

64-424 Intelligent Robotics

https://tams.informatik.uni-hamburg.de/ lectures/2018ws/vorlesung/ir

Marc Bestmann / Michael Görner / Jianwei Zhang

University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems

Winterterm 2018/2019

MIN Faculty Department of Informatics

64-424 Intelligent Robotics

Outline

1. Distance

1 Distance

64-424 Intelligent Robotics

1. Distance

Fundamentals Sensors

Measurement of distance

The ability to measure distance plays a crucially important role in the field of robotics - it is particularly important for mobile robots

- Obstacle detection/avoidance
- Localization
- ► ...

Several sensors can be used to determine the distance

- Infrared/Ultrasonic sensor
- Laser rangefinder
- Camera-based

1.1 Distance - Fundamentals

64-424 Intelligent Robotics

Measurement of distance (cont.)

The predominant underlying physical principles for measurement of distance using sensor devices are:

- ► Time-of-flight (TOF)
 - \rightarrow Time required for a signal to travel through a medium
- Phase shift/difference
 - \rightarrow Difference in phase as a property of the reflected signal
- Triangulation
 - ightarrow The geometric approach

Time-of-flight

Measurement of distance using the *time-of-flight* principle is a straightforward process

- Emit signal (impulse)
- Measure time (Δt) until reception of the echo/reflection
- Determine distance (D) using knowledge about the speed (v) of the signal

$$D = \frac{\Delta t \cdot v}{2}$$

Time-of-flight (cont.)

Example: Distance measurement using light impulses

- ► *Signal*: Light impulse
- Medium: Air
- Measured time: 65 ns

Assuming v = c, where c is the speed of light (299792458 m/s) and a value of 65 ns for Δt the resulting distance is

Phase shift/difference

As an alternative to *time-of-flight*, the phase shift approach is also very straightforward

- Emit signal with wave length(λ)
- ▶ Measure phase difference between received echo and signal
- Determine distance (D) based on the phase shift (Δθ) between the reflected signal and the emitted signal
- ▶ For light modulated with frequency f_{mod} : $\lambda = \frac{c}{f_{mod}}$

$$D = \frac{1}{2} \cdot \frac{\Delta \theta}{2\pi} \cdot \lambda$$

Phase shift (cont.)

Phase shift (cont.)

Example: Distance measurement using light impulses

- Signal: Light impulse
- ► Medium: Air
- ► Frequency: 10 MHz
- Measured phase shift: 4.78rad

Assuming c the speed of light (299792458 m/s) the resulting distance is

$$11.45 \ m \approx \frac{1}{2} \cdot \frac{4.78}{2\pi} \cdot \frac{299792458 \ m/s}{1000000 \ s^{-1}}$$

Phase shift (cont.)

Caution:

- ▶ Impossible to distinguish between all $D = n \cdot \lambda, n \in \mathbb{N}$
- ▶ To receive a distinct result, constraints $\Delta \theta < 360^{\circ}$ and $2D < \lambda$ need to apply
- A modulation frequency of $f_{mod} = 10$ MHz results in a wavelength of about 30 m

Triangulation

Triangulation is the process of calculation of distance to a point using knowledge about viewing angles

- Use two viewing points with the distance between them (baseline) known
- Align both "viewers" looking towards the point in question
- Determine the angles of both "viewers" to the baseline
- Calculate the distance using basic trigonometry

Two viewing points may be obtained in a number of ways:

- Movement of a single sensor
- Special design of the sensor
- Multiple sensors

1.1 Distance - Fundamentals

MIN Faculty Department of Informatics

64-424 Intelligent Robotics

Triangulation (cont.)

$$D = l_2 = \frac{l_1 \sin(\alpha)}{\sin(\alpha + \Theta)}$$

Triangulation (cont.)

MIN Faculty Department of Informatics

64-424 Intelligent Robotics

Outline

1. Distance Fundamentals Sensors

Infrared sensors

- Infrared sensors are the most simple type of non-contact sensors
- Infrared sensors emit a signal in the infrared spectrum

Infrared sensors (cont.)

Reflection of the emitted signal by objects in the vicinity:

- The intensity of the reflected light is inversely proportional to the squared distance
- ► To be able to distinguish the emitted signal from other infrared sources in the vicinity (e.g. fluorescent lamps or sunlight), it is usually modulated with a low frequency (e.g. 100 Hz)
- Assuming that all objects are equal in color and surface, the distance to the objects can be determined with usable accuracy

Infrared sensors (cont.)

Measured sensor output based on different object surfaces

Infrared sensors (cont.)

Problem: In realistic environments, surfaces are not equal in color

- Colored surfaces reflect different amounts of light
- Black surfaces are practically invisible
- In fact, IR-sensors can only be used for object detection, but not for exact distance measurement
- If an IR-signal is received by the sensor, one can assume, that there's an object in front of of the sensor
- Note: A missing IR-signal does not necessarily mean there is no object in front of the sensor
- ▶ IR-sensors are usually used for short distances (50 to 100 cm)

Ultrasonic sensors

Dolphins and Bats use various different **so**und **n**avigation **a**nd **r**anging (sonar) techniques:

- Fixed frequencies
- Varying frequencies

Note: Although artificial ultrasonic sensors are capable of creating frequencies similar to those in the animal world, the animal capabilities remain unmatched

Ultrasonic sensors (cont.)

- Ultrasonic waves are differentiated from electromagnetic waves based on the following physical properties:
 - Medium
 - Speed (in medium)
 - Wavelength
- Ultrasonic waves require a medium like air or water
- Ultrasonic speed in air amounts to $331.3 \ m/s + 0.6 \times {}^{\circ}C$
- Time-of-flight measurement is possible for short distances
- ► The wavelength of an ultrasonic sensor driven with a frequency of 50 kHz amounts to \approx 6.872 mm

Ultrasonic sensors (cont.)

Piezoelectric ultrasonic transducer:

- To produce ultrasonic waves, the movement of a surface is required, leading to a compression or expansion of the medium
- One possibility to generate ultrasonic waves is the use of a piezoelectric transducer
- Applied voltage causes a bending of the piezoelectric element
- Piezoelectricity is *reversible*, therefore incoming ultrasonic waves produce an output voltage
- ► The opening angle (*beam angle*) of the ultrasonic signal, can be up to 30° wide

Ultrasonic sensors (cont.)

MIN Faculty Department of Informatics

64-424 Intelligent Robotics

Piezoelectric ultrasonic transducer (cont.)

Example: Pioneer platform equipped with 16 ultrasonic (sonar) sensors

Ultrasonic precision

The minimum distance d_{min} which can still be measured, is specified as:

$$d_{min} = \frac{1}{2} v t_{Impulse}$$

v: Speed of the wave in the corresponding medium $t_{Impulse}$: Duration of the emitted impulse in seconds

The maximum distance d_{max} which can still be measured, is specified as:

$$d_{max} = rac{1}{2} v t_{Interval}$$

v: Speed of the wave in the corresponding medium *t*_{Interval}: Time span between the single impulses

Ultrasonic sensors (cont.)

Reflection of ultrasonic waves from smooth (and flat) surfaces is well-defined

However:

- Very rough structures lead to *diffuse* reflection of ultrasonic waves
- Note: A round rod produces a diffuse reflection

Ultrasonic precision (cont.)

Measurements with sonar sensors are subject to several inaccuracies

- An object perceived at a distance may be located at an arbitrary position within the sonar cone on the arc at a distance
- Mirror and total reflections cause flawed measurements
- If the sonar beam hits a smooth object in a flat angle, the signal will usually be deflected and no echo will reach the sensor

Ultrasonic precision (cont.)

Caution:

- If several sonar sensors are used simultaneously, specifically encrypted signals need to be used, because otherwise crosstalk may occur
- Since the measurement depends on the temperature of the medium, a change in air temperature will introduce measurement errors (e.g. a difference of 16°C will cause a measurement error of 30cm over a distance of 10m)

Ultrasonic precision (cont.)

Measuring principle

MIN Faculty Department of Informatics

64-424 Intelligent Robotics

Ultrasonic precision (cont.)

Ultrasonic precision (cont.)

Invisible wall

MIN Faculty Department of Informatics

64-424 Intelligent Robotics

Ultrasonic precision (cont.)

MIN Faculty Department of Informatics

64-424 Intelligent Robotics

Ultrasonic precision (cont.)

Corner error

Laser range finders

- Laser range finders (LRF) measure the distance, speed and acceleration of recognized objects
- Functional principle similar to that of a sonar sensor
- Instead of a short sonic impulse, a short light impulse is emitted from the laser range finder
- The time span between emission and reception of the reflected impulse is used for distance measurement (time-of-flight)

Laser range finders (cont.)

- Using a rotating mirror, the pulsed laser beam is deflected and the environment is scanned in a fan-shaped area ("laser radar")
- In practice rotations between 0.1Hz and 100Hz are used

Laser range finders (cont.)

- Within its field (plane) of view the LRF emits a light impulse (spot) with a typical resolution of 0.25°, 0.5° or 1°
- Due to the geometry of the beam and the diameters of the single spots, they overlap on the measured object up to a certain distance

Laser range finders (cont.)

The range of the laser range finders depends on the *remission* (reflectivity) of the object and the transmitting power

Material	Remission
Cardboard, black	10 %
Cardboard, grey	20 %
Wood (fir raw, dirty)	40 %
PVC, grey	50 %
Paper, white dull	80 %
Aluminum, black	110150 %
Steel, stainless glossy	120150 %
Steel, high-gloss	140200 %
Reflectors	>2000 %

Moon reflectors

MIN Faculty Department of Informatics

64-424 Intelligent Robotics

Human Stereo Camera

$$\label{eq:classical} \begin{split} d &= c/(2^*tan(a/2)) \\ \text{Human performance: up to around } 2m \end{split}$$

MIN Faculty Department of Informatics

64-424 Intelligent Robotics

Humans "Cheating" in 3D Vision

Humans use a lot of visual cues for 3D vision

- Shading
- Texture
- Focus
- Motion
- Shadows
- Prior Knowledge

Art of Photography, Canon

MIN Faculty Department of Informatics

64-424 Intelligent Robotics

Robot Stereo Camera

 $https://aemstatic-ww2.azureedge.net/content/dam/VSD/print-articles/2014/11/1412VSD_ProdFocus_Fig1b.jpg$

MIN Faculty Department of Informatics

64-424 Intelligent Robotics

Stereo Camera Example

Raw image

Rectified image

Edge image

Depth image

Stage 1: Rectification After the images are transmitted to the PC over the IEEE-1394 bus, they are corrected and aligned to remove lens distortion. Stage 2: Laplacian of Gaussian The Laplacian of Gaussian filter is applied to create edge images that are not biased by image brightness.

Stage 3: Correlation Stereo For each pixel in the right image, a corresponding pixel in the left image is obtained via correlation using the

Sum of Absolute Differences criteria.

https://www.ptgrey.com/stereo-vision-cameras-systems

Computing Depth

 $http://graphics.cs.cmu.edu/courses/15869/fall2013 content/lectures/19_depthcamera/depthcamera_slides.pdf$

Correspondence Problem

http://graphics.cs.cmu.edu/courses/15869/fall2013content/lectures/19_depthcamera/depthcamera_slides.pdf

MIN Faculty Department of Informatics

64-424 Intelligent Robotics

Problems with Correspondence

Gregory Föll, Stereo Vision

Role of the Baseline

- Small Baseline
 - large depth error
- Large Baseline
 - difficult search problem
 - smaller area for depth information
- Multiple camera setups can provide small and large baselines at the same time
 - Increased complexity for processing multiple images

https://www.framos.com/en/news/stereo-applications-need-a-dedicated-lens-choosing

Depth Camera

- Two different base principles
 - Structured light
 - Time-of-Flight
- A lot of cheap sensors
 - XBox Kinect (360 / One)
 - Intel RealSense
 - Asus Xtion
 - ► ...

Structured Light

 Simplify correspondence problem by encoding spatial position in light pattern

 $http://graphics.cs.cmu.edu/courses/15869/fall2013 content/lectures/19_depthcamera/depthcamera_slides.pdf$

Structured Light

http://graphics.cs.cmu.edu/courses/15869/fall2013content/lectures/19_depthcamera/depthcamera_slides.pdf

Structured Light Application

http://graphics.cs.cmu.edu/courses/15869/fall2013content/lectures/19_depthcamera/depthcamera_slides.pdf

MIN Faculty Department of Informatics

64-424 Intelligent Robotics

XBox Infrared Output

MIN Faculty Department of Informatics

64-424 Intelligent Robotics

Time of Flight Cameras

Time of Flight Cameras

Peter Fankhauser, Kinect v2 for Mobile Robot Navigation Evaluation and Modeling, ETH Zürich

Time of Flight vs. Phase difference

- Kinect One uses phase difference
- Microsoft calls it "Time of Flight Camera" anyway
- Phase difference is simpler to measure for a whole picture

Calibration of Kinect for Xbox One and Comparison between the Two Generations of Microsoft Sensors, Diana Pagliari and Livio Pinto

Time of Flight Cameras

with active IR illumination

Source: XboxViewTV

In reality

- A lot of different products available
- Integrated combination of multiple cameras and structured pattern
- Depth processing sometimes onboard
- (Proprietary) driver software usually provides depth information
- Open source software for generic stereo camera
 - ROS (stereo_image_proc)
 - OpenCV
- Improvement of these sensors still active field of research

Summary

- Different methods to measure distance
 - Time of flight
 - Phase shift
 - Triangulation
- Multiple sensors based on these methods
 - Infrared sensors
 - Ultrasonic sensors
 - Laser range finders
 - Stereo cameras
 - Structured light cameras
 - Time of flight cameras

Summary (cont.)

Problems

- Material properties
- Invisible corners/walls
- Sunlight
- Multiple active sensors
- Correspondence

Literature list

[1] Gregory Dudek and Michael Jenkin.

Computational Principles of Mobile Robotics, chapter 4.4, 4.5, 4.7, pages 90–100. Cambridge University Press, 2. edition, 2010.

[2] Jacob Fraden.

Handbook of Modern Sensors: Physics, Designs, and Applications, chapter 7, pages 279–326. Springer New York, 4. edition, 2010.