstrations.wolfram.com/
RapidlyExploringRandomTreeRRTAndRRT/
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[10]
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RRT-Connect
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I Bidirectional search from start and goal configuration
I usually outperforms classical RRT algorithm
I goal and/or start configuration is often cluttered (i.e., close to

obstacles for example for grasping)
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I motion planning is computationally hard but necessary

I dynamic environment needs recalculation, therefore we need
fast algorithms

I trade-off: optimal solution / computation time
I motion prediction not modeled
I additional constraints (e.g. keeping bottle upright/mostly

upright) may be required for motion task
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