

64-424 Intelligent Robotics

https://tams.informatik.uni-hamburg.de/ lectures/2018ws/vorlesung/ir

Marc Bestmann / Michael Görner / Jianwei Zhang

University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems

Winterterm 2018/2019

MIN Faculty Department of Informatics

64-424 Intelligent Robotics

Outline

1. Fuzzy logic

1 Fuzzy logic

64-424 Intelligent Robotics

Outline

1. Fuzzy logic

Introduction Fuzzy control Linguistic variables Membership function Fuzzy set Fuzzy control Examples

Introduction

The concept of fuzzy logic was introduced by Lotfi Zadeh (1965)

- Inspired by human information processing capabilities
- People do not require precise, numerical information input, yet they are capable of highly adaptive control

General assumption

- If feedback controllers could be programmed to accept noisy, imprecise input, they would be much more effective and perhaps easier to implement
- How important is it to be exactly right when a rough answer will do?

Fuzzy control (cont.)

- Fuzzy means: blurred, diffuse, vague, uncertain, ...
- ▶ Fuzzy control uses fuzzy sets as mechanism for
 - Abstraction of unnecessary or too complex details
 - Troubleshooting of problems which are not easily solvable by a simple yes or no decision
 - Modeling of (soft) concepts without any sharp borders

Fuzzy control (cont.)

- Unsharp linguistic grading of terms like "big", "beautiful", "strong" ...
- Human thinking models and behavior models with first-level logic
 - Car driving: *if-then*-rules
 - Car parking: Accurate up to a milimeter?
- Fuzzy speech instead of numerical description
 - \blacktriangleright "Brake 2.52 m ahead of the curve!" \rightarrow only in machine systems
 - "Brake shortly before the curve!" \rightarrow in natural language

1.2 Fuzzy logic - Fuzzy control

64-424 Intelligent Robotics

Adaptive control methods

Fuzzy control is generally a good fit for realization of *adaptive control methods*

- Control can be understood as mapping from a sensor space onto actions
- In many cases it is a priori unknown, which measurement parameters are especially important for the choice of actions
- Some systems are very hard to describe in a mathematical way
- Often, sensor data is inaccurate, noisy and/or high dimensional

Adaptive control methods (cont.)

Models for adaptive control systems

- The creation of an ideal mapping between sensor space and actions is very difficult with classical methods of control engineering
- In order to control such systems, a simpler method needs to be used for description
- Neural networks
- Fuzzy-Controller

Linguistic variables

Linguistic variables are one of the main building blocks of fuzzy logic

- A *linguistic variable* is a variable, which can take on a range of linguistic terms
- A linguistic term (value, label) is the quantification of a term from natural language through a fuzzy set
- Many terms of natural language can be characterized through degree of membership related to fuzzy sets
- Therefore, fuzzy sets can be considered as the basic tool for modelling of *linguistic terms*

Linguistic variables (cont.)

Examples:

- Linguistic variable: "SPEED"
- Linguistic terms of "SPEED"
 "high", "low", "rapid", "economical"

- Linguistic variable: "BUILDING"
- Linguistic terms of "BUILDING"
 "cottage", "bungalow", "skyscraper"

Linguistic variables (cont.)

A linguistic variable is characterized through a quintuplet

(v, T(v), X, G, M)

With:

- v: the name of the variable
- T(v): a set of linguistic terms of v, whereas each value is a fuzzy set in the universe X
 - G: a syntax rule, which creates T(v) from a set of basic terms
 - *M*: a semantic rule, which maps its meaning to each value of T(v)

Characteristic function

Crisp sets can be defined through specification of their characteristic function:

$$\mu_{\mathcal{A}}(x) = egin{cases} 1 & ext{for } x \in \mathcal{A} \ 0 & ext{for } x
otin \mathcal{A}, \end{cases}$$

where $\mu_{\mathcal{A}}: X \to \{0, 1\}$

Membership function

For **fuzzy sets** A, a generalized characteristic function μ_A is used, which maps a real number [0, 1] to each element $x \in X$:

$$\mu_A:X\to [0,1]$$

- The function μ_A is called membership function (MF)
- ► It indicates the "degree", to which the element x belongs to the described unsharp set A (→ fuzzy set)

Membership function (cont.)

Representation of membership functions

- Discrete representation
 - Fixed-size array
 - Saving of the MF-Values for the whole x-codomain
- Parametric representation
 - Functions with parameters (less space required)
 - Typical types: Singleton, triangular shape, trapezoid shape, bell curve, B-Spline basis function

Membership function (cont.)

Creation of the membership functions

- Context-dependent specification
 - Experimental, domain- and application specific
- Construction using sample data
 - Clustering
 - Interpolation
 - Curve Fitting (Least-squares)
 - Neural networks
- Knowledge acquisition through experts
 - One or several experts
 - Directly and indirectly

Fuzzy set

A **fuzzy set** A over a universe X is given through a mapping $\mu_A : X \to [0, 1]$. For all $x \in X$, $\mu_A(x)$ denotes the degree of affinity (membership) of x in A

The set of all elements from X with positive affinity to A is called **support** of a fuzzy set:

$$support(\mu_A(x)) = \{x \in X \mid \mu_A(x) > 0\}$$

Fuzzy set (cont.)

Example:

▶ The set of integer numbers approximately equal to 10:

 $A_{10} = (0.1, 7), (0.5, 8), (0.8, 9), (1.0, 10), (0.8, 11), (0.5, 12), (0.1, 13)$

Fuzzy control

Main principles of fuzzy control

- Description of the desired control behaviour by means of colloquial, qualitative rules
- Quantification of linguistic values through fuzzy sets
- Rule evaluation through fuzzy logic methods (*fuzzy inference*) or interpolation

Fuzzy control (cont.)

In a fuzzy control system, the influence on dynamic circumstances of a fuzzy system is characterized by a set of linguistic description rules

IF (a set of conditions is satisfied)THEN (a set of consequences can be infered)

Conditions (antecedents or premises) of the IF-part:

 \rightarrow Linguistic variables from the domain of process states

Conclusions (consequences) of the THEN-part:

 \rightarrow Linguistic variables from the control domain

Fuzzy control (cont.)

Main goals of fuzzy control

Intelligent control

Use of expert knowledge

Linguistic control

- Control specifics are transparent
- Advantageous for the human-machine interface

Parallel control

- Modularization
- High processing performance

1.6 Fuzzy logic - Fuzzy control

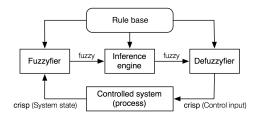
64-424 Intelligent Robotics

Fuzzy control (cont.)

Advantages

- Controller design is possible without any special knowledge about models of specific domains
- Controller design is efficient (up to a certain degree)
- Complies with real-time requirements
- Robust, even when using cheap and noisy sensors

1.6 Fuzzy logic - Fuzzy control



64-424 Intelligent Robotics

Components of fuzzy control

A complete fuzzy controller consists of four major components

- Rule base
- Fuzzifier
- Inference engine
- Defuzzifier

Rule base

The rule base is the central component that stores expert knowledge

▶ It contains the control strategies in the form of IF-THEN rules

The rule base is considered a part of the knowledge base of the fuzzy controller, other components being:

- ► The input membership functions
 - \rightarrow required for $\mathit{fuzzification}$ of crisp input values
- The output membership functions
 - \rightarrow required for *defuzzification* of the inference result(s)

Rule base (cont.)

Example:

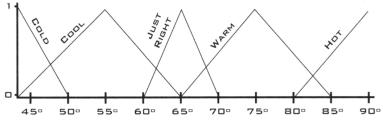
. . .

Given a fuzzy control system with two inputs A and B and a single output C, the general representation of the rule base would be:

$$R_1: \text{ IF } (x \text{ is } A_1 \text{ OR } y \text{ is } B_1) \text{ THEN } (z \text{ is } C_1)$$

$$R_2: \text{ IF } (x \text{ is } A_2 \text{ OR } y \text{ is } B_2) \text{ THEN } (z \text{ is } C_2)$$

 R_k : IF (x is A_k OR y is B_k) THEN (z is C_k)


Note: Inputs and outputs mentioned here are strictly fuzzy.

Fuzzifier

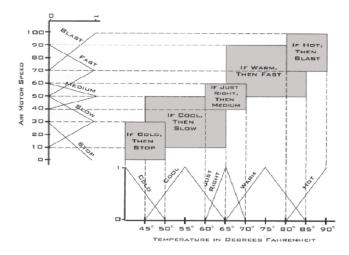
The fuzzifier converts the crisp input values into fuzzy representations based on the membership degree to established fuzzy sets

TEMPERATURE IN DEGREES FAHRENHEIT

Fuzzifier (cont.)

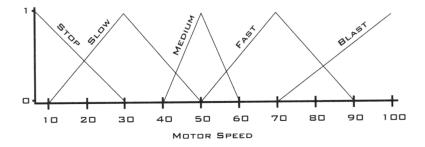
- The established fuzzy sets and associated membership functions are designed to exploit the inherent inaccuracy of input data (e.g. from sensors)
- ► The fuzzifier approximates the human reasoning process
- While expert knowledge of the process to be controlled is helpful, it is not a requirement
- The overall implementation effort of the controller is reduced significantly

Inference engine


The inference engine processes the *fuzzified* input values based on evaluation of the rule base

- ► All rules within the rule base are evaluated
- The evaluation usually occurs in parallel (depends on implementation)
- All evaluated rules contribute to the fuzzy output value to some degree
- The contribution of most rules to the output value is 0
- The resulting fuzzy output value is a *union* of the results of all evaluated rules

Inference engine (cont.)


Marc Bestmann / Michael Görner / Jianwei Zhang 🕢 🖬 🔻 🗇 🖉 🖓 🖓 🖓

Defuzzifier

The defuzzifier converts the obtained fuzzy output value into a crisp representation based on the output membership functions

. . .

64-424 Intelligent Robotics

Defuzzifier (cont.)

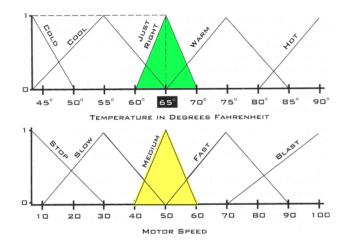
Several strategies exist for defuzzification

► The center of gravity (CoG) technique is very common

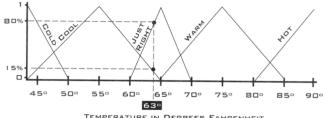
Other strategies include:

Mean of maximum

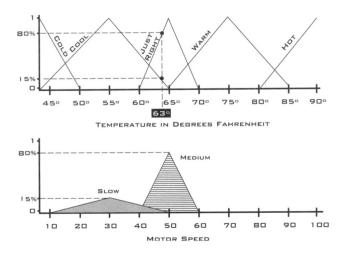
 \rightarrow The defuzzified result represents the mean value of all actions, whose membership functions reach the maximum


Weighted average method

 \rightarrow Formed by weighting each output by its respective maximum membership degree

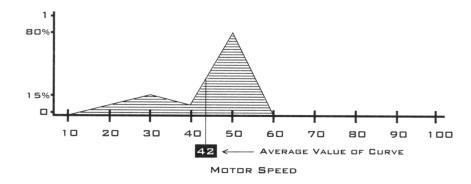

Simple case

General case



TEMPERATURE IN DEGREES FAHRENHEIT

- IF temperature is cool THEN motor speed is slow
- IF temperature is just right THEN motor speed is medium


General case (cont.)

General case (cont.)

Curse of dimensionality

Fuzzy logic based control models (nonlinear modeling techniques) are affected by the *curse of dimensionality*

 \rightarrow If the number of inputs grows, the cost of both implementing the rule base and obtaining an output value increase exponentially.

Summary

- Fuzzy logic provides a different way to approach a control problem
- It is based on natural language
- It allows to solve the problem without the need of a mathematical model
- FL based controllers require less implementation effort and are thus usually cheaper
- ▶ FL is inherently tolerant of imprecise data
- ► It can model nonlinear functions of arbitrary complexity
- Fuzzy logic can be combined with conventional control techniques

Summary (cont.)

- Fuzzy logic is not a cure-all!
- Fuzzy logic is a convenient way to map an input space to an output space
- However, many controllers can do a fine job without it
- Fuzzy logic *can* be a powerful tool for dealing with imprecision and nonlinearity

Literature list

[1] Fuzzy Logic Tutorial.

http://www.seattlerobotics.org/encoder/mar98/fuz/ flindex.html. Accessed: 2016-01-24.

[2] Bart Kosko.

Fuzzy Thinking: The New Science of Fuzzy Logic. Hyperion, reprint edition, 1994.