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1. Transformations Further Reading

Coordinate systems
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Coordinate Systems

» Standard orthonormal basis
for 3D Cartesian space

» RGB — XYZ for
visualization

» When multiple CSs are
relevant, usually called
frame and associated with a
name

> There are many ways to
specify frames w.r.t. each
other

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Coordinate Systems - Handedness

Left-Handed Right-Handed

» DirectX, POV—Ray, Unity, > OpenGL, OpenCV, ROS,

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Coordinate Systems - Relative Pose

» The pose of a rigid object comprises its position and
orientation w.r.t. some CS
> It can be represented by

> its Cartesian coordinate system (CS) K (frame) and
> a transformation between CS K and e.g. the global CS B
(B — K)

ep 7
€ %,
7Ad e e —— unit vector
B - p. p’ —— position vector
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Coordinate transformation

» Transition between
coordinate systems (frames)

Typical reference frames:
Robot base
End-effector (tool)
Table (world)

Object

Camera

Screen

v

vV VY VY VY VY

Frame transformations convert
one frame into another.
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Relative Pose - Position

» Coordinates of the Origin

» Translations along the axis of the
reference coordinate system (here B)

- e  —— unit vector
. p, p’ —— position vector

B
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Relative Pose - Orientation (Spacial Alignment)
» Euler-angles ¢, 0,y

» Rotations performed in sequence around the
axes of a coordinate system

» e.g. Roll-Pitch-Yaw, ZY'Z", ... )
> Axis-Angle u, ¢ :

Pitch Axis

R

[

Yaw Axis

» Rotation around axis & by angle 6

> Elegant algebraic version: Unit Quaternions N\ y

» Rotation matrix R € R3*3

rni n2 ns
» 9 parameters for 3 DOF R

» For plain rotations: det(R) =1 31 r3p  r33

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Euler Angles
» Represented as rotations ¢, 0, € [0;27) around axes
» It remains undefined around which axes!
» Proper Euler angles rotate around:
> zZ—X—2z > y—z—y > X—zZ—X
> X—y—X > z—y—z > y—Xx—y
» Tait-Bryan angles rotate around:
> X—y—2z > Z—X—Yy > Zz—y—X
> y—z—Xx > X—zZ—Yy > y—Xx—2z

v

All sequences can be interpreted w.r.t. the reference frame
(extrinsic) or the partially rotated frame (intrinsic)

There are 24 possible interpretations of Euler angles!
A gimbal lock can happen!

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Gimbal Lock
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1.1 Transformations - Coordinate systems
Axis-Angle / Unit Quaternions

Euler’s Rotation Theorem Any rotation can be expressed as
an elemental rotation around a single axis (The Euler axis ).

Unit Quaternions

Axis-Angle
> Represented as
> Represented as g=w+x-i+y-j+z-k
e=[x,y,z] € R? and with unit vectors i, j, k and
0 [0;2m) lall =1

0 As A s A .9
» Often encoded as & only, = cos 5+ (&i+8j+&k)sin 5

where [[&]| = 0 » Usually encoded as
[X7y723 W] or [W7X7.y7z]

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Coordinate transformation

Points in space referenced in a local frame can be transformed into
a global frame through: p

» Translations

» Rotations

Bp = Bdy +8p;
= Bdi +BRk 1

Please note:

> BRK: rotation matrix R, that
describes rotations to generate
frame K from frame B e,n

e —— unit vector

> Kp: vector p based on frame K. d, p, P, — position vectors

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Application: Relative transformations

There are the following transformations:

> 7:

>

T6:

: World — Object

World — Base of the manipulator

Base of the manipulator
— End of the manipulator

End of the manipulator
— End effector

Object — Grasp Pose

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Application: Transformation chain

There are two descriptions of the end effector's frame, one in relation to
the object and the other in relation to the manipulator. Both descriptions
are equal:

ZT+E = BG

To find the manipulator transformation:

Te = Z'BGE™!

To determine the coordinate frame of the object:

B=ZT,EG™!

The transformation chain is also called the kinematic chain.

Marc Bestmann / Michael Gérner / Jianwei Zhang
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In Reality

If you are programming anything robotic related just use a library
which does the transformations for you. You will save time and
have less bugs.

If you use Euler Angles you do have to be aware of their downsides
and the order that this library uses.

Example libraries:

» tf (ROS, C++, Python)
» Robotics Library (C++)
» Robotic System Toolbox (Matlab)

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Want to Know More About Transformations

For a more in depth lecture about transformations in the robotic
domain, please visit "Introduction to Robotics" in the summer
term.

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Further Reading

— ADDITIONAL SLIDES FOR FURTHER READING —

Marc Bestmann / Michael Gorner / Jianwei Zhang
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Rotations in Euclidean plane R?

» Counterclockwise rotation of a vector p; in R? on the unit
circle by angle 0

ﬁ:(x1> x:linJS(Oé) @:(Xz) p2 = R(pi1,0)

yi y1 = sin(a) ¥2

=

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Rotations in Euclidean plane R?

» Counterclockwise rotation of a vector p; in R? on the unit
circle by angle 0

() e e ()

R(pi,0
v (p1,0)
xy = cos(a+6) = cosa - cosf —sina - sinf = xq cos @ — yysinf
y2 = sin(a+6) = sina - cosf + cosa - sin 6

= y1 cos 6 + xysinf

Y

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Rotations in Euclidean plane R?

» Counterclockwise rotation of a vector p; in R? on the unit
circle by angle 0

. (= x1=cos(e) . [ xo R
1_()/1) y1 = sin(a) P2 (y2) P2
xy = cos(a+6)

y2 = sin(a + 60)

cosq - cosf —sina - sind

= x1 cosf — yysinf
= sina-cosf + cosa - sinf

= y1 cos 6 + xysinf

xp \ _ [ cosf —sinf X1 B
ya /  \ sinf cosf

y1

» Consequently

5 _p oo . [ cosf) —sin@
P2 = Ropi with Ry = ( sinf cosf )

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Elemental Rotation around z-axis

» As before, adding an unchanged third dimension

» Rotation around z-axis by angle ¢:

cos(¢) —sin(¢) O
R, = |sin(¢) cos(¢) O
0 0 1

Marc Bestmann / Michael Gérner / Jianwei Zhang
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1.2 Transformations - Further Reading

Elemental Rotation around x-axis

Rotation around x-axis by angle :

1 0 0

Ry = |0 cos(y) —sin(%))
0 sin(¢) cos(v))

2T _ =T
Example: ' = Ry-3a
dx

- cos(¢) — a; - sin(v))
a, - sin(¢) + a; - cos(v))

/ Jianwei Zhang

Marc Bestmann / Michael Gérner /
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1.2 Transformations - Further Reading

Elemental Rotation around y-axis

Rotation around y-axis by angle 6:
cos(f) 0 sin(0)

Ro=| 0 1 0
—sin(f) 0 cos(6)

\ >

7z = cos(a+0) = cosa - cosf —sina - sinf = z; cosf — xysinf
xp = sin(a+60) = sina-cosf + cosa -sinf = xq cos b + z sinfd

Xo = X1 €os 8 + zysinf X cosd 0 sinf X1
y2=n y2 | = 0 1 0 n
7o = —x15inf + z, cos ¥ —sinf 0 cos# 7

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Concatenation of rotations

» Multiple rotations can be concatenated
» With rotation matrices, this is done by matrix multiplication

» Thus, the result is another rotation matrix R € R3*3

ni n2 ns
R=|rn1 n 3

31 32 33

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Sequence of rotations

» Sequence of rotations described by a single matrix "R,
(Rotation matrix R for frame ,, with reference to frame ™)

» Example:
Frame 1 is rotated in reference to Frame 0 by angle ¢ around
the z-axis

cos(¢) —sin(¢) 0O
OR; = |sin(¢) cos(¢) O
0 0 1

» Transformation of point P:

» Multiplication from the left: p’T =R, . p"
» Multiplication from the right: p” = p-°R;

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Left side multiplication (p'” =°R; - pT)
cos(6) —sin(@) O [pr]  [pcos(d) — py sin(0)
lsin(dﬂ cos(¢) 0] [py] = [pxsin(¢)+py605(¢)]

0 o 1] |p .

> lllustrated with ¢ =90° and p = [1 1 *]T

e P

OR; - [1 1 *] T _ [_1 1 *] T -

> p in reference to Frame 0 » p in reference to Frame 1

p rotated by 6 in Frame 0 Cp)T =Ry - (*p)T
(Op/)T — ORl . (Op)T

Transformation of 1p to %p
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Right side multiplication (p’ = p - °R;)

cos(¢p) —sin(¢p) 0O
[x Py Pzl [Sinétﬁ) COSé(ﬁ) 0:| = [pxcos(¢) — pysin(¢)  —pxsin(¢) + py cos(¢)  pz]
1

> lllustrated with ¢ =90° und p=[1 1 x|

» p in reference to Frame 0 » p in reference to Frame 1
s : ‘ . 1

Transformation of %p to !p p rotated by —¢ in Frame 1
1P:0P'0R1 IPIZIP'ORI

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Left vs. right side multiplication

» OR; . p (left side multiplication)

(°p)T =Ry - (!p)T  Transformation of coordinates (1)
from F; — Fy

(°p )T =O°R; - (°p)T  Point of Fy rotated by ¢

» p-OR; (right side multiplication)
1p=05.9R;  Transformation of coordinates (2)
from Fp — F1

1o/ =1p.%R;  Point of F; rotated by —¢

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Left vs. right side multiplication (cont.)

» OR; - p (multiplication from left)

(°p)T =°Ry - (!p)T  Transformation of coordinates
from F; — Fp

(*p)" =Ry - (°p)T  Transformation of coordinates  (3)
from Fo — F1

» p-OR; (multiplication from right)

1p=0p.0R, Transformation of coordinates
from Fp — F

Op=1p-1Ry Transformation of coordinates  (4)
F1 — F()

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Concatenation of rotations - extrinsic X-Y-Z

Rotations apply to the non-rotated axes of the original frame:

Sequential left side multiplications of the transformation matrices
by sequence of rotation

Example:
Consecutive rotation around X-Y-Z (RPY): yaw Y

1. Rotation by ¢ around x-axis Ry (roll) ish
2. Rotation by 6 around y-axis Ry ¢ (pitch) pite
3. Rotation by ¢ around z-axis R, 4 (yaw)

al = Rzg - Ryo- Ry - al

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Concatenation of rotations - extrinsic X-Y-Z

Xy-Yo-Zy R0.0 = Rz,gRy 0 R
Co6 —Sop 01 [cCo 0 SO1[L 0 o0
—1S¢ Cco o/ 0 1 oflo cv —Su
0 0 1||-S0 o co||o Sv cCu

S¢pCO  SPpSHSyY + CopCyp SpSOCY — CpSy

CHCO ChpSOSY — SHCyy  CPSOCY + SPpSih
| e COSy COCy

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Concatenation of rotations - intrinsic Z-X'-Z"

Rotations apply to the new, currently
transformed axes:

Example: rotation around Z-X'-Z":

1. Rotation v around the z-axis R, y
2. Rotation @ around the new x-axis Ry g
3. Rotation ¢ around the new z-axis R~ ¢

http:/ice wikibooks. org/
Note:

The rotation sequence corresponds to rotations around the fixed axes in
reverse order

1. Rotation around Z-axis by ¢

/ f— . . .
2. Rotation around X-axis by 6 #=Rey Reo Reyp- 2

3. Rotation around Z-axis by

Marc Bestmann / Michael Gorner / Jianwei Zhang
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Concatenation of rotations - intrinsic Z-X'-Z"

Zs- Xy 2y Ry0.6 = ReRaoRe
Around rotated axes Around fixed axes
Cy =Sy 0f (1 O 0 Cp —-S¢ O
— 1Sy cy o|l|o co —so||Se Co O
0 0 1] |0 SO (O 0 0 1

SYCo+ CpCOSy —SyYS¢+ CyYCOHCH —CySh
56S5¢ S50Co co

CCo — SYCOSH —CS— SYCOHCH  SySh ]

Note: Matrix multiplication is non-commutative:

AB + BA

Marc Bestmann / Michael Gérner / Jianwei Zhang
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1.2 Transformations - Further Reading

Notation of transformation

» Matrix multiplication using a 3 x 3 matrix can specify
rotation, scaling or shear
» But: Translation requires vector addition

» This can be handled by adding an additional column to the
matrix

» But: The matrix is no longer invertible

» Transition to R* (4 x 4 matrix), to specify rotation,
translation, shear, scaling and projection

» Use of homogeneous coordinates

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Homogeneous coordinates

» Homogeneous coordinates are known from the field of computer
graphics, to circumvent problems in matrix computation

» The points of an n-dimensional space are illustrated in an
n + 1-dimensional space
» p=(x,y,2) € R3 becomes p’ = (hx, hy, hz, h) € R*, with
h#0eR
Example:
(2,5,4) e R® — .., (1,25,2,05),..,(2,5,4,1),..,(4,10,8,2),.. € R*
» In robotics, h = 1, which is equivalent to a direct projection
between n-dimensional and (n + 1)-dimensional space

v

h is a scaling factor

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Homogeneous transformations

Rotation | Translation
Shear |
H= Localscaling |
________ - —————==
Projection | Scaling
3 | 3
X | X
= 3 1
——— ] ===
| 1x3 | 1x1

Marc Bestmann / Michael Gorner / Jianwei Zhang
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Homogeneous transformations (cont.)

» In robotics, only rotation and translation are important.
Therefore the homogeneous coordinates are specified as:

Rotation |  Translation
H=|-——-—"—-- | ——————
000 | 1
i 7 e — R 5 4x4
» Using p and R the result is: H = 00 0 1 eR

» Concatenation of several H through matrix multiplication
» Not commutative, in other words A- B # B - A

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Translation

Relocation by a vector p = [py, py, p] "

T(px,py,pz) -

OO O O =
O O = O
O = O O
P3P

T T ,
a - = T(PX7Py,Pz) - d with a=[ay,ay,a,,1]

= (ax + px, ay + Py, az + Pz, 1)T
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Rotation around the x-axis

Rotation around the x-axis by the angle :

1 0 0 0

R 0 cos(y) —sin(v) O
W) 710 sin(y)  cos(y) 0
0 0 0 1

3" = Ry a"

ax
ay - cos(v)) — a - sin(v))
a, - sin(¢)) + a; - cos(v))

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Rotation around y-axis

Rotation around the y-axis by the angle 6:

cos(d) 0 sin(f) O

0 1 0 O

R(0) = —sin(d) 0 cos(f) O
1

0 0 0

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Rotation around the z-axis

Rotation around the z-axis by the angle ¢:

cos(¢) —sin(¢)

R.(6) = sinégb) coso(gb)

0 0

O = O O
= O O O

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Compound rotation (X, Yy, Z;)

Re,0.0 = Rz,gRy,0Rx

Cé —S¢ 0 0] [Co 0 S0 0]t 0 0 0
S¢ Cp 0 0l 0 1 0 0|0 Cy —S¥ 0
0 0 1 0||-S0 0 co ol|o Sp Cy o0
0 o0 o010 o o 1[0 o o0 1

CHCO CpSOSY — SpCyy  CoSOCY + SpSih 0
SHCO  SpSOSY + CoCyp SHSOCH — CHSY 0
—S6 CoSY COCY 0

1

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Compound rotation (Zy, Xy, Z}))

Ry.0,6 = RzpRx0Rz 0

Cy —Sp 0 0]t 0 0 0][Co —-Sp 0 0
Sy Cyp 0 0| |0 CO —SO 0| |Sp Co 0O 0
0 0 100 S co of|lo 0o 10
o o o0 1l|o o o0 1/|0 0o 0 1

CCo— SYCOSH —CySp — SYCOHCH  SYSH 0
|S¢Ch+ CpCOSy —SyS+ CypCOCH —CipSH 0
0

1

565¢ S0Co co

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Example: Homogeneous coordinates

Points in space can be described by: P
» Position vectors

» Rotation matrix

Please note:: ik
Ry Rotation matrix R for

Bp Bd]_ +Bp1 frame K in relation to

frame

K.
— Bd]. +BRK Kp]. p: Vector p based on

frame K

In homogeneous coordinates:

B o B dl B RK 0 KPl e e —— unit vector
p H) — + d, p, p, —— position vectors
(H) 1 0o 1\1 PP P
B
€
B B K "
_ RK d]. P1 Please note:
- 0 1 1 BHK: Homogeneous transf. matrix H
P for frame K related to frame B;
p(Hy: Point p in homogeneous coordina-
— BHK KP(H) (5) * tes based on frame K
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Example: Homogeneous coordinates (cont.)

Bp = Bdy +Bdr +Bpy

= Bdi + BRk1 - Kb + BRk1 K Rk2" 2

With homogeneous coordi-
nates:

Bpiy = BHk1 F'Hkza  F2pym)

—— unit vector
d,p —— position vectors

Marc Bestmann / Michael Gérner / Jianwei Zhang




UH
Department of Informatic:
L2 ¥ University of Hamburg

1.2 Transformations - Further Reading 64-424 Intelligent Robotics

Coordinate frames

Coordinate frames are represented by four vectors of a
homogeneous transformation

ni hn2 n3 px

_(fh r2 r3 p| _ |21 2 3 py
H = [0 0 0 1] r31 12 13 p (©)
0 0 0 1

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Inverse transformations

The inverse of a rotation matrix is simply its transpose:
R1=RT und RRT =1

where [ is the indentity matrix.

The inverse of (6) is:

ni M1 i PT
H-1 = nz2 r2 2 PI l‘2

rn3 rn3 k3 —p

0O 0 O 1

where r1, ra, r3 and p are the four column vectors of (6)
and - the scalar product of vectors.

Marc Bestmann / Michael Gérner / Jianwei Zhang



UH MIN Facult;
iti Department of Informatic
L2 ¥ University of Hamburg

1.2 Transformations - Further Reading 64-424 Intelligent Robotics

Homogeneous transformations

» A homogeneous transformation describes the position and
orientation of a coordinate frame in space

» When defining a coordinate frame using a solid object, the
coordinate frame also explicitly specifies the position and
orientation of the solid object

» A homogeneous transformation can be decomposed into a
rotation and a translation.

> In order to reverse a homogeneous transformation its inverse
needs to be used.

» Several translations and rotations can be accumulated with
respect to the sequence of transformations

Marc Bestmann / Michael Gorner / Jianwei Zhang
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Marc Bestmann / Michael Gérner / Jianwei Zhang
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Outline

Camera calibration
Lens distortion

2. Vision systems Further Reading

Introduction

Marc Bestmann / Michael Gorn anwei Zhang
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2.1 Vision systems - Introduction

Introduction

Various vision systems are used in robotic applications as a
fundamental tool for environmental perception

» Much of the information obtained by the human brain includes
vision as a dominating/contributing modality

» Roughly 60% of the brain are said to be dealing with visual
data - mostly in combination with other modalities

Some of the questions computer/machine vision research is trying

to answer are:

» Where am 17 (Scene modeling, classification, recognition, etc.)

» What is around? (Object detection/recognition, etc.)
» How can | interact? (Structure estimation, tracking, etc.)

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Introduction (cont.)

Vision sensor technology is evolving steadily, with many (quite)
different options available

» Linear camera sensor

v

Analog CCD camera (black/white or color)
Standard CMOS camera (e.g. web cam)
High-Dynamic-Range (HDR) CMOS camera
Structured light camera (Infrared, RGB)

v

v

v

v

Stereo vision system

v

Omnidirectional vision system

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Introduction (cont.)

Vision systems are widely used in industrial automation applications

» Object grasping tasks
» Objects with predetermined position (e.g. production line)
» Randomly positioned objects (e.g. 'bin-picking’)

» Object handling tasks

» Cutting, tying, wrapping, sealing, etc.
> Inspection during assembly

» Assembly tasks
» Welding, gluing, attaching, etc.

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Introduction (cont.)
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Introduction (cont.)

Vision systems in robotics are used for a wide range of applications

» Perception of objects

» Static: Recognition, searching, indexing, ...
» Dynamic: Tracking, manipulation, ...

» Perception of humans
» Face recognition
» Gaze tracking

» Gesture recognition
>

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Introduction (cont.)

Navigation and modeling of the environment

» Robot localization:

» Relative
» Absolute
» In reference to various coordinate frames

» Object recognition and localization
» 3D scene reconstruction

» Allocation of the environment

Marc Bestmann / Michael Gérner / Jianwei Zhang



UH MIN Faculty
iti Department of Informatics
L2 ¥ University of Hamburg

2.1 Vision systems - Introduction 64-424 Intelligent Robotics

Introduction (cont.)

Vision-based motion control

» Visual-Servoing

» Coarse and fine positioning
» Tracking of movable objects

» Collision avoidance
» Depth map based distance measurement

» Coordination with other robots and/or humans

» Motion estimation
» Intention recognition

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Very common application scenario: Vision-based manipulator control.
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Application scenario (cont.)

Chain of transformations of the common application scenario.
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Kinematic chain

Data (points) can be easily transformed between coordinate frames
using a suitable transformation sequence of the kinematic chain

Z: Transformation from world coordinates to manipulator base
coordinates

Te: Compound transformation from the base of the manipulator to
the end of the manipulator

E: Transformation from the end of the manipulator to the gripper

B: Transformation from world coordinates to object coordinates

G: Specification of the grasp coordinate frame in reference to the
object coordinate frame
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Kinematic chain (cont.)

During grasping and manipulation of the object, the coordinates of
the grasping point can be determined in two ways:

ZT¢E = BG
B G
>
Origin Grasping
(world) position
z T, E

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Kinematic chain (cont.)

To determine the transformation of the manipulator, the following
equation needs to be solved:

Te = Z 'BGE!

In order to determine the location of the object after manipulation,
one has to solve:

B=ZT¢EG™!

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Kinematic chain (cont.)

A camera included in the scenario introduces two additional
transformation matrices:

C: Transformation of camera coordinates into world coordinates
(Off-line determination of the transformation through camera
calibration)

I: Transformation of grasping point coordinates into the camera
coordinate frame
(Grasping point is determined using image processing techniques)

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Kinematic chain (cont.)

The transformation P from the grasping point to the world
coordinate system is given as:

P=1C

The camera to world transformation is determined through the
following equation:

C=1I1P

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Camera calibration

Camera calibration in the context of three-dimensional image
processing is the determination of the intrinsic and/or extrinsic
camera parameters

Intrinsic parameters

> Internal geometrical structure and optical features of the
camera

Extrinsic parameters

» Three-dimensional position and orientation of the camera’s
coordinate frame in relation to a world coordinate frame

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Camera calibration (cont.)

What information does one get?

In order to reconstruct 3D information of the environment from
two or more images, it is necessary to know the relation between
the coordinate frames of the 2D image and the objects of the 3D
environment

» The relation between 2D and 3D can be described using two
transformations
> Perspective projection (3D — 2D)
» Backprojection (2D — 3D)

Marc Bestmann / Michael Gérner / Jianwei Zhang
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2.2 Vision systems - Camera calibration

Camera calibration (cont.)

Perspective projection (3D point — 2D point)

» Knowing the camera projection matrix the 2D projection of a
3D point can be determined (approximated)

Backprojection (2D point — 3D beam)

» If a 2D image point is known, there is a ray in 3D space on
which the corresponding 3D point lies

» If there are two or more views of the 3D point, its coordinates
can be determined using triangulation

Marc Bestmann / Michael Gorner / Jianwei Zhang
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Camera calibration (cont.)

» The perspective projection is useful in order to reduce the
search space during scene analysis

» The backprojection is helpful for deriving 3D information based
on features in 2D images

» These transformations are used in various applications:

» Automatic assembly
Robot calibration
Tracking

Trajectory analysis
3D metrology

vV vy vy VvYyy

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Camera calibration (cont.)

Several calibration techniques have been established

» Camera calibration can be done on-line or off-line
» Using a calibration object:

» Identification of the camera parameters
» Determination of coordinate transformation between camera
coordinates and world coordinates

» Using self-calibration approaches

» Using machine learning methods

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Pinhole camera model

Pinhole camera without lens distortion

Marc Bestmann



UH MIN Faculty (33777
ifi Department of Informatics [44
L2 ¥ University of Hamburg

2.2 Vision systems - Camera calibration 64-424 Intelligent Robotics

Pinhole camera model (cont.)

optical
axis

'
I
'
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| '

- '

<71 principal 1
i point. :
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! '
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| i
i v
'
i Y
+Y

Pinhole camera without lens distortion [OpenCV]
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Pinhole camera model (cont.)

> (Xw, Yw, Zw): 3D world coordinate system with the origin O,,

> (x,y,z): 3D coordinate system of the camera with the origin
O (optical center)

» (X, Y): 2D image coordinate system with the origin Oy

» f: Focal length of the camera

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Pinhole camera model (cont.)

Transformation from world to camera coordinates

> Let P(xw, Yw, Zw) be a point in the world coordinate system
> Its projection into the camera coordinate system can be
determined as follows:

X X
y| =R |yw| +t
| Z Zw
(n o ty
with R=|n r r and t= [t,
17 s rg t;
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Pinhole camera model (cont.)

Projection of camera coordinates onto image coordinates

>

Point P is projected onto the corresponding (ideal) image
coordinate (u, v)
Perspective projection with focal length f:

f f
u=x- v=y—
V4 V4
The image coordinates (X, Y) are calculated from (u, v) as

follows:
X =suu Y =s,v

The scaling factors s, and s, are used to convert the image
coordinates from meters to pixels
Su, Sy and f are the intrinsic camera parameters
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Transformation of world coordinates into image coordinates

» Since only two independent intrinsic parameters exist, one

defines:

fkx=fs, and f,="fs,

» Previous equations yield the distortion-free camera model.

Xp =

Marc Bestmann / Michael Gérner / Jianwei Zhang

fx

NXw + Byw + nRzZy + tx

i Xw + rgyw + rozy + t;

raXy + rsyw + rezw + ty

y reXw + r8yw + rzy + t;
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Pinhole camera model (cont.)

Pixel coordinates

» The coordinates (C, C,) of the image center need to be
subtracted from the image coordinates (X¢, Yf) determined
during perspective projection

» Due to the above, one has:

X =Xs — Gy
Y=Y-C,

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Calibration parameters

The pinhole camera model contains the following calibration
parameters:

» The three independent extrinsic parameters of R
» The three independent extrinsic parameters of t

» The intrinsic parameters f,, f,, C; and C,

Marc Bestmann / Michael Gérner / Jianwei Zhang
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2.2 Vision systems - Camera calibration

Calibration

The problem camera calibration procedures are trying to solve is
the identification of the unknown parameters of the camera model

» The computation of these parameters for the distortion-free
camera model yields the position of the camera in world
coordinates

Calibration requires a set of m object points, which:

1. Have known world coordinates {xw i, Yw.i, Zw,i}, i=1,...,m

with sufficiently accurate precision
2. Lie within the camera’s field of view
These calibration points are detected in the camera image with
their respective image coordinates {X;, Y;}

Marc Bestmann / Michael Gorner / Jianwei Zhang
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Calibration objects
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2.2 Vision systems - Camera calibration

Calibration objects (cont.)
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Typical calibration pattern
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2.2 Vision systems - Camera calibration

Use of calibration parameters
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Using the determined camera parameters, the image can be undistorted

Marc Bestmann / Michael Gérner / Jianwei Zhang
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2.3 Vision systems - Lens distortion

Lens distortion

Real cameras and lenses produce a variety of imaging errors and do
not satisfy constraints of the pinhole camera model

The main error sources are:
> Low spatial resolution due to low resolution of the camera
device being used
» Most (cheap) lenses are asymmetrical and generate distortions
» Imprecision during assembly (e.g. center of the image sensor
does not lie on the optical axis, sensor is not parallel to the
lens, etc.)

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Lens distortion (cont.)

» Distortion by the lens system results in a changed position of
the image pixels on the image plane

» The pinhole camera model is no longer sufficient

> It is replaced by the following model:
v =u+ Dy(u,v)
v'=v+D,(u,v)
where u and v are the non-observable, distortion-free image

coordinates, and v’ and v’ the corresponding distorted
coordinates

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Lens distortion (cont.)

position with
distortion
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2.3 Vision systems - Lens distortion

Lens distortion (cont.)

Types of distortion

» There are two primary types of distortions:

> Radial
» Tangential

» Radial distortion causes an offset of the ideal position inwards
(barrel distortion) or outwards (pincushion distortion)
Possible cause: Flawed radial bend of the lens

» Tangential distortion shifts the ideal position along a tangential

curve
Possible cause: Non-parallel sensor/lens

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Lens distortion

negative

positive

Radial distortion: Straight lines — no distortion

Marc Bestmann
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Lens distortion (cont.)

Axis of max

distortion

Tangential distortion: Straight lines — no distortion

Marc Bestmann
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Lens distortion (cont.)

Modeling of the lens distortion

» Various types of distortion are distinguished in literature:

1. Radial distortion
2. Decentering distortion
3. Thin prism distortion

» Decentering distortion and thin prism distortion are both radial
and tangential

» In the case of decentering distortion, optical centers of the
lenses are not colinear

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Lens distortion (cont.)

Radial lens distortion

Dy = ku(u? + v?)
Dy, = kv(u? + v?)

with k being the first radial distortion coefficient and (u? + v?)
being the squared radius

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Camera model

Since radial lens distortion is the dominant type, the following
equations can be used to establish a simplified, yet more correct
camera model:

Simplified camera model with distortion:

u' = u(l+ K'r?)
V= v(1+Kr?)

with 2 = u? + v2

Marc Bestmann / Michael Gérner / Jianwei Zhang
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2.3 Vision systems - Lens distortion

Camera model (cont.)

Radial distortion coefficient:

Since u and v are unknown, they are replaced by the measurable
image coordinates X and Y and one has

2= (X5, +(Y/5)°

and with

one gets

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Camera model (cont.)

Model for small radial distortions:

With the previously mentioned modifications, one gets the
following camera model for small radial distortions

NnXw + rRyw + 2w + tx

X(1+ kr?) 2 f, ,
( ) x rixw + rgyw + rozy + t;

faxXw + rsyw + r6zw + ty
rTXw + r8yw + rgzy + t;

Y(1+ kr?) = f,

Marc Bestmann / Michael Gérner / Jianwei Zhang
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In the Real World

Different open source implementations exists that do the camera
calibration for you.

» camera_calibration (ROS package)

» Interactive camera calibration application (OpenCV)

» Camera Calibrator (Matlab)

Marc Bestmann / Michael Gorner / Jianwei Zhang
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Summary
> Relies on computing transformation sequences between world,

object, reference, camera (...) frames

Camera calibration requires a set of free parameters to be
tuned (can be achieved by a suitable optimization technique)

Essential for retrieving accurate sensor measurements

Is typically done by using a geometric object with structured
visual pattern

Lens distortion (radial / tangential) needs to be incorporated

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Further Reading

— ADDITIONAL SLIDES FOR FURTHER READING —

Marc Bestmann / Michael Gorner / Jianwei Zhang
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Calibration procedure (R. Y. Tsai)

Tsai's calibration procedure represents one of the most established
techniques for determination of extrinsic and intrinsic camera
parameters

>

>

Determines the camera parameters in two stages

Exploits a geometric constraint in order to simplify the
parameter search problem

Requires at least 5 coplanar calibration points

In case of noncoplanar points at least 7 are required

Both calibration stages can be executed in real time

Marc Bestmann / Michael Gérner / Jianwei Zhang
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3
/D ; ;X
(X, Yu)
¥ Ny
4
Y L--\-\---7 PA(Xd, Yd)
W
|Po=(0,0,2)
W

P(x,¥,2)

or P(xw,yw,zw)

Radial alignment constraint: Direction of vectors O,-7-"d and OZ_PW
is a function of only the relative rotation and translation

Marc Bestmann
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Radial alignment constraint (cont.)

The radial alignment constraint (RAC) is a function of only the
relative rotation and translation (without z component) between
camera and calibration points

» Radial distortion does not affect the direction of the vector
from origin to (effective) image point

» The focal length scales Xy and Yy with the same rate — Does
not affect the direction either

With the given observations the radial alignment constraint is
defined as:

Xd _ nXxw+ nyw+ i
Yo  raxw + rsyw +ty

Marc Bestmann / Michael Gérner / Jianwei Zhang
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RAC-based calibration

The procedure assumes that C,, C, and p = % are known

parameters (obtained from manufacturer)

> Extrinsic parameters R and t and the intrinsic parameters f,, f,
and k are to be determined

» For calibration, a reasonable number of coplanar/noncoplanar
calibration points must be acquired

» Calibration is performed in two stages
1. Determine the rotation matrix R and the components t, and t,
of the translation vector
2. Compute effective focal length, distortion coefficient, and the z
component of the translation

Marc Bestmann / Michael Gorner / Jianwei Zhang
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RAC-based calibration (cont.)
Stage 1

1. Compute the distorted image coordinates (X, ;, Yq.i)

With N as the number of calibration points, for i = 1,2,..., N one
has

Xa,i = Xri— Cx
Yai= Yri—C,

where X¢ j and Yy ; are the pixel values in the computer

Marc Bestmann / Michael Gérner / Jianwei Zhang
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RAC-based calibration (cont.)

Stage 1

2. Compute five unknowns for each calibration point

» With RAC independent from k and f — R, t, and t, can be
calculated

» Following from the RAC equation, five unknowns are
established

1

_ -1 -1 -1 — -1
{V17V27V37V47 V5}:{ty rlat r27ty txat r47ty r5}

Marc Bestmann / Michael Gérner / Jianwei Zhang




UH MIN Facult;
iti Department of Informatic:
L2 ¥ University of Hamburg

2.4 Vision systems - Further Reading

64-424 Intelligent Robotics

RAC-based calibration (cont.)
Stage 1

> Rearrangement of the RAC equation as a function of t, leads
to the following linear equation

Vi
V2
[Yaixwi Yaivwi Yai —Xdixwi —Xaiywi] |va| = Xa,

V4
V5

where x,, ; and y, ; are the x- and y-coordinates of the i-th
calibration point

Marc Bestmann / Michael Gérner / Jianwei Zhang
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RAC-based calibration (cont.)

Stage 1

>

>

The minimum number of necessary calibration pointsis N =5

With the minimum number of points provided a system of
linear equations can be established and solved for the unknowns

In practice, an appropriate number of calibration points would
be N >5

Note: If t, = 0, the above equation can also be formulated as
a function of t,

If one determines t, = t, = 0, the chosen calibration setup
needs to be adjusted

Marc Bestmann / Michael Gérner / Jianwei Zhang



UH MIN Facult;
iti Department of Informatic:
L2 ¥ University of Hamburg

2.4 Vision systems - Further Reading

RAC-based calibration (cont.)

Stage 1

64-424 Intelligent Robotics

3. Compute R, t, and t,

» Define C = [Vl v2] a submatrix of R
V4 Vg

» If no line or column equals zero, t}% is determined as follows:

2 _ Sr—/S2—4(vivs — vav2)?
Y 2(V1V5 — V4V2)2

with S, = Vi Hvi+vi+ve
» Otherwise one has:

2 2 2y—1

ty = (Vi + V_] )

where v; and v; are the elements from C, which are non-zero

Marc Bestmann / Michael Gérner / Jianwei Zhang
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RAC-based calibration (cont.)

Stage 1

> Physically, the algebraic signs of x,, ; and Xy ; as well as y,, ;
and Yy ; should be equal

» Assuming t, > 0 following components can be calculated

n = vty
rn = wty,
ra = vaty,
rs = vsty,
ty = v3ty,

Marc Bestmann / Michael Gérner / Jianwei Zhang
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RAC-based calibration (cont.)

Stage 1

» Using an arbitrary calibration point, the following coordinates
can be determined:

Xd = nxw + nPyw + tx
Yd = naxw + rsyw + ty

» If the signs of x,,; and Xy ; as well as the signs of y,, ; and Yy ;
re equal, then the assumption t, > 0 is true and we keep
rn, r, ra, rs and ty

» Otherwise, t, < 0 and we change the signs of ri, r, 4, r5 and
t, accordingly

Marc Bestmann / Michael Gérner / Jianwei Zhang
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Stage 1
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» There are two possible solutions for the rotation matrix R, if a
2 x 2 submatrix C is known

» R can be calculated based on:
r3==+(1- r12 — r22)1/2
re = tsign(rira + rars)(1 — rf — rg?)l/2

[r7 18 rg]T =[nn r3]T X [ra rs r5]T

» One of the two solutions leads to a positive sign of the focal
length in Stage 2 of the calibration procedure

Marc Bestmann / Michael Gérner / Jianwei Zhang
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RAC-based calibration (cont.)

Stage 2
Determination of the parameters t,, k, f, and f,

» If R, t, and t, are known, the remaining parameters for the
i-th calibration point can be determined using the following
linear equation:

t;
=Yi yi —yir?] | & | =Yiw
kfx

where

Yi = Xw,i+ rsyw,i+ty

Wi = I Xw,i + r8yw,i

Marc Bestmann / Michael Gérner / Jianwei Zhang
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RAC-based calibration (cont.)
Stage 2

» With the minimum amount of 5 calibration points, we already
have an over-determined system of linear equations

» The solution of this system of linear equations yields the
parameters k, t, and f,

» Using f, the other parameters can be computed:
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Hand camera calibration
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Hand camera calibration (cont.)

Task:
Determination of the fixed spatial relation between camera- (C)

and gripper-coordinate system (G) represented by the
homogeneous transformation ¢ Hg

Idea:

Direct computation of ¢Hg through model based localization of
visible gripper features
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Hand camera calibration (cont.)

Solution:

» Positioning of the gripper on a planar calibration object with
several calibration points

» Result: Gripper and calibration coordinate frames coincide

» Plane coincidence allows composition of the problem

“He = “Hw" He
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Hand camera calibration (cont.)

Approach:

1. Determination of intrinsic and extrinsic camera parameters
using the calibration object =  CHy,

2. Determination of the parameters of a 2D-transformation W Hg
using visible gripper features
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Hand camera calibration (cont.)

Advantages of "'self-visibility'':

» "Self-visibility" allows calibration of the configuration without
test movements of the manipulator as opposed to classical
procedures

» Two dot-shaped gripper features are sufficient for the
determination of ¢ Hg through solution in closed form

» Online-surveillance of the relative position between gripper and
object is possible

» Higher accuracy of offline calibration due to exclusion of
kinematic errors

» Higher level of robustness due to the possibility of online
re-calibration
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Visually controlled grasping
Task:

Two-dimensional fine positioning of a robot hand or a gripper in
relation to the object that is to be grasped

Procedure:

1. Offline-specification of the target position (e.g. object features
from stereo image processing)

2. Online transformation of the current difference in relation to
the target position (e.g. with a hand camera)
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Visually controlled grasping (cont.)

Target image Object position#

) +
*‘ P-Controller ‘4»‘ Hand motion }—»@
+

’ Feature extraction ‘47‘ Image capture ‘

Basic control loop used for visual servoing
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Visually controlled grasping (cont.)

Example of visually controlled gripper reaching a suitable
position and orientation for grasping of the object
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