
University of Hamburg

MIN Faculty
Department of Informatics

64-424 Intelligent Robotics

64-424
Intelligent Robotics

https://tams.informatik.uni-hamburg.de/
lectures/2018ws/vorlesung/ir

Marc Bestmann / Michael Görner / Jianwei Zhang

University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences
Department of Informatics
Technical Aspects of Multimodal Systems

Winterterm 2018/2019

Marc Bestmann / Michael Görner / Jianwei Zhang 1

https://tams.informatik.uni-hamburg.de/lectures/2018ws/vorlesung/ir
https://tams.informatik.uni-hamburg.de/lectures/2018ws/vorlesung/ir


University of Hamburg

MIN Faculty
Department of Informatics

64-424 Intelligent Robotics

Outline

1. Transformations 2. Vision systems

Marc Bestmann / Michael Görner / Jianwei Zhang 2



University of Hamburg

MIN Faculty
Department of Informatics

1 Transformations 64-424 Intelligent Robotics

Outline

1. Transformations
Coordinate systems

Further Reading
2. Vision systems

Marc Bestmann / Michael Görner / Jianwei Zhang 3



University of Hamburg

MIN Faculty
Department of Informatics

1.1 Transformations - Coordinate systems 64-424 Intelligent Robotics

Coordinate Systems

I Standard orthonormal basis
for 3D Cartesian space

I RGB → XYZ for
visualization

I When multiple CSs are
relevant, usually called
frame and associated with a
name

I There are many ways to
specify frames w.r.t. each
other
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Coordinate Systems - Handedness

Left-Handed

I DirectX, POV-Ray, Unity,
. . .

Right-Handed

I OpenGL, OpenCV, ROS,
. . .
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Coordinate Systems - Relative Pose

I The pose of a rigid object comprises its position and
orientation w.r.t. some CS

I It can be represented by
I its Cartesian coordinate system (CS) K (frame) and
I a transformation between CS K and e. g. the global CS B

(B → K)

ezK

exB

ezB

exK

eyK

p’

p

K

p, p’ −− position vector

e      −− unit vector

P

B

eyB

Marc Bestmann / Michael Görner / Jianwei Zhang 6



University of Hamburg

MIN Faculty
Department of Informatics

1.1 Transformations - Coordinate systems 64-424 Intelligent Robotics

Coordinate transformation

I Transition between
coordinate systems (frames)

Typical reference frames:
I Robot base
I End-effector (tool)
I Table (world)
I Object
I Camera
I Screen
I ...

Frame transformations convert
one frame into another.
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Relative Pose - Position

I Coordinates of the Origin
I Translations along the axis of the

reference coordinate system (here B)
ezK

exB

ezB

exK

eyK

p’

p

K

p, p’ −− position vector

e      −− unit vector

P

B

eyB

I Defined by: p = [px , py , pz ]
T ∈ R3 w.r.t. exB, eyB, ezB
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Relative Pose - Orientation (Spacial Alignment)
I Euler-angles φ, θ, ψ

I Rotations performed in sequence around the
axes of a coordinate system

I e.g. Roll-Pitch-Yaw, ZY ′Z ′′, . . .
I Axis-Angle ~u, φ

I Rotation around axis ê by angle θ
I Elegant algebraic version: Unit Quaternions

I Rotation matrix R ∈ R3×3

I 9 parameters for 3 DOF
I For plain rotations: det(R) = 1

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33


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Euler Angles

I Represented as rotations φ, θ, ψ ∈ [0; 2π) around axes
I It remains undefined around which axes!
I Proper Euler angles rotate around:

I z − x − z
I x − y − x

I y − z − y
I z − y − z

I x − z − x
I y − x − y

I Tait-Bryan angles rotate around:
I x − y − z
I y − z − x

I z − x − y
I x − z − y

I z − y − x
I y − x − z

I All sequences can be interpreted w.r.t. the reference frame
(extrinsic) or the partially rotated frame (intrinsic)

There are 24 possible interpretations of Euler angles!
A gimbal lock can happen!
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Gimbal Lock
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Axis-Angle / Unit Quaternions

Euler’s Rotation Theorem Any rotation can be expressed as
an elemental rotation around a single axis (The Euler axis ê).

Axis-Angle

I Represented as
ê = [x , y , z ] ∈ R3 and
θ ∈ [0; 2π)

I Often encoded as ê only,
where ‖ê‖ = θ

Unit Quaternions
I Represented as

q = w + x · i+ y · j+ z · k
with unit vectors i, j, k and
‖q‖ = 1

q = cos θ2+(êx i+ êy j+ êzk) sin θ
2

I Usually encoded as
[x , y , z ,w ] or [w , x , y , z ]
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Coordinate transformation

Points in space referenced in a local frame can be transformed into
a global frame through:
I Translations
I Rotations

Bp = Bd1 +Bp1
= Bd1 +BRK

Kp1

Please note:

I BRK : rotation matrix R, that
describes rotations to generate
frame K from frame B

I K p: vector p based on frame K .
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Application: Relative transformations

There are the following transformations:

T6

I Z: World → Base of the manipulator
I T6: Base of the manipulator

→ End of the manipulator
I E: End of the manipulator

→ End effector
I B: World → Object
I G: Object → Grasp Pose
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Application: Transformation chain

There are two descriptions of the end effector’s frame, one in relation to
the object and the other in relation to the manipulator. Both descriptions
are equal:

ZT6E = BG

To find the manipulator transformation:

T6 = Z−1BGE−1

To determine the coordinate frame of the object:

B = ZT6EG−1

T6

The transformation chain is also called the kinematic chain.
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In Reality

If you are programming anything robotic related just use a library
which does the transformations for you. You will save time and
have less bugs.
If you use Euler Angles you do have to be aware of their downsides
and the order that this library uses.
Example libraries:
I tf (ROS, C++, Python)
I Robotics Library (C++)
I Robotic System Toolbox (Matlab)

Marc Bestmann / Michael Görner / Jianwei Zhang 16



University of Hamburg

MIN Faculty
Department of Informatics

1.1 Transformations - Coordinate systems 64-424 Intelligent Robotics

Want to Know More About Transformations

For a more in depth lecture about transformations in the robotic
domain, please visit "Introduction to Robotics" in the summer
term.
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Further Reading

— ADDITIONAL SLIDES FOR FURTHER READING —
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Rotations in Euclidean plane R2

I Counterclockwise rotation of a vector ~p1 in R2 on the unit
circle by angle θ

~p1 =
(

x1
y1

)
x1 = cos(α)
y1 = sin(α)

~p2 =
(

x2
y2

)
~p2 = R(~p1, θ)

x2 = cos(α+ θ) = cosα · cos θ − sinα · sin θ = x1 cos θ − y1sinθ
y2 = sin(α+ θ) = sinα · cos θ + cosα · sin θ = y1 cos θ + x1sinθ(

x2
y2

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x1
y1

)
I Consequently

P1
2

p

p
1

Y

X

P2

α
+

θ
si

n
( 

  
  

  
)

θ

α

α+θcos(       )

Z

~p2 = Rθ ~p1 with Rθ =
(

cos θ − sin θ
sin θ cos θ

)
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Elemental Rotation around z-axis

I As before, adding an unchanged third dimension
I Rotation around z-axis by angle φ:

Rz ,φ =

cos(φ) − sin(φ) 0
sin(φ) cos(φ) 0

0 0 1


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Elemental Rotation around x -axis

Rotation around x -axis by angle ψ:

Rx ,ψ =

1 0 0
0 cos(ψ) − sin(ψ)
0 sin(ψ) cos(ψ)


Y

Z

Y

Z

ψ

ψ

ψ X

Example: ~a′T = Rx ,ψ ·~aT

=

 ax
ay · cos(ψ)− az · sin(ψ)
ay · sin(ψ) + az · cos(ψ)


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Elemental Rotation around y -axis

Rotation around y -axis by angle θ:

Ry ,θ =

 cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

 P1
2

p

p
1

X

Z

Y

P2

α
+

θ
si

n
( 

  
  

  
)

θ

α

α+θcos(       )

z2 = cos(α+ θ) = cosα · cos θ − sinα · sin θ = z1 cos θ − x1sinθ
x2 = sin(α+ θ) = sinα · cos θ + cosα · sin θ = x1 cos θ + z1sinθ

x2 = x1 cos θ + z1sinθ
y2 = y1
z2 = −x1sinθ + z1 cos θ

 x2
y2
z2

 =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 x1
y1
z1


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Concatenation of rotations

I Multiple rotations can be concatenated
I With rotation matrices, this is done by matrix multiplication
I Thus, the result is another rotation matrix R ∈ R3×3

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33



Marc Bestmann / Michael Görner / Jianwei Zhang 23



University of Hamburg

MIN Faculty
Department of Informatics

1.2 Transformations - Further Reading 64-424 Intelligent Robotics

Sequence of rotations

I Sequence of rotations described by a single matrix mRn
(Rotation matrix R for frame n with reference to frame m)

I Example:

P
1

P
0

y0

0z
0x

1x

1z

1y

φ

Frame 1 is rotated in reference to Frame 0 by angle φ around
the z-axis

0R1 =

cos(φ) − sin(φ) 0
sin(φ) cos(φ) 0

0 0 1


I Transformation of point P:

I Multiplication from the left: p′T = 0R1 · pT

I Multiplication from the right: p′′ = p · 0R1
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Left side multiplication (p′T = 0R1 · pT )cos(φ) − sin(φ) 0
sin(φ) cos(φ) 0

0 0 1

px
py
pz

 =

px cos(φ)− py sin(φ)
px sin(φ) + py cos(φ)

pz


I Illustrated with φ = 90◦ and p =

[
1 1 ∗

]T
0R1 ·

[
1 1 ∗

]T
=
[
−1 1 ∗

]TP

X

1

Y

1
Z

P

X

Y

Z

1

−1 1

I p in reference to Frame 0
P

Y

1
Z

X

KS0

1

0

PP
0

X

Y

Z

1

−1

KS0

1

0

p rotated by θ in Frame 0
(0p′)T = 0R1 · (0p)T

I p in reference to Frame 1
P

Y

1
Z

X

KS1

1

0

P P
1

X
1

Y
1

0

X
Z

1

−1 1
Z

0

0

Y0

1

Φ

1

1

KS1 KS0

(0p)T = 0R1 · (1p)T

Transformation of 1p to 0p
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Right side multiplication (p′ = p · 0R1)
[
px py pz

] cos(φ) − sin(φ) 0
sin(φ) cos(φ) 0

0 0 1

 =
[
px cos(φ) − py sin(φ) −px sin(φ) + py cos(φ) pz

]

I Illustrated with φ = 90◦ und p =
[
1 1 ∗

]
[
1 1 ∗

]
· 0R1 =

[
1 −1 ∗

]
P

X

1

Y

1
Z

P

X

Y

Z

1

−1 1

−1

I p in reference to Frame 0
P

Y

1
Z

X

KS0

1

0

PP

X
1

0

X0

1

Z

1

1
Z 0

Y0

1

Φ

1

1

1

−
1

KS0KS1

Y

Transformation of 0p to 1p
1p = 0p · 0R1

I p in reference to Frame 1
P

Y

1
Z

X

KS1

1

0

P P

X
1

1 1

Z1

Φ

1

1

1

−
1

KS1

Y

p rotated by −φ in Frame 1
1p′ = 1p · 0R1
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Left vs. right side multiplication

I 0R1 · p (left side multiplication)
(1)(2)

(0p)T = 0R1 · (1p)T Transformation of coordinates (1)
from F1 −→ F0

(0p′)T = 0R1 · (0p)T Point of F0 rotated by φ

I p · 0R1 (right side multiplication)
1p = 0p · 0R1 Transformation of coordinates (2)

from F0 −→ F1
1p′ = 1p · 0R1 Point of F1 rotated by −φ
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Left vs. right side multiplication (cont.)

I 0R1 · p (multiplication from left)
(3)

(0p)T = 0R1 · (1p)T Transformation of coordinates
from F1 −→ F0

(1p)T = 1R0 · (0p)T Transformation of coordinates (3)
from F0 −→ F1

I p · 0R1 (multiplication from right)
(4)

1p= 0p · 0R1 Transformation of coordinates
from F0 −→ F1

0p= 1p · 1R0 Transformation of coordinates (4)
F1 −→ F0
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Concatenation of rotations - extrinsic X-Y-Z

Rotations apply to the non-rotated axes of the original frame:

Sequential left side multiplications of the transformation matrices
by sequence of rotation

Example:
Consecutive rotation around X -Y -Z (RPY):
1. Rotation by ψ around x -axis Rx ,ψ (roll)
2. Rotation by θ around y -axis Ry ,θ (pitch)
3. Rotation by φ around z-axis Rz,φ (yaw)

a′T = Rz,φ · Ry ,θ · Rx ,ψ · aT
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Concatenation of rotations - extrinsic X-Y-Z

Xψ-Yθ-Zφ : Rφ,θ,ψ = Rz,φRy ,θRx ,ψ

=

Cφ −Sφ 0
Sφ Cφ 0
0 0 1

 Cθ 0 Sθ
0 1 0
−Sθ 0 Cθ

1 0 0
0 Cψ −Sψ
0 Sψ Cψ



=

CφCθ CφSθSψ − SφCψ CφSθCψ + SφSψ
SφCθ SφSθSψ + CφCψ SφSθCψ − CφSψ
−Sθ CθSψ CθCψ


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Concatenation of rotations - intrinsic Z -X ′-Z ′′

Rotations apply to the new, currently
transformed axes:
Example: rotation around Z -X ′-Z ′′:

1. Rotation ψ around the z-axis Rz,ψ

2. Rotation θ around the new x -axis Rx ′,θ

3. Rotation φ around the new z-axis Rz′′,φ

Note:
The rotation sequence corresponds to rotations around the fixed axes in
reverse order
1. Rotation around Z -axis by φ
2. Rotation around X -axis by θ
3. Rotation around Z -axis by ψ

a′ = Rz,ψ · Rx ,θ · Rz,φ · a
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Concatenation of rotations - intrinsic Z -X ′-Z ′′

Zφ-X ′θ-Z ′′ψ : Rψ,θ,φ = Rz,ψRx ,θRz,φ
Around rotated axes Around fixed axes

=

Cψ −Sψ 0
Sψ Cψ 0
0 0 1

1 0 0
0 Cθ −Sθ
0 Sθ Cθ

Cφ −Sφ 0
Sφ Cφ 0
0 0 1


=

CψCφ− SψCθSφ −CψSφ− SψCθCφ SψSθ
SψCφ+ CψCθSφ −SψSφ+ CψCθCφ −CψSθ

SθSφ SθCφ Cθ



Note: Matrix multiplication is non-commutative:

AB 6= BA
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Notation of transformation
I Matrix multiplication using a 3 × 3 matrix can specify

rotation, scaling or shear
I But: Translation requires vector addition

I This can be handled by adding an additional column to the
matrix
I But: The matrix is no longer invertible

I Transition to R4 (4× 4 matrix), to specify rotation,
translation, shear, scaling and projection

I Use of homogeneous coordinates
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Homogeneous coordinates

I Homogeneous coordinates are known from the field of computer
graphics, to circumvent problems in matrix computation

I The points of an n-dimensional space are illustrated in an
n + 1-dimensional space

I p = (x , y , z) ∈ R3 becomes p′ = (hx , hy , hz , h) ∈ R4, with
h 6= 0 ∈ R
Example:
(2, 5, 4) ∈ R3 −→ .., (1, 2.5, 2, 0.5), .., (2, 5, 4, 1), .., (4, 10, 8, 2), .. ∈ R4

I In robotics, h = 1, which is equivalent to a direct projection
between n-dimensional and (n + 1)-dimensional space

I h is a scaling factor
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Homogeneous transformations

H =


Rotation | Translation
Shear |

Localscaling |
− − −−−−−− − | − −−−−− −

Projection | Scaling



=


3 | 3
× | ×
3 | 1

−−−− | − −−−
1 × 3 | 1× 1


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Homogeneous transformations (cont.)

I In robotics, only rotation and translation are important.
Therefore the homogeneous coordinates are specified as:

H =

 Rotation | Translation
−−−− − | − −−−−−

0 0 0 | 1


I Using ~p and R the result is: H =

[
R ~p

0 0 0 1

]
∈ R4×4

I Concatenation of several H through matrix multiplication
I Not commutative, in other words A · B 6= B · A
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Translation

Relocation by a vector p = [px , py , pz ]
T :

T(px ,py ,pz) =


1 0 0 px
0 1 0 py
0 0 1 pz
0 0 0 1



a′T = T(px ,py ,pz) · aT with a=[ax ,ay ,az ,1]

= (ax + px , ay + py , az + pz , 1)T
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Rotation around the x -axis

Rotation around the x -axis by the angle ψ:

Rx(ψ) =


1 0 0 0
0 cos(ψ) − sin(ψ) 0
0 sin(ψ) cos(ψ) 0
0 0 0 1


a′T = Rx(ψ) · aT

=


ax

ay · cos(ψ)− az · sin(ψ)
ay · sin(ψ) + az · cos(ψ)

1


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Rotation around y -axis

Rotation around the y -axis by the angle θ:

Ry(θ) =


cos(θ) 0 sin(θ) 0

0 1 0 0
− sin(θ) 0 cos(θ) 0

0 0 0 1


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Rotation around the z-axis

Rotation around the z-axis by the angle φ:

Rz(φ) =


cos(φ) − sin(φ) 0 0
sin(φ) cos(φ) 0 0

0 0 1 0
0 0 0 1


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Compound rotation (Xψ, Yθ, Zφ)

Rφ,θ,ψ = Rz,φRy ,θRx ,ψ

=


Cφ −Sφ 0 0
Sφ Cφ 0 0
0 0 1 0
0 0 0 1



Cθ 0 Sθ 0
0 1 0 0
−Sθ 0 Cθ 0
0 0 0 1



1 0 0 0
0 Cψ −Sψ 0
0 Sψ Cψ 0
0 0 0 1



=


CφCθ CφSθSψ − SφCψ CφSθCψ + SφSψ 0
SφCθ SφSθSψ + CφCψ SφSθCψ − CφSψ 0
−Sθ CθSψ CθCψ 0
0 0 0 1


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Compound rotation (Zψ, Xθ,
′ Z ′′φ )

Rψ,θ,φ = Rz,ψRx ,θRz,φ

=


Cψ −Sψ 0 0
Sψ Cψ 0 0
0 0 1 0
0 0 0 1



1 0 0 0
0 Cθ −Sθ 0
0 Sθ Cθ 0
0 0 0 1



Cφ −Sφ 0 0
Sφ Cφ 0 0
0 0 1 0
0 0 0 1



=


CψCφ− SψCθSφ −CψSφ− SψCθCφ SψSθ 0
SψCφ+ CψCθSφ −SψSφ+ CψCθCφ −CψSθ 0

SθSφ SθCφ Cθ 0
0 0 0 1


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Example: Homogeneous coordinates
Points in space can be described by:
I Position vectors
I Rotation matrix

Bp = Bd1 +Bp1
= Bd1 +BRK

Kp1

Please note::
BRK : Rotation matrix R for

frame K in relation to
frame B

K p: Vector p based on
frame K

In homogeneous coordinates:
Bp(H) =

(Bd1
1

)
+

[BRK 0
0 1

](Kp1
1

)
=

[BRK
Bd1

0 1

](Kp1
1

)
= BHK

Kp(H)
(5)

Please note:
BHK : Homogeneous transf. matrix H

for frame K related to frame B;
K p(H): Point p in homogeneous coordina-

tes based on frame K
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Example: Homogeneous coordinates (cont.)

p1

d1

ez K1

eyK1

exK1K1

exK2K2

eyK2

ez K2

ezB

exB

eyB

P

d2

2p

B

p

e          −− unit vector

d, p      −− position vectors

Bp = Bd1 + Bd2 +Bp2

= Bd1 + BRK1 · K1d2 + BRK1
K1RK2

K2p2

With homogeneous coordi-
nates:

Bp(H) =
BHK1

K1HK2
K2p2(H)
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Coordinate frames

Coordinate frames are represented by four vectors of a
homogeneous transformation

H =

[
r1 r2 r3 p
0 0 0 1

]
=


r11 r12 r13 px
r21 r22 r23 py
r31 r32 r33 pz
0 0 0 1

 (6)
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Inverse transformations

The inverse of a rotation matrix is simply its transpose:
R−1 = RT und RRT = I

where I is the indentity matrix.
The inverse of (6) is:

H−1 =


r11 r21 r31 −pT · r1
r12 r22 r32 −pT · r2
r13 r23 r33 −pT · r3
0 0 0 1


where r1, r2, r3 and p are the four column vectors of (6)
and · the scalar product of vectors.
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Homogeneous transformations

I A homogeneous transformation describes the position and
orientation of a coordinate frame in space

I When defining a coordinate frame using a solid object, the
coordinate frame also explicitly specifies the position and
orientation of the solid object

I A homogeneous transformation can be decomposed into a
rotation and a translation.

I In order to reverse a homogeneous transformation its inverse
needs to be used.

I Several translations and rotations can be accumulated with
respect to the sequence of transformations
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Introduction

Various vision systems are used in robotic applications as a
fundamental tool for environmental perception

I Much of the information obtained by the human brain includes
vision as a dominating/contributing modality

I Roughly 60% of the brain are said to be dealing with visual
data - mostly in combination with other modalities

Some of the questions computer/machine vision research is trying
to answer are:

I Where am I? (Scene modeling, classification, recognition, etc.)
I What is around? (Object detection/recognition, etc.)
I How can I interact? (Structure estimation, tracking, etc.)
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Introduction (cont.)

Vision sensor technology is evolving steadily, with many (quite)
different options available

I Linear camera sensor
I Analog CCD camera (black/white or color)
I Standard CMOS camera (e.g. web cam)
I High-Dynamic-Range (HDR) CMOS camera
I Structured light camera (Infrared, RGB)
I Stereo vision system
I Omnidirectional vision system
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Introduction (cont.)

Vision systems are widely used in industrial automation applications

I Object grasping tasks
I Objects with predetermined position (e.g. production line)
I Randomly positioned objects (e.g. ’bin-picking’)

I Object handling tasks
I Cutting, tying, wrapping, sealing, etc.
I Inspection during assembly

I Assembly tasks
I Welding, gluing, attaching, etc.
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Introduction (cont.)

Automated visual inspection at the production line.
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Introduction (cont.)

Vision systems in robotics are used for a wide range of applications

I Perception of objects
I Static: Recognition, searching, indexing, . . .
I Dynamic: Tracking, manipulation, . . .

I Perception of humans
I Face recognition
I Gaze tracking
I Gesture recognition
I . . .
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Introduction (cont.)

Navigation and modeling of the environment

I Robot localization:
I Relative
I Absolute
I In reference to various coordinate frames

I Object recognition and localization
I 3D scene reconstruction
I Allocation of the environment
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Introduction (cont.)

Vision-based motion control

I Visual-Servoing
I Coarse and fine positioning
I Tracking of movable objects

I Collision avoidance
I Depth map based distance measurement

I Coordination with other robots and/or humans
I Motion estimation
I Intention recognition
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Application scenario

Very common application scenario: Vision-based manipulator control.
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Application scenario (cont.)

Chain of transformations of the common application scenario.
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Kinematic chain

Data (points) can be easily transformed between coordinate frames
using a suitable transformation sequence of the kinematic chain

Z : Transformation from world coordinates to manipulator base
coordinates

T6: Compound transformation from the base of the manipulator to
the end of the manipulator

E : Transformation from the end of the manipulator to the gripper

B: Transformation from world coordinates to object coordinates
G: Specification of the grasp coordinate frame in reference to the

object coordinate frame
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Kinematic chain (cont.)

During grasping and manipulation of the object, the coordinates of
the grasping point can be determined in two ways:

ZT6E = BG
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Kinematic chain (cont.)

To determine the transformation of the manipulator, the following
equation needs to be solved:

T6 = Z−1BGE−1

In order to determine the location of the object after manipulation,
one has to solve:

B = ZT6EG−1
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Kinematic chain (cont.)

A camera included in the scenario introduces two additional
transformation matrices:

C : Transformation of camera coordinates into world coordinates
(Off-line determination of the transformation through camera
calibration)

I: Transformation of grasping point coordinates into the camera
coordinate frame
(Grasping point is determined using image processing techniques)
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Kinematic chain (cont.)

The transformation P from the grasping point to the world
coordinate system is given as:

P = I C

The camera to world transformation is determined through the
following equation:

C = I−1 P
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Camera calibration

Camera calibration in the context of three-dimensional image
processing is the determination of the intrinsic and/or extrinsic
camera parameters

Intrinsic parameters

I Internal geometrical structure and optical features of the
camera

Extrinsic parameters

I Three-dimensional position and orientation of the camera’s
coordinate frame in relation to a world coordinate frame
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Camera calibration (cont.)

What information does one get?
In order to reconstruct 3D information of the environment from
two or more images, it is necessary to know the relation between
the coordinate frames of the 2D image and the objects of the 3D
environment

I The relation between 2D and 3D can be described using two
transformations
I Perspective projection (3D → 2D)
I Backprojection (2D → 3D)
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Camera calibration (cont.)

Perspective projection (3D point → 2D point)

I Knowing the camera projection matrix the 2D projection of a
3D point can be determined (approximated)

Backprojection (2D point → 3D beam)

I If a 2D image point is known, there is a ray in 3D space on
which the corresponding 3D point lies

I If there are two or more views of the 3D point, its coordinates
can be determined using triangulation
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Camera calibration (cont.)

I The perspective projection is useful in order to reduce the
search space during scene analysis

I The backprojection is helpful for deriving 3D information based
on features in 2D images

I These transformations are used in various applications:
I Automatic assembly
I Robot calibration
I Tracking
I Trajectory analysis
I 3D metrology
I . . .
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Camera calibration (cont.)

Several calibration techniques have been established

I Camera calibration can be done on-line or off-line
I Using a calibration object:

I Identification of the camera parameters
I Determination of coordinate transformation between camera

coordinates and world coordinates
I Using self-calibration approaches
I Using machine learning methods
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Pinhole camera model

Pinhole camera without lens distortion
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Pinhole camera model (cont.)

Pinhole camera without lens distortion [OpenCV]
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Pinhole camera model (cont.)

I (xw , yw , zw ): 3D world coordinate system with the origin Ow

I (x , y , z): 3D coordinate system of the camera with the origin
O (optical center)

I (X ,Y ): 2D image coordinate system with the origin O1

I f : Focal length of the camera
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Pinhole camera model (cont.)

Transformation from world to camera coordinates
I Let P(xw , yw , zw ) be a point in the world coordinate system
I Its projection into the camera coordinate system can be

determined as follows:xy
z

 = R

xw
yw
zw

+ t

with R =

r1 r2 r3
r4 r5 r6
r7 r8 r9

 and t =

txty
tz


I The parameters R and t are the extrinsic parameters
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Pinhole camera model (cont.)

Projection of camera coordinates onto image coordinates
I Point P is projected onto the corresponding (ideal) image

coordinate (u, v)
I Perspective projection with focal length f :

u = x fz v = y fz
I The image coordinates (X ,Y ) are calculated from (u, v) as

follows:
X = suu Y = svv

I The scaling factors su and sv are used to convert the image
coordinates from meters to pixels

I su, sv and f are the intrinsic camera parameters
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Pinhole camera model (cont.)

Transformation of world coordinates into image coordinates

I Since only two independent intrinsic parameters exist, one
defines:

fx ≡ fsu and fy ≡ fsv

I Previous equations yield the distortion-free camera model:

Xf = fx
r1xw + r2yw + r3zw + tx
r7xw + r8yw + r9zw + tz

Yf = fy
r4xw + r5yw + r6zw + ty
r7xw + r8yw + r9zw + tz
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Pinhole camera model (cont.)

Pixel coordinates

I The coordinates (Cx ,Cy ) of the image center need to be
subtracted from the image coordinates (Xf ,Yf ) determined
during perspective projection

I Due to the above, one has:

X = Xf − Cx

Y = Yf − Cy
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Calibration parameters

The pinhole camera model contains the following calibration
parameters:

I The three independent extrinsic parameters of R

I The three independent extrinsic parameters of t

I The intrinsic parameters fx , fy , Cx and Cy
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Calibration

The problem camera calibration procedures are trying to solve is
the identification of the unknown parameters of the camera model

I The computation of these parameters for the distortion-free
camera model yields the position of the camera in world
coordinates

Calibration requires a set of m object points, which:

1. Have known world coordinates {xw ,i , yw ,i , zw ,i}, i = 1, . . . ,m
with sufficiently accurate precision

2. Lie within the camera’s field of view

These calibration points are detected in the camera image with
their respective image coordinates {Xi ,Yi}
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Calibration objects

A typical 3D calibration object
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Calibration objects (cont.)

Typical calibration pattern
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Use of calibration parameters

Using the determined camera parameters, the image can be undistorted
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Lens distortion

Real cameras and lenses produce a variety of imaging errors and do
not satisfy constraints of the pinhole camera model

The main error sources are:
I Low spatial resolution due to low resolution of the camera

device being used
I Most (cheap) lenses are asymmetrical and generate distortions
I Imprecision during assembly (e.g. center of the image sensor

does not lie on the optical axis, sensor is not parallel to the
lens, etc.)
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Lens distortion (cont.)

I Distortion by the lens system results in a changed position of
the image pixels on the image plane

I The pinhole camera model is no longer sufficient
I It is replaced by the following model:

u′ = u + Du(u, v)
v ′ = v + Dv (u, v)

where u and v are the non-observable, distortion-free image
coordinates, and u′ and v ′ the corresponding distorted
coordinates
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Lens distortion (cont.)
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Lens distortion (cont.)

Types of distortion

I There are two primary types of distortions:
I Radial
I Tangential

I Radial distortion causes an offset of the ideal position inwards
(barrel distortion) or outwards (pincushion distortion)
Possible cause: Flawed radial bend of the lens

I Tangential distortion shifts the ideal position along a tangential
curve
Possible cause: Non-parallel sensor/lens
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Lens distortion

Radial distortion: Straight lines → no distortion
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Lens distortion (cont.)

Tangential distortion: Straight lines → no distortion
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Lens distortion (cont.)

Modeling of the lens distortion

I Various types of distortion are distinguished in literature:

1. Radial distortion
2. Decentering distortion
3. Thin prism distortion

I Decentering distortion and thin prism distortion are both radial
and tangential

I In the case of decentering distortion, optical centers of the
lenses are not colinear
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Lens distortion (cont.)

Radial lens distortion

Dur = ku(u2 + v2)

Dvr = kv(u2 + v2)

with k being the first radial distortion coefficient and (u2 + v2)
being the squared radius
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Camera model

Since radial lens distortion is the dominant type, the following
equations can be used to establish a simplified, yet more correct
camera model:

Simplified camera model with distortion:

u′ = u(1 + k ′r ′2)
v ′ = v(1 + k ′r ′2)

with r ′2 = u2 + v2
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Camera model (cont.)

Radial distortion coefficient:

Since u and v are unknown, they are replaced by the measurable
image coordinates X and Y and one has

r ′2 = (X/su)
2 + (Y /sv )

2

and with
µ ≡ fy

fx
=

sv
su

one gets
r2 ≡ µ2X 2 + Y 2
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Camera model (cont.)

Model for small radial distortions:

With the previously mentioned modifications, one gets the
following camera model for small radial distortions

X (1+ kr2) ∼= fx
r1xw + r2yw + r3zw + tx
r7xw + r8yw + r9zw + tz

,

Y (1+ kr2) ∼= fy
r4xw + r5yw + r6zw + ty
r7xw + r8yw + r9zw + tz
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In the Real World

Different open source implementations exists that do the camera
calibration for you.
I camera_calibration (ROS package)
I Interactive camera calibration application (OpenCV)
I Camera Calibrator (Matlab)
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Summary

I Relies on computing transformation sequences between world,
object, reference, camera (...) frames

I Camera calibration requires a set of free parameters to be
tuned (can be achieved by a suitable optimization technique)

I Essential for retrieving accurate sensor measurements
I Is typically done by using a geometric object with structured

visual pattern
I Lens distortion (radial / tangential) needs to be incorporated
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Further Reading

— ADDITIONAL SLIDES FOR FURTHER READING —
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Calibration procedure (R. Y. Tsai)

Tsai’s calibration procedure represents one of the most established
techniques for determination of extrinsic and intrinsic camera
parameters

I Determines the camera parameters in two stages
I Exploits a geometric constraint in order to simplify the

parameter search problem
I Requires at least 5 coplanar calibration points
I In case of noncoplanar points at least 7 are required

I Both calibration stages can be executed in real time
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Radial alignment constraint

Radial alignment constraint: Direction of vectors ~OiPd and ~OzPw
is a function of only the relative rotation and translation
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Radial alignment constraint (cont.)

The radial alignment constraint (RAC) is a function of only the
relative rotation and translation (without z component) between
camera and calibration points

I Radial distortion does not affect the direction of the vector
from origin to (effective) image point

I The focal length scales Xd and Yd with the same rate → Does
not affect the direction either

With the given observations the radial alignment constraint is
defined as:

Xd
Yd

=
r1xw + r2yw + tx
r4xw + r5yw + ty
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RAC-based calibration

The procedure assumes that Cx ,Cy and µ =
fy
fx are known

parameters (obtained from manufacturer)

I Extrinsic parameters R and t and the intrinsic parameters fx , fy
and k are to be determined

I For calibration, a reasonable number of coplanar/noncoplanar
calibration points must be acquired

I Calibration is performed in two stages
1. Determine the rotation matrix R and the components tx and ty

of the translation vector
2. Compute effective focal length, distortion coefficient, and the z

component of the translation
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RAC-based calibration (cont.)
Stage 1

1. Compute the distorted image coordinates (Xd ,i ,Yd ,i)

With N as the number of calibration points, for i = 1, 2, . . . ,N one
has

Xd ,i = Xf ,i − Cx

Yd ,i = Yf ,i − Cy

where Xf ,i and Yf ,i are the pixel values in the computer
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RAC-based calibration (cont.)
Stage 1

2. Compute five unknowns for each calibration point

I With RAC independent from k and f → R, tx and ty can be
calculated

I Following from the RAC equation, five unknowns are
established

{v1, v2, v3, v4, v5} ≡ {t−1y r1, t−1y r2, t−1y tx , t−1y r4, t−1y r5}

Marc Bestmann / Michael Görner / Jianwei Zhang 102



University of Hamburg

MIN Faculty
Department of Informatics

2.4 Vision systems - Further Reading 64-424 Intelligent Robotics

RAC-based calibration (cont.)
Stage 1

I Rearrangement of the RAC equation as a function of ty leads
to the following linear equation

[
Yd ,ixw ,i Yd ,iyw ,i Yd ,i −Xd ,ixw ,i −Xd ,iyw ,i

]

v1
v2
v3
v4
v5

 = Xd ,i

where xw ,i and yw ,i are the x - and y -coordinates of the i-th
calibration point
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RAC-based calibration (cont.)
Stage 1

I The minimum number of necessary calibration points is N = 5
I With the minimum number of points provided a system of

linear equations can be established and solved for the unknowns
I In practice, an appropriate number of calibration points would

be N > 5

I Note: If ty = 0, the above equation can also be formulated as
a function of tx

I If one determines tx = ty = 0, the chosen calibration setup
needs to be adjusted
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RAC-based calibration (cont.)
Stage 1

3. Compute R, tx and ty

I Define C ≡
[
v1 v2
v4 v5

]
a submatrix of R

I If no line or column equals zero, t2y is determined as follows:

t2y =
Sr −

√
S2

r − 4(v1v5 − v4v2)2
2(v1v5 − v4v2)2

with Sr ≡ v21+v22+v24+v25

I Otherwise one has:

t2y = (v2i + v2j )−1

where vi and vj are the elements from C , which are non-zero
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RAC-based calibration (cont.)
Stage 1

I Physically, the algebraic signs of xw ,i and Xd ,i as well as yw ,i
and Yd ,i should be equal

I Assuming ty > 0 following components can be calculated

r1 = v1ty
r2 = v2ty
r4 = v4ty
r5 = v5ty
tx = v3ty
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RAC-based calibration (cont.)
Stage 1

I Using an arbitrary calibration point, the following coordinates
can be determined:

Xd = r1xw + r2yw + tx
Yd = r4xw + r5yw + ty

I If the signs of xw ,i and Xd ,i as well as the signs of yw ,i and Yd ,i
re equal, then the assumption ty > 0 is true and we keep
r1, r2, r4, r5 and tx

I Otherwise, ty < 0 and we change the signs of r1, r2, r4, r5 and
ty accordingly
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RAC-based calibration (cont.)
Stage 1

I There are two possible solutions for the rotation matrix R, if a
2× 2 submatrix C is known

I R can be calculated based on:

r3 = ±(1− r21 − r22 )1/2

r6 = ±sign(r1r4 + r2r5)(1− r24 − r25 )1/2

[r7 r8 r9]T = [r1 r2 r3]T × [r4 r5 r6]T

I One of the two solutions leads to a positive sign of the focal
length in Stage 2 of the calibration procedure
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RAC-based calibration (cont.)
Stage 2

Determination of the parameters tz , k, fx and fy

I If R, tx and ty are known, the remaining parameters for the
i-th calibration point can be determined using the following
linear equation:

[
−Yi yi −yi r2i

]  tz
fx
kfx

 = Yiwi

where

yi ≡ r4xw ,i + r5yw ,i + ty
wi ≡ r7xw ,i + r8yw ,i
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RAC-based calibration (cont.)
Stage 2

I With the minimum amount of 5 calibration points, we already
have an over-determined system of linear equations

I The solution of this system of linear equations yields the
parameters k, tz and fx

I Using fx the other parameters can be computed:

fy = fxµ
k = (kfx )f −1x
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Hand camera calibration

Camera, gripper and world coordinate frames
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Hand camera calibration (cont.)

Task:

Determination of the fixed spatial relation between camera- (C)
and gripper-coordinate system (G) represented by the
homogeneous transformation CHG

Idea:

Direct computation of CHG through model based localization of
visible gripper features
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Hand camera calibration (cont.)

Solution:

I Positioning of the gripper on a planar calibration object with
several calibration points

I Result: Gripper and calibration coordinate frames coincide
I Plane coincidence allows composition of the problem

CHG = CHW
WHG
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Hand camera calibration (cont.)

Approach:

1. Determination of intrinsic and extrinsic camera parameters
using the calibration object ⇒ CHW

2. Determination of the parameters of a 2D-transformation WHG
using visible gripper features
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Hand camera calibration (cont.)

Advantages of "self-visibility":
I "Self-visibility" allows calibration of the configuration without

test movements of the manipulator as opposed to classical
procedures

I Two dot-shaped gripper features are sufficient for the
determination of CHG through solution in closed form

I Online-surveillance of the relative position between gripper and
object is possible

I Higher accuracy of offline calibration due to exclusion of
kinematic errors

I Higher level of robustness due to the possibility of online
re-calibration
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Visually controlled grasping

Task:

Two-dimensional fine positioning of a robot hand or a gripper in
relation to the object that is to be grasped

Procedure:

1. Offline-specification of the target position (e.g. object features
from stereo image processing)

2. Online transformation of the current difference in relation to
the target position (e.g. with a hand camera)
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Visually controlled grasping (cont.)

Basic control loop used for visual servoing
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Visually controlled grasping (cont.)

Example of visually controlled gripper reaching a suitable
position and orientation for grasping of the object
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