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State estimation

State estimation addresses the issue of recovery of state
information from noisy sensor measurement data

| 2

>

Issue: State variables cannot be measured directly

Idea: Estimation of state variables through a probabilistic
approach

Example: Mobile robot localization

Probabilistic state estimation algorithms calculate a belief
distribution over possible states

The belief describes the knowledge of a system about the state
of its environment

Marc Bestmann / Michael Gérner / Jianwei Zhang
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1.1 State estimation - Fundamentals

Basic concepts

Sensor measurements, control variables and the state of a system
and its environment can be modeled as a random variable

> Let X be a random variable and x a value which can be
assigned to X
» If the value range of X is discrete, one writes

p(X = x)

to express the probability of X taking on the value x

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Basic concepts (cont.)

For the sake of simplicity, we can write p(x) instead of p(X = x)

» The sum of discrete probabilities is 1:
> p(x) =1

» Probabilities are always non-negative, that means

p(x) =0

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Basic concepts (cont.)

If the value range of a random variable is continuous, the variable
is said to possess a probability density function (PDF)

» A typical density function is the normal distribution with mean
value p and variance o2:

p(x) = (2m02) "2 exp {_%(x;_;&}

» If x is a multi-dimensional vector

> [ becomes a mean vector
» 02 is replaced by ¥, a covariance matrix

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Basic concepts (cont.)
» Similar to the discrete probability distribution, a PDF

integrates to 1

» Unlike discrete probabilities, the value of a PDF does not have
an upper bound of 1

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Basic concepts (cont.)

» The joint probability of X having the value x and Y having the
value y is given by

p(x,y) =p(X =xand Y =y)

» If both random variables X and Y are independent of each
other, one has
p(x,y) = p(x)p(y)

» If it is known that Y has the value y, the probability for X
under the condition Y = y is given by

p(xly) = p(X =x|Y = y)

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Basic concepts (cont.)

» If one has p(y) > 0 for this conditional probability, the
following applies

_ p(x,y)

» If X and Y are independent variables, one has:

p(x)p(y)

ply) pix)

p(xly) =

» Thus, if X and Y are independent variables, Y doesn't tell us
anything about X

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Basic concepts (cont.)
The theorem of total probability relates outcome probabilities to

conditional probabilities

p(x) =232, p(xly)p(y) (discrete)
p(x) = [ p(x|y)p(y)dy (continuous)

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Basic concepts (cont.)

The Bayes rule ! relates the conditional probability p(x|y) to its
"inverse" p(y|x)

Wy = pobey _ PlyX)p(x) discrete
p(xly) p(y) S p(yIx)p(x) ( )
_ plp() p(yIX)p(X) .
p(xly) = () = Trlx)p(x)dx (continuous)

» Bayes rule describes the reversion of conclusions

» The calculation of p(effect|cause) is usually simple
» But p(cause|effect) carries more information

'The rule requires p(y) > 0

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Basic concepts (cont.)

The Bayes rule plays a fundamental role in state estimation

> If x is the quantity which we want to infer from y, then p(x) is
called the prior probability distribution and y is called data
(e.g. sensor measurements)

» The distribution p(x) describes the knowledge about X before
taking the measurement y into consideration

» The distribution p(x|y) is referred to as the posterior
probability distribution of X

> It becomes possible to determine the posterior p(x|y) using the
conditional probability p(y|x) and the prior probability p(x)

Marc Bestmann / Michael Gorner / Jianwei Zhang
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Basic concepts (cont.)

v

In Bayes rule, p(y) does not depend on x

v

Therefore, the factor p(y)~?! is equal for all values x in p(x|y)

v

Bayes rule calls this factor the normalization factor:

p(x|y) = np(ylx)p(x)

This notation describes the normalization of the result to 1

v

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Basic concepts (cont.)

All previous rules may be conditioned on an additional random
variable Z

» Conditioning the Bayes rule on Z = z gives us:

p(ylx, z)p(x|z)

p(xly,z) =
7P
as long as p(y|z) > 0 is true

» Similar to the rule of combination of independent random
variables, the following applies:

p(x,y|z) = p(x|z)p(y|2)

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Basic concepts (cont.)

>

Previous formula describes a conditional independence and is
equivalent to

p(x|z) = p(x|z,y)
p(ylz) = p(ylz,x)

The formula implies that y carries no information about x, if z
is known

It does not imply, that X is independent of Y
p(x,ylz) = p(x|z)p(ylz) %  p(x,y) = p(x)p(y)
The converse generally does not apply as well:

p(x,y) = p(x)ply) # p(x,ylz) = p(x|z)p(y|2)

Marc Bestmann / Michael Gérner / Jianwei Zhang
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State

The state of a system can be described through a probability
distribution

P(Xt|X0:t—1, Z1:t—-1, Ul:t)
which depends on:
» All previous states xp.t—1

» All previous measurements z;.;—1 and

» All previous control variables (control commands) u;.;

Marc Bestmann / Michael Gérner / Jianwei Zhang
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1.2 State estimation - State and belief

State (cont.)

A state x is said to be complete, if knowledge of past states does
not carry any information that would improve the estimate of the
future state

» Assuming a complete state only the control variable u; is
important if state x;_1 is known (— conditional independence)

p(Xt‘XOZt—lv Z1:t—1, Ul:t) = p(Xt‘Xt—la Ut)

» The measurement probability distribution is specified in a
similar way
p(zt’XO:ta Z1:t—1, Ul:t) = P(Zt’Xt)
» In other words: The state x; is sufficient to predict the
measurement z;

Marc Bestmann / Michael Gorner / Jianwei Zhang
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State (cont.)

v

The conditional probability p(x¢|x:—1, ut) is called state
transition probability

> It describes how the state of the environment changes
depending on the control variables

» The probability p(z:|x;) is called measurement probability

» Both probabilities together describe a dynamic stochastic
system

» Such as system description is also known as
Hidden Markov Model  (HMM) or
Dynamic Bayes Network (DBN)

Marc Bestmann / Michael Gérner / Jianwei Zhang
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State (cont.)

A dynamic Bayes network describing the development of states,
measurements and controls

Marc Bestmann / Michael Gérner
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Belief

The knowledge of a system about its state is called belief

» The true state of a system is not equal to the belief

» The belief is the posterior probability of the state variable
based on previous measurement data

bel(xt) = p(x¢|z1:¢, u1:¢)

» This definition defines the belief as probability after
measurement

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Belief (cont.)

» The belief before incorporation of measurements is called the
prediction

E(Xt) = P(Xt|21;t—1, Ul:t)

» The step of calculating bel(x;) from the prediction bel(x;) is
called correction or measurement update

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Bayes filter

The most fundamental algorithm to calculate beliefs is the Bayes
filter algorithm

» The algorithm is recursive and calculates the belief distribution
bel(x;) at time t from the following quantities
> bel(x;—1) at the time of t — 1
» The measurement data z;
» The control data u;

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Bayes filter (cont.)

The general Bayes filter algorithm

Algorithm Bayes__Filter(bel(x;—1), ut, zt):

1. for all x; do

2. bel(xt) = [ p(xe|ue, xe—1) bel(xe—1) dxe—1
3. bel(xt) = n p(z¢|x:)bel(x¢)
4. endfor

5. return bel(x;)

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Bayes filter (cont.)

The Bayes filter algorithm has two essential steps

v

In line 2, it processes the control variable u;

bel(x;) is the integral (sum) of the product of two probability
distributions:

» The prior for state x;_; and

» The probability of switching to state x; when u; occurs

v

v

That is the prediction step

v

In line 3, the correction step is executed

bel(x;) is multiplied with the probability of detection of the
measurement z; in this state

v

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Bayes filter algorithm (cont.)

» Due to its recursive nature the Bayes filter requires an initial
belief bel(xp) at time t = 0 as a boundary condition

» If the initial state xo is known with certainty, bel(xp) should be
initialized with a point mass distribution focused on xg

» If the initial state is completely unknown, bel(xp) should be
initialized with a uniform distribution

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Bayes filter algorithm (cont.)

> In the presented form, the algorithm can only be implemented
for very simple problems

» Either the integration in line 2 and the multiplication in line 3
need to have a closed form solution, ...

» ...or a finite state space must be given, so that the integral in
line 2 becomes a sum

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Bayes filter - an example

» Assume an agent in this small grid world

» The agent's state is x € {a, b,c,d, e, f}
» The agent's belief is a 6-dimensional distribution bel(x)

» The agent can aim to move (transition) North, East, South,
and West

» It can measure its longitude (i.e. column)

Marc Bestmann / Michael Gorner / Jianwei Zhang
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Bayes filter - an example (cont.)

. .
» The agent can choose The agent can measure its

ue {N,E,S, W} current column
9 ) )
» It might end up somewhere z€{-1,0,1}
else though: » The measurement might be
faulty
0.1 0+8 0.1
03 0.3 -1 1
N 0.25 0.25
0.6<70.1|lw E0.2>0.5
S
0.3 » When the agent would hit a
+ wall, it moves along the wall

0.1 0.6 instead
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Bayes filter - an example (cont.)

» Assume some distribution as the initial belief bel(xp)
» Choose an action u; and compute bel(x;)

» Assume a measurement z; and compute bel(xi)

Marc Bestmann / Michael Gérner / Jianwei Zhang
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010
up N
o [ 1+01[1+08[1+0.1] [01]08]01
R ) 0 0 | [0 o0]o0
z1:0
pely - | 0-L*0.25 [0.8+05 [ 0.1+025

: 0 0 0

0.025 | 0.4

0.025

0 0

0

normalized

0.056 | 0.89

0

0

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Bayes filter - Example

0.056 | 0.89 | 0.056
0 0 0

bell

U3
bel2 .

0.056 % 0.3 0.89%0.3

0.056 * 0.1 +0.056 % 0.6 + 0.89x 0.1 | 0.89 %x0.6 +0.05 0.1

0.056 % 0.3
0.056 * 0.3 + 0.056 % 0.6
0.0168 | 0.267 | 0.0168
0.1282 | 0.539 | 0.0504
normalize it again
do measurement

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Bayes filter - example 2

Example from
Michael Pfeiffer

[ T
Prob 0 1
t=0
Sensor model: never more than | mistake

Know the heading (North, East, South or West)

Motion model: may not execute action with small prob.

https://people.eecs.berkeley.edu/ pabbeel /cs287-fal3/slides/bayes-filters.pdf

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Bayes filter - example 2

I
Prob 0 1

t=1

Lighter grey: was possible to get the reading, but less likely b/
c required 1 mistake

https://people.eecs.berkeley.edu/ pabbeel/cs287-fal3/slides/bayes-filters.pdf

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Bayes filter - example 2

Prob 0 1

t=2

https://people.eecs.berkeley.edu/ pabbeel/cs287-fal3/slides/bayes-filters.pdf

Marc Bestmann i 6 / Jianwei Zhang
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Bayes filter - example 2

Prob 0 1

t=3

https://people.eecs.berkeley.edu/ pabbeel/cs287-fal3/slides/bayes-filters.pdf
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Bayes filter - example 2

Prob 0 1

t=4

https://people.eecs.berkeley.edu/ pabbeel/cs287-fal3/slides/bayes-filters.pdf

Marc Bestmann i 6 / Jianwei Zhang
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Bayes filter - example 2

Prob 0 1

t=5
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Markov assumption

The assumption of a state being complete is called Markov
assumption

» The assumption states independence of past and future data, if
the current state x; is known

The following is meant to illustrate, how tough this assumption is:

» Assuming that Bayes filters are used for localization of mobile
robots, ...

» ...and x; is the pose of the robot in relation to a static map

Marc Bestmann / Michael Gérner / Jianwei Zhang
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1.3 State estimation - Bayes filter

Markov assumption (cont.)

There are effects which falsify sensor measurements systematically
and therefore render the Markov assumption void:

» Inaccuracies in the probabilistic models p(x¢|us, x;—1) and
p(z¢|xe)

» Rounding errors, if approximations for the representation of the
belief are used

» Variables within the software, which affect several control
variables

» Influence of moving persons on sensor measurements

Some of these variables could be included in the state, but are
often abandoned in order to reduce computational effort

Marc Bestmann / Michael Gorner / Jianwei Zhang
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Bayes filters

Bayes filters (based on the general filter itself) can be implemented
in different ways

» The techniques are based on varying assumptions regarding the
probability of the measurements, the state transitions and the
belief

» In most cases the beliefs need to be approximated
» This affects the complexity of the algorithms

» Generally none of these techniques should be favored of the
others

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Bayes filters (cont.)

Various Bayes filter implementations express different runtime
behavior

» Some approximations require a polynomial runtime, depending
on the dimensionality of the state (e.g. Kalman filter)

» Some filters have an exponential runtime

» The runtime of particle based procedures depends on the
desired accuracy

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Bayes filters (cont.)

Some approximations are better suited to approximate a range of
probability distributions

» For uni-modal probability distributions, for example, normal
distributions qualify

» Histograms can approximate multi-modal distributions, at the
cost of accuracy and computational load

» Particle techniques can approximate a wide range of
distributions, possibly resulting in a large number of particles

Marc Bestmann / Michael Gérner / Jianwei Zhang
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1.3 State estimation - Bayes filter

Summary

Interaction between a robot and its environment is modeled as a
coupled dynamic system. For this purpose, the robot sets control
variables to manipulate the environment and perceives the
environment through sensor measurements

» System dynamics are characterized through two laws of
probability theory
» Probability distribution for the state transition
» Probability distribution for the measurements
The first one describes how the state changes over time, the
second one describes how measurements are perceived

Marc Bestmann / Michael Gorner / Jianwei Zhang
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Summary (cont.)

» The belief is the posterior probability of the state, given all
previous measurements and control variables

» The Bayes filter is a general (recursive) algorithm for
calculation of the belief

» The Bayes filter works based on the Markov assumption — The
state is a complete summary of the past. In practice, this
assumption is usually not true.

» Usually, the Bayes filter can not be applied directly.
Implementations can be evaluated based on certain criteria,
such as accuracy, efficiency and simplicity.

Marc Bestmann / Michael Gorner / Jianwei Zhang
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Localization

A robot's ability to determine its location relative to a map of the
environment

» Position tracking

Initial robot pose is known

> Localization after control command

» Pose uncertainty often approximated by a uni-modal distribution
» Position tracking is a local problem (relative localization)

v

» Global localization

» Initial robot pose is unknown

» Uni-modal distributions are no longer appropriate
» Absolute localization approach

» Variant: Kidnapped Robot Problem

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Localization (cont.)

Map m, measurements z and controls u are known, robot pose x must be inferred
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Localization (cont.)

Maps are usually specified in one of two forms

» Location-based

> Planar map with my , representing coordinate points
» Maps are volumetric, every point is labeled
> Information about objects in the environment and free space

» Feature-based

» Map with m, representing features (objects) in the environment

» Loss of information, shape of environment known at feature
locations only

» Compact and efficient representation

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Markov localization

Probabilistic localization approaches are variants of the Bayes filter

» The Bayes filter approach can be applied directly — Markov
localization

» Markov localization requires a map m of the environment
» The map plays a role in the motion and measurement models

» Markov localization is suitable for position tracking and global
localization problems in static environments

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Markov localization (cont.)

Algorithm Markov__Localization(bel(x;—1), ut, z¢, m):

=

. for all x; do
2 bel(xt) = [ p(xt | ue, xe—1, m) bel(xe—1) dxe—1
3 bel(x:) = n p(z: | x¢, m)bel(xt)

4. endfor
5

. return bel(x;)

Marc Bestmann / Michael Gérner / Jianwei Zhang
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1.4 State estimation - Mobile robot localization

Markov localization (cont.)

% O C T T T

bel(x)
% O C T T T

p(zlx)
A_A A X

bel ()
A_A A X

Convolution of prior with motion model followed by incorporation of the measurement model.

Marc Bestmann / Michael Gérner / Jianwei Zh.
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Markov localization (cont.)

bel(x)

- X

p(zlx)

A _A A X

bel(x) ‘

e

bel(x)

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Localization (cont.)

Kalman filter based localization approaches

» Belief bel(x;) represented by uni-modal Gaussian N (p¢, X+)
» Suitable for pose tracking
» Efficient means for integration of multiple sensors

» Map-based localization requires uniquely identifiable features
Particle filter based localization approaches

> Belief bel(x;) represented by particles

» Particles are discrete samples of the state probability
distribution
» Suitable for pose tracking and global localization problems

Marc Bestmann / Michael Gorner / Jianwei Zhang
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Kalman filter

The Kalman filter assumes linear system dynamics

» The state transition probability must be a linear function with
added Gaussian noise
xt = Aexe—1 + Brup + €

» ¢; models the uncertainty introduced by the state transition,
with its covariance denoted by R;

» The measurement probability must also be a linear function
with added Gaussian noise

Zy = CtXt + 51’

» C; is the measurement matrix and d; is a zero mean Gaussian
with covariance denoted by Q;

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Kalman filter (cont.)

> K; represents the Kalman gain, a specification of the degree to
which the measurement is incorporated into the new state
estimate

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Kalman filter (cont.)

Algorithm Kalman_Filter(p;—1, £¢-1, ut, z¢):

ftr = Aepre—1 + Brug

2. Z_t - Atzt_]_AZ— + Rt

3. Kt - ftCtT(CtZ_tCtT + Qt)_l
4 pe = fir + Ke(ze — Cefie)

5. Zt - (I - KtCt)Z_t

6. return p, >

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Kalman filter (cont.)

Advantages:

» Highly efficient (prediction and correction steps in closed form)

» Optimal for linear Gaussian systems

The correctness of the Kalman filter crucially depends on the
assumptions that the measurements are a linear function of the
state and that the next state is a linear function of the current
state

» Most problems in robotics are non-linear

» State transitions and measurements are usually non-linear
» So the Kalman filter is not directly applicable!

Marc Bestmann / Michael Gorner / Jianwei Zhang
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Extended Kalman filter

The Extended Kalman filter (EKF) relaxes the linearity assumption

» State transition probability and measurement probability

xt = gug,xe—1)+ €t
Zy = h(Xt) + 5t

» However, the belief is no longer a Gaussian
» EKF calculates a Gaussian approximation to the true belief
» The approximation is determined through linearization

» Non-linear functions g and h are approximated by linear functions
that are tangent to g or h at the mean of the Gaussian
» This makes use of their Jacobian matrices G; and H;

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Jacobian Matrix
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» The Jacobian Matrix Jr of a function f : R" — R™ is the
matrix of all first-order partial derivatives of a vector-valued

function.
(Ur)y = 2
flij — 8XJ
ofi
Ox1
J of .. of | _ :
f Ox1 oxn | — .
Ofm
Ox1

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Extended Kalman filter (cont.)

Algorithm Extended_Kalman_Filter(u;—1, X1, us, zt):

L e = g(ue, pe—1)

2. Z_t == Gtzt_]_ GtT + Rt

3. Kt = ithT(th_thT + Qt)_l
4. pe = fir + Ke(ze — h(fr))

5. Zt - (I - Kth)Z_t

6. return p, >

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Extended Kalman filter (cont.)

Kalman filter vs. Extended Kalman filter

» The algorithms are quite similar and share several properties

» Most important difference concerns state prediction (line 1)
and measurement prediction (line 4)

> Linear predictions — Non-linear generalizations

» Additionally, EKF uses Jacobians G; and H; instead of the
corresponding linear system matrices A;, By and C;

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Extended Kalman filter - an example

X
Let a robot’s state be characterized by X = | y
0

» The robot can move forward by d meter and turn by ¢rad, but

v

only turns after moving. This can be represented by u = <Z>

» It can measure its absolute orientation 6 (by IMU)

» Define the transition and the measurement model g and h and
the covariance matrices of their noise terms, and compute their
Jacobian Matrices G and H

» Assume some initial belief bel(xp), an action vy, and a
measurement z; and compute bel(x; )

Marc Bestmann / Michael Gorner / Jianwei Zhang
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Extended Kalman filter - an example

J X x + d x cos(0)
g(( ), y|)=1y+dx*sin) | ;e ~N(0,Ry)
14 0 0+ ¢
0.01xd 0 0
R, = 0 0.01xd 0
0 0 00lxg

1 0 —d=xsin(9)
Gt:[% Z—i %}: 8 é d x cos(0)
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1.4 State estimation - Mobile robot localization

Extended Kalman filter - an example

0

o

be/(Xo) = N(/Lo = , 20 = 0)

o

0 1.0 % cos(0) 1.0
m=10+ [ 1xsin(0) | = O
0 0+1.6 1.6
001 O 0
Y1=G*xYX9xG +Ri=| 0 001 0
0 0 0.16

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Extended Kalman filter - an example

Kl = 0 ,Z1 = 2.0
16
17

beI(Xl) :

1.0 0
ﬂ1m+K1(zl—h(m))(0)-|— 0]+x04=| 0
i7
0
1
0

1
Y1 =(1-KixH)xX; = [0
0

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Extended Kalman filter - an example
0 0 0O
bel(Xo) =N([0],[0 0 0})
0 0 0O

ul:(l.o)
1.6

1.0 001 0 0
bel(X;)=N(| 0 ], 0 o001 0 |)

zZ] = 2.0

beix)=N([ 00 |, [ 0 001 o |)
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Kalman filter online demo

https://www.cs.utexas.edu/ teammco/misc/kalman_filter/

Marc Bestmann / Michael Gorner / Jianwei Zhang
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1.4 State estimation - Mobile robot localization

Extended Kalman filter (cont.)

Advantages:

» Highly efficient
» Useful for multi-sensor fusion

» Once non-linear functions g and h are linearized, the prediction
and update procedures are equivalent to those of the Kalman
filter

Disadvantages:

» Not optimal — Belief is approximated

» Can diverge if non-linearities are large

Marc Bestmann / Michael Gérner / Jianwei Zhang
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EKF localization

The Extended Kalman filter localization is a special case of Markov
localization

» Assumption: The map of the environment is represented as a
collection of features

At any point in time the robot observes a vector of ranges to
nearby features

» Features can be assumed to be uniquely identifiable

zt:(z},zf,...,z,_f”)

Marc Bestmann / Michael Gérner / Jianwei Zhang
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1.4 State estimation - Mobile robot localization

EKF localization (cont.)

bel(x)
A x

% O C T T T

bel(x)
A X

Uniquely identifiable features. Good knowledge about initial pose followed by convolution with motion model.

Marc Bestmann / Michael Gérnel
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EKF localization (cont.)

p(zlx)
A x

bel(x) ‘
R

bel(x)

‘ X

» Belief remains Gaussian at any point in time

» If unique feature identification is not given, maximum
likelihood estimation can provide correspondances

Marc Bestmann / Michael Gorner / Jianwei Zhang
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Unscented Kalman filter

The Unscented Kalman filter (UKF) is a variant of the Kalman
filter that improves the belief estimate through a stochastic
linearization method: the unscented transform

> It uses a weighted statistical linear regression process

Prediction and correction steps are preceeded with a sigma-point
extraction step

1. Deterministic extraction of sigma-points 2

2. Assignment of weights to extracted points

3. Transform of points through non-linear functions g and h
4

. Computation of Gaussian from weighted points

2| ocated at the mean and along the axes of the covariance

Marc Bestmann / Michael Gorner / Jianwei Zhang
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Unscented Kalman filter (cont.)

>

Highly efficient: Same complexity as EKF (constant factor
slower in typical practical applications)

Better linearization than EKF

For purely linear problems belief estimate is equal to that
generated by a Kalman filter

For non-linear problems the estimate is equal or better than
that generated by EKF

UKF is a derivative-free filter: No Jacobians needed

Still not optimal

Marc Bestmann / Michael Gérner / Jianwei Zhang
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KF based localization

» EKF and UKEF localization are only applicable to pose tracking
problems

» Linearized Gaussian approaches work well only if the pose
uncertainty is small

» Linearization is usually only good in close proximity to the
linearization point

» EKF and UKEF localization process only a subset of all
information in the sensor measurement data

» On the other hand it allows the efficient integration of
measurements from multiple sources

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Why do | need a Kalman filter?

| am designing an unmanned aerial vehicle, which will include several types of sensors:

« 3-axis accelerometer

39 « 3-axis gyroscope
« 3-axis magnetometer
v g
« horizon sensor
« GPS
20 « downward facing ultrasound.

A friend of mine told me that | will need to put all of this sensor data through a Kalman filter, but |
don't understand why. Why can't | just put this straight into my micro controller. How does the
Kalman filter help me about my sensor data?

kalman-filter uav

share improve this question edited Nov 11 12 at 16:14 asked Nov 5 '12 at 23:18

Atilla Ozgur 4 Rocketmagnet
103 o 3 4,133 #1016 @ 43

Marc Bestmann
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Grid localization

Grid localization approximates the belief using a Histogram filter
applied to the grid decomposition of the state space

>

>

>

Discretization of the state space through grid cells x
Allows multimodal distributions
This discrete Bayes filter handles a multitude of discrete
probabilities
bel(xt) = {pi.}
where each p, ; belongs to a grid cell xj
The union of all cells at time t represents the state space X;

Two typical grid decomposition approaches exist

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Grid localization (cont.)

(1) Metric grid decomposition
» Grid cells of equal size
» Typical cell sizes have about 15cm depth resolution at about 5°
angular resolution
» Higher resolution compared to the topological grid at the cost of
an increased computational effort

Grid Environment

T bely)

Il
pose
pa

Marc Bestmann / Michael Gérner / Jianwei Zhang
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1.4 State estimation - Mobile robot localization

Grid localization (cont.)

(2) Topological grid decomposition
» Cell represents a significant location/feature on the map
(Example: Door, Junction ...)
> Resulting grid is usually very coarse
> Grid depends on local map structure/conditions/data

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Grid localization (cont.)

Grid_Localization({py ¢—1, us, z:, m):

1. for all kK do

2. Pt = 2_ilpit—1- motion_model(mean(xy), ur, mean(x;))]
3. Pkt =1 - measurement_model(z;, mean(xx), m) - Py

4. endfor

5. return py ;

The function mean determines the center of mass of a cell x;

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Grid localization

bel(x)
T x

I bel(x)
(T ol X

I pleb)
A A A X

bel(x)
.| x

bel(x)
X
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Particle filter based localization

> Representation of belief by random samples (particles)

» Instead of representing parameterized distributions one can also
reason with samples from the distribution

» Estimation of multi-modal, non-Gaussian, non-linear processes

» Monte Carlo filter is the most popular particle based technique
» Applicable to position tracking and global localization problems

» Naive versions of the algorithm are simple to implement

Marc Bestmann / Michael Gérner / Jianwei Zhang
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1.4 State estimation - Mobile robot localization

Monte Carlo localization

» Monte Carlo localization (MCL) approximates the belief bel(x;)
through a set of M particles x:

Yo = {0 wl) [xf € Xeowf € R
with i = 1... M and state space X; at time t

» Each sample is assigned an importance weight w;

Wix)

A H ! “ 1|“|, X=

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Monte Carlo localization (cont.)

Discrete approximation of a probability distribution

v

» More particles can represent more complex distributions

» Approximation of any distribution is possible in theory

v

Algorithm is structurally similar to Markov localization,
intertwining motion model and sensor model updates

Wix)
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Monte Carlo localization (cont.)

» To focus particles on important regions of the state space,
Monte Carlo methods apply a resampling step
» Resampling: Selection of a new set of samples y; ...
> . ..from elements of the old sample set x:—1 ...
> ...generating new samples if necessary
» This ensures that samples with low weights get replaced by
more important samples

» It might add alternative hypotheses that were not represented

» Resampling was a major breakthrough for particle filters and
made them feasible in practice

Marc Bestmann / Michael Gorner / Jianwei Zhang
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Monte Carlo localization (cont.)

Algorithm Monte__Carlo__Localization(x;_1, ut, z:, m):

L Xe=xt=0

2. #update step

3. form=1to M do

4. x,'[m] = samp/e_motion_mode/(ut,x,_[':']l)
5
6
7

[ [m]

m]
w; | = measurement_model(z¢, x; -, m)

Xe =% U{d™, wi™)
endfor

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Monte Carlo localization (cont.)

#resampling step
9. fori=1to Mdo
10.  draw xti] favoring larger wt[i]
11.  add xt[i] to X+
12. endfor
13. return x;

Marc Bestmann / Michael Gorner / Jianwei Zhang
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Monte Carlo localization (cont.)

% O C T T T

bel(x)
gﬁ S e
e e e e e e o o e
p(zix)
A _A A X
bel(x) ‘
‘hl ‘||\ ‘LM‘ x

Random initialization. Incorporation of the motion model with weighting of the samples.

Marc Bestmann / Michael Gérnel
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Adaptive Sample Size

» The number of considered particles can be altered online

» If the distribution of the current belief changes its complexity
at runtime, the number of particles can be adjusted accordingly
» This is not easy to detect! Common attempts:

> Likelihood-based adaptation:
If measurements agree with most particles, fewer particles are
needed

> KLD-sampling:
If the expected area of important regions changes, sample size
can be adjusted to bound the error in terms of its KL-distance

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Monte Carlo localization (cont.)

bel(x)
e

p(zlx)
A _A A X

bel(x)

LA i x
SRR R

bel(x)

Marc Bestmann / Michael Gorner / Jianwei Zhang
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Monte Carlo localization (cont.)

Marc Bestmann / Michael Gérner / Jianwei Zhang



UH MIN Faculty gﬁrgsmg}
iti Department of Informatics
L2 ¥ University of Hamburg

1.4 State estimation - Mobile robot localization

Monte Carlo localization (cont.)
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Monte Carlo localization (cont.)
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Monte Carlo localization (cont.)

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Monte Carlo localization (cont.)

Marc Bestmann / Michael Go Jianwei Zhang
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Monte Carlo localization (cont.)
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Monte Carlo localization (cont.)
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Monte Carlo localization (cont.)
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Monte Carlo localization (cont.)
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Monte Carlo localization (cont.)
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Monte Carlo localization (cont.)
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Monte Carlo localization (cont.)
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Monte Carlo localization (cont.)
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Monte Carlo localization (cont.)
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Monte Carlo localization (cont.)
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Monte Carlo localization (cont.)
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Monte Carlo localization (cont.)

Marc Bestmann / Michael Gérner / Jianwei Zhang



UH MIN Faculty
iti Department of Informatics
L2 ¥ University of Hamburg

1.4 State estimation - Mobile robot localization 64-424 Intelligent Robotics

Particle Systems: Other Applications

v

Particle-based inference is not restricted to a Pose state space

v

Example Particle-based SLAM (gmapping)
» Particles model the robot's pose and an occupancy grid, i.e. a
probabilistic 2D map
> Measurements weight and update particles

Example FastSLAM

» Each particle encapsulates the robot's pose
and extended Kalman filters for each landmark

v

Particle-based Inverse Kinematics

> Particles represent joint angles of robotic manipulators
» Optimization w.r.t. target pose and secondary objectives

v

Marc Bestmann / Michael Gorner / Jianwei Zhang
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Application Example

> Non gaussian, multi-modal

Marc Bestmann / Michael Gérner / Jianwei Zhang
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