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Sensors in robotics: Perception

I Sensors are crucial to the development of intelligent robotic
systems

I Sensor data provides an abstract perception of the environment

I The Perception-Action-Cycle represents the control loop
1. Sensing of the environment
2. ”Intelligent” processing of obtained data
3. Execution of an action

I The cycle is crucial to the implementation of interactive,
adaptive and situation-based behavior

Marc Bestmann / Michael Görner / Jianwei Zhang 4



University of Hamburg

MIN Faculty
Department of Informatics

1.1 Fundamentals - Sensors in robotics 64-424 Intelligent Robotics

Perception-Action-Cycle: Overview
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Perception-Action-Cycle

1. Data acquisition: Sampling of analog/digital signals output
from sensor devices

2. Data (pre-)processing: Filtering, normalization and/or
scaling, etc., of acquired data

3. Data fusion: Combination/fusion of multi-modal and
redundant sensor data leading to robust measurements,
reduced uncertainty and an increase in information

4. Feature extraction: Extraction of features representing a
mathematical model of the sensed environment in order to
approximate the natural human perception

Marc Bestmann / Michael Görner / Jianwei Zhang 6



University of Hamburg

MIN Faculty
Department of Informatics

1.1 Fundamentals - Sensors in robotics 64-424 Intelligent Robotics

Perception-Action-Cycle (cont.)

5. Pattern recognition: Extracted features are searched for
patterns in order to classify the data

6. Environment modeling: Successfully classified patterns are
used to model the environment of the robotic system

. . . . . .
n. Action: Based on the model of the environment sets of

goal-oriented actions are executed manipulating the
environment (using robotic arms, grippers, wheels, etc.)

Marc Bestmann / Michael Görner / Jianwei Zhang 7



University of Hamburg

MIN Faculty
Department of Informatics

1.1 Fundamentals - Sensors in robotics 64-424 Intelligent Robotics

A Sensor - A Simple Example
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What is a sensor?

The sensor in the example consists of two parts:
I The water level indicator
I The human eye

⇒ Perception of the level indicator
results in a signal to the brain

Definition
A sensor is a unit, which
I receives a signal or stimulus
I and reacts to it
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Natural and physical sensors

Natural sensors:
I A reaction is an electrochemical signal on neural pathways
I Examples: Auditory sense, visual sense, tactile sense, . . .

Physical sensors:

Definition
A physical sensor is a unit, which
I receives a signal or stimulus
I and reacts to it with an electrical signal
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Input signal

I A physical sensor converts a (generally) non-electrical signal
into an electrical one

I This signal is referred to as the stimulus

Definition
A stimulus is a
I quantity,
I characteristic or
I state,
which is perceived and converted into an electrical signal
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Output signal
I The output signal can be

I a voltage,
I a current or
I a charge

I Furthermore, the signal can be distinguished by
I amplitude,
I frequency or
I phase
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Taxonomy

I Intrinsic sensors:
Provide data about the internal system state

I Extrinsic sensors:
Provide data about the environment

I Active sensors:
Modify applied electrical signal in response to the change of
the stimulus

I Passive sensors:
Create an electrical signal in response to the change of the
stimulus (conversion of the stimulus)
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Further classification

Physical sensors can also be classified by:
I Type of stimulus
I Characteristics, specification and parameters
I Type of stimulus detection
I Conversion of stimulus to output signal
I Sensor material
I Field of application
I . . .
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Sensor examples

I Intrinsic sensors:

Encoder (incremental/absolute), accelerometer, gyroscope, . . .

I Extrinsic sensors (force/pressure):

Strain gauge, force-torque sensor, piezoelectric sensor, . . .

I Extrinsic sensors (distance):

Sonar sensor, infrared sensor, laser range finder, . . .

I Visual sensors:

Linear camera, CCD-/CMOS-camera, stereo vision cameras,
omnidirectional vision camera, . . .
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Classification example

SENSORS

INTRINSIC EXTRINSIC

Encoder

Tachometer

Gyroscope CONTACT NON-
CONTACT

Bumper
Force-
Torque

Microphone

Laser range 
finder Camera

Infrared
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Measurement with sensors

I Measurement results have to be reliable (within specification)
I Important scientific criterion: Reproducibility of measurements
I Scientific statements have to be comparable
I Statements must be quantitative and based on measurements

I Measurement result consists of:
I Numerical value
I Measuring unit

I Additionally: Declaration of measurement accuracy

Measurement errors
No measurement process yields an entirely accurate result!
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Measurement deviation (Measurement error)

Systematic deviation ("systematic error"):
I Deviation is caused by the sensor itself
I For example: wrong calibration, persistent sources of

interference like friction, etc.
I Elimination is possible, but requires elaborate examination of

the error source

Random deviation ("random or stochastic error"):
I Deviation is caused by inevitable, external interference
I Repeated measurements yield different results
I Individual results fluctuate around a mean value
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Error declaration

I Measurements are always afflicted with uncertainty

I Example: Distance measurement
I Distance to an object is measured 10 times (x1, ..., x10)

Individual measurement results:
4, 40 m 4, 40 m 4, 38 m 4, 41 m 4, 42 m
4, 39 m 4, 40 m 4, 39 m 4, 40 m 4, 41 m

I Due to random deviation individual measurement results xi vary
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Error declaration (cont.)

Measurements can be illustrated in a histogram:
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Mean value

The mean value x̄ of the individual measurements xi is determined
as follows:

x̄ =
1
N

N∑
i=1

xi

I The mean value is also called arithmetic average or best
estimate for the true value µ

I µ is the mean or expected value of the set of all possible
measurement values (population)
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Absolute and relative error

Measurement deviation can be specified in two different ways
I Absolute measurement deviation ("Absolute error"):

The absolute error ∆xi of a single measurement xi equals the
deviation from the mean value x̄ of all N measurements
{xn|n ∈ {1 . . .N}} of a measurement series
I The unit is equal to that of the measured value
I ∆xi = |xi − x̄ |

I Relative measurement deviation ("Relative error"):
The relative error ∆xi rel is the relation between absolute error
∆xi and the mean value x̄
I Has no dimension, often specified as a percentage (%)
I ∆xi rel= ∆xi

x̄i
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Variance of a measurement series

I How far are the measurement samples spread out?

The distribution of single measurement values xi around the
arithmetic mean x̄ is represented by the variance of a measurement
series 1

s2 = (∆x)2 =
1

N − 1

N∑
i=1

(∆xi )
2

=
1

N − 1

N∑
i=1

(xi − x̄)2

1The factor 1/(N − 1) denotes Bessel’s correction of the bias
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Standard deviation of a measurement series

Similar to the variance, the positive square root of the variance -
called the standard deviation - is another representation of the
dispersion of measurement values xi around the mean value x̄

s =

√√√√ 1
N − 1

N∑
i=1

(xi − x̄)2

I The standard deviation is also known as the mean error of a
single measurement

I In contrast to the variance the standard deviation carries the
same unit as the measurement samples
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Standard deviation of the mean

I The true mean value (µ) of the population is unknown

The standard deviation of the mean value, also error of the mean
value, is determined as follows

sx̄ =

√√√√ 1
N(N − 1)

N∑
i=1

(xi − x̄)2

=
∆x√
N

=
s√
N

sx̄ is the deviation of the mean values of individual measurement
series (x̄) from the true mean value µ

Marc Bestmann / Michael Görner / Jianwei Zhang 25



University of Hamburg

MIN Faculty
Department of Informatics

1.2 Fundamentals - Measurement with sensors 64-424 Intelligent Robotics

Measurement result

I The variance and standard deviation of a measurement series
show us the spread from the mean of the series

I The standard deviation of the mean gives us the spread from
the true mean µ

With the above in mind we can expect a measurement sample to
be given by

x = (x̄ ± sx̄ ± s) [Unit]
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Normal distribution

I For N →∞ a discrete distribution of a measurement series
turns into a continuous distribution

I With N →∞ we can assume x̄ → µ and s → σ, resulting in
the density function of a normal distribution (Gaussian
distribution)

f (x) =
1

σ
√
2π

e−
(x−µ)2

2σ2

I The measurements of a physical/technical quantity X are
usually assumed to be normally distributed
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Normal distribution (cont.)
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Many measurements are not actually normally distributed

A model for measurements of distances might account for

I stochastic noise
I disturbances before target

I noise floor
I max-range artifacts
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Confidence interval

I Interval around a determined mean value of a measurement
series that is said to contain other samples of the series with a
given probability (confidence)

I A confidence interval of σ (sx̄ ) is said to contain 68.27 % of
the population samples

I Extended to 2σ (2sx̄ ) the interval covers 95.45 % of the
population

I 3σ (3sx̄ ) is said to contain 99.73 % of the population
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Confidence interval (cont.)
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Full scale input/output

I The dynamic range of measurable stimulus levels is defined as
the full scale input (span) of the sensor
I An input signal (stimulus) outside of the specified range may

result in a strong falsification of the output signal . . .
I . . . or damage the sensor (e.g. thermistor)

I Similarly to the range of the stimulus the full scale output
defines the range of output electrical signal

Marc Bestmann / Michael Görner / Jianwei Zhang 32



University of Hamburg

MIN Faculty
Department of Informatics

1.3 Fundamentals - Sensor characteristics 64-424 Intelligent Robotics

Accuracy

I Manufacturers always provide a specification of accuracy for
the given range of the output signal

I With physical sensors accuracy really means inaccuracy
I Often the inaccuracy is given in the form of a relative error
I Sometimes the manufacturer provides data about systematic

errors (determined through calibration)

I The specification of inaccuracy subsumes the effects various
sources of error
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Resolution

I The resolution is the smallest possible change of the stimulus
that is detected by the sensor

I Examples: Potentiometer (resistance), laser range finder
(distance), . . .

I The resolution may vary over the entire range of the input
signal

I The resolution of digital output is defined by the number of bits
I A sensor is said to have a continuous or infinitesimal resolution

if it does not have distinct resolution steps in the output signal
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Decision Task: Purchase a Scale

I Option A: 0-120±1 kg, displays 0.1 kg
I Option B: 0-150±0.1 kg, displays 1 kg
I Option C: 0-100±0.1 kg, displays 0.01 kg

I Range
I Accuracy
I Resolution
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Sensor characteristics

I A sensor may feed the stimulus through several conversion
stages until it emits an electrical output signal

I Example: Pressure on a fibre-optic sensor
1. Fiber strain → change of refractive index
2. Change of optical transmission properties
3. Photon flux detection
4. Conversion into electrical output signal

I We consider the sensor a "black box" and look at the relation
between the stimulus and the output signal
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Transfer function

I The transfer function of a sensor represents the relation
between stimulus and output signal

I Each sensor has an ideal/theoretical relation between the
stimulus and output signal

Definition
The ideal relation between stimulus and output signal of a sensor is
characterized by the transfer function

S = f (s)

I S represents the true value of the stimulus s
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Transfer function (cont.)

Possible transfer functions are

I Linear —
S = a + k · s

I Logarithmic —
S = a + k · ln s

I Exponential —
S = a · eks

I Polynomial —
S = a0 + a1 · sk
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Approximation of a transfer function

Measurement of a relation between two quantities x and y

I Linear relation → Linear regression (e.g. least-squares fit)
I Non-linear relation

I Linearization followed by linear regression (e.g. logarithmic
function)

I Least-squares fit through numerical optimization techniques

I To reduce the statistical error an adequate number of
measurements should be acquired
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Interlude - Approximation vs. Interpolation

A measurement series should be approximated using the simplest
possible function f (x)

I Approximation:
The function f (x) shows a very good representation of the
value pairs (xi , yi ) (e.g. least-squares fit)
I f (xi ) = yi does not need to be valid

I Interpolation:
The function f (x) shows an exact representation of the value
pairs
I f (xi ) = yi ; i = 1, 2, . . . , n must be valid
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Real transfer function

I Problem: Unlike the ideal transfer function the real transfer
function is usually neither linear nor monotonic

I The ideal relation between stimulus and output signal is
generally affected by
I manufacturing tolerances,
I material defects,
I environmental influences,
I wear and tear,
I . . .

I Nevertheless: Each sensor should work within the specified
precision

Marc Bestmann / Michael Görner / Jianwei Zhang 41



University of Hamburg

MIN Faculty
Department of Informatics

1.3 Fundamentals - Sensor characteristics 64-424 Intelligent Robotics

Real transfer function (cont.)

I S = fideal (s): The ideal transfer function
I ±∆: Maximum deviation from the ideal transfer function
I ±δ: Actual deviation from the ideal transfer function

Definition
The physical relation between stimulus and output signal of a
sensor is characterized by the real transfer function

S ′ = freal (s) = fideal (s)± δ δ ≤ ∆

I S ′ represents the measured value of the stimulus s
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Real transfer function (cont.)
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Real transfer function (cont.)
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Calibration error

A calibration problem
I According to specification a sensor has a linear transfer function
I However, manufacturing tolerances lead to different slopes

A calibration procedure
I The manufacturer determines the slope through:

I Application of multiple stimuli s1, ..., sn to the sensor
I Measurement of the corresponding output signals S1, ...Sn
I Calculation of the slope based on the obtained value pairs

I Caution: Due to measurement errors, the slope may deviate
from the real one if the pool of measured value pairs is chosen
too small
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Calibration error (cont.)
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Calibration error (cont.)
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Hysteresis error

I Some sensors output different signals if the stimulus value is
being approached from opposing directions of the range

I This deviation is called the hysteresis error

lim
ε→0,
ε>0

f (s + ε) 6= lim
ε→0,
ε<0

f (s + ε)

I Examples: Temperature sensor, displacement sensor, . . .
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Hysteresis error (cont.)
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Dead band

The dead band of a sensor is defined as insensitivity within a
coherent range of the input signal (usually close to 0), resulting in
the output of the same signal for that range
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Saturation

I Every sensor has a limited operating range, the full scale input

I Many sensors have a linear transfer function
I However, from a certain stimulus value on the output becomes

non-linear
I This effect is called saturation
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Saturation (cont.)
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Saturation (cont.)
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Repeatability error

I A sensor may produce different output values under the same
conditions

I This type of error is called repeatability error

I A repeatability error is usually determined as: Maximum
distance ∆ of two output signals for the same stimulus value

I Repeatability is specified in relation to the full scale input

δr =
∆

FSI · 100%
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Repeatability (cont.)
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Dynamic characteristics

I Under static conditions previously mentioned characteristics are
enough to fully specify a particular sensor

I However, variation of the stimulus introduces time-dependency
I Reason: The sensor does not always provide an immediate

response to the stimulus
I Therefore, a sensor does not always immediately output a

signal corresponding to the stimulus
I Such effects are called the dynamic characteristics of a sensor
I The associated errors are called dynamic errors
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Dynamic characteristics (cont.)
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Further sensor characteristics

I Reliability, e.g. mean time between failure (MTBF)
I Certain properties relevant to the field of application:

I Design
I Weight
I Form factor
I Price
I . . .
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Environmental factors

I Ambient temperature (minimum and maximum)
I Ambient air humidity (minimum and maximum)
I Short- and long-term stability (drift)
I Static and dynamic changes of electromagnetic fields,

gravitational forces, vibration, radiation etc.
I Self-heating (e.g. due to flow of current)
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The BioTac sensor
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The BioTac sensor (cont.)
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The BioTac sensor (cont.)
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The BioTac sensor (cont.)
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The BioTac sensor (cont.)
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