

64-424 Intelligent Robotics

https://tams.informatik.uni-hamburg.de/ lectures/2018ws/vorlesung/ir

Marc Bestmann / Michael Görner / Jianwei Zhang

University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems

Winterterm 2018/2019

MIN Faculty Department of Informatics

64-424 Intelligent Robotics

Outline

1. Ethics

1 Machine Learning 2 - Motion

64-424 Intelligent Robotics

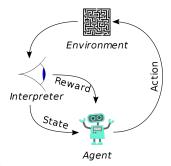
Outline

1. Ethics

Intro Future of Work Lethal Autonomous Weapons Further Things to Discuss

Reinforcement Learning

- Currently a hype topic in ML
 - Especially regarding robotics/motion
- Advances due to more investment
 - Most notably Google/OpenAl
- and common environments
 - OpenAl Gym
 - RoboSchool
 - PyBullet
- and baseline implementations
 - Open AI baselines
 - INRIA stable_baslines



https://en.wikipedia.org/wiki/Reinforcement_learning

Vanilla PPO

Video: https://www.youtube.com/watch?v=hx_bgoTF7bs Live Demo Roboschool

N. Heess et al, Emergence of Locomotion Behaviours in Rich Environments, 2017

Vanilla PPO - What is Learned

- Action: joint efforts
 - Planar walker: 9 DOF
 - Quadruped: 12 DOF
 - Humanoid: 28 DOF
 - Joints box constrained
- Observation proprioceptive
 - Joint angles and velocities
 - Velocimeter
 - Accelerometer
 - Gyroscope
 - Contact sensors at feet and leg
- Observation exteroceptive
 - Position in relation to center of the track
 - Profile of the terrain ahead

Vanilla PPO - What is Learned (cont.)

- Policy: two networks
 - Only proprioceptive observations
 - Only exteroceptive observations
 - Type of network not clear (probably MLP)
 - Somehow choose action together
- Reward
 - Forward velocity
 - Penalization for torques
 - Stay at center of track

N. Heess et al, Emergence of Locomotion Behaviours in Rich Environments, 2017

Vanilla PPO - How is it Trained

Mujoco simulation

- Physical parameters unknown
- Rate of policy unknown
- PPO Proximal Policy Optimization
 - Simplified version of TRPO Trust Region Policy Optimization
 - Current policy is used to choose actions
 - After an episode, advantages of those actions are computed
 - The policy is updated so that good actions become more propable and vice versa
 - Updates are clipped to prevent the policy from leaving the area where it can explore senseful
- Distribution through workers
 - Each worker collects data and computes gradients
 - Batch results are processed by chief
 - New policy is distributed to workers

Deep Mimic

Video: https://www.youtube.com/watch?v=vppFvq2quQ0

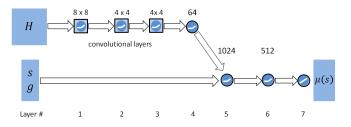
X. Peng et al., DeepMimic: Example-Guided Deep Reinforcement Learning of Physics-Based Character Skills, 2018

Deep Mimic - What is Learned

- Action: joint position
 - PD controllers compute effort
- "Observations" (States)
 - Relative pose of links to pelvis
 - Linear and angular velocity of links
 - Phase \in [0, 1]
 - Goal g
 - Target heading (walk)
 - Target position (kick, throw)
- Reward
 - $r_t = \omega' r' + \omega^G r^G$
 - Closeness to mocap and goal
 - $r^{I} = w^{P} r_{t}^{P} + w^{v} r_{t}^{v} + w^{e} r_{t}^{e} + w^{c} r_{t}^{c}$
 - Reward based on difference in joint position/velocity, end-effector position, CoM position

Deep Mimic - What is Learned (cont.)

- Policy: single network
 - Input goal and state
 - 2 hidden layer with 1024 and 512 neurons
 - ReLU activation
 - Additional CNN for height map



Deep Mimic - How is it Trained

- Mujoco simulation
 - Physics parameter unknown
 - ▶ 30 Hz
- Initial state distribution
 - "Man muss immer umkehren" Jacobi
 - Easier to learn starting from the back (backplay)
 - Reward clearer when near goal
 - Choosing initial state simple with mocap
- Early termination
 - Terminate episode if condition is reached
 - Classic for walking: head is below certain height
 - Reward for episode is set to zero
 - Further shapes reward function
 - Biases the data distribution to samples which are more favorable

1.3 Machine Learning 2 - Motion - Skills from Video

MIN Faculty Department of Informatics

64-424 Intelligent Robotics

Motion capture - small excursus

Motion capture - small excursus (cont.)

- Different ways to get the data
 - Infra red reflectors
 - LEDs blinking with different frequencies
 - IMUs on all links
 - Magnetic field based (hall sensor)
 - Exoskeleton measuring angles
- Pro
 - Faster learning
 - Less exploits of glitches
 - (Maybe) more useful on actual robot

Motion capture - small excursus (cont.)

- Contra
 - Expensive
 - A lot of work
 - Difficult to get data from animals, e.g. a tiger
 - You look kind of stupid while recording
 - Need to find a student which can do a round house kick
 - ▶ Need to bring student into hospital after failed round house kick

There has to be a better way!

1.3 Machine Learning 2 - Motion - Skills from Video

MIN Faculty Department of Informatics

64-424 Intelligent Robotics

Skills from Video

Video: https://www.youtube.com/watch?v=4Qg5I5vhX7Q

SFV - What is Learned

- Pose estimation
 - 2D and 3D
 - ▶ 2 different estimators OpenPose and Human Mesh Recovery
- Motion reconstruction
 - Find optimal motion from single poses
 - Enforce temporal consistency to reduce jitter and glitches
- ► Learning of motion is similar to DeepMimic, just without goal ► $r = w^P r_t^P + w^v r_t^v + w^e r_t^e + w^c r_t^c$

1.3 Machine Learning 2 - Motion - Skills from Video

MIN Faculty Department of Informatics

64-424 Intelligent Robotics

SFV - How is it Trained

- Pose estimators
 - Supervised learning on single images
- Motion part
 - Similar to DeepMimic

http://www.cs.cmu.edu/ yaser/

MIN Faculty Department of Informatics

64-424 Intelligent Robotics

Do We Walk With Our Brain?

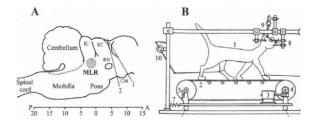
- How do humans compute their walking?
- Chickens can run without head
- Legend of Störtebecker

http://www.neurologie.usz.ch/ueber-die-klinik/veranstaltungen/Documents/7_hirnstimulation.pdf

64-424 Intelligent Robotics

Central Pattern Generators

- Biological neural circuits in the spline
- Generate rhythmic output after being activated
- Used by humans for walking, breathing, swallowing, ...
- Models of this can be implemented for robots



Central Pattern Generator, Mark L. Latash et al., Biomechanics and Motor Control, pp.157-174

Video

Show video

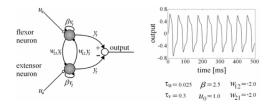
MIN Faculty Department of Informatics

64-424 Intelligent Robotics

64-424 Intelligent Robotics

Central Pattern Generators

- Flexor and extensor neuron
- Activated with tonic (non-rhythmic) signal
- Different patterns with different weights



Central Pattern Generators for Gait Generation in Bipedal Robots, Almir Heralic et al., Humanoid Robots, New Developments, 2007

MIN Faculty Department of Informatics

64-424 Intelligent Robotics

1.4 Machine Learning 2 - Motion - Central Pattern Generators

CPG - How is it learned

- It is not!
- Weights are hand crafted
- Learning would be possible either by direct parameter learning or RL

1.5 Machine Learning 2 - Motion - Evolutionary Approach

MIN Faculty Department of Informatics

64-424 Intelligent Robotics

Evolutionary Approach

Video https://www.youtube.com/watch?v=pgaEE27nsQw

1.5 Machine Learning 2 - Motion - Evolutionary Approach

64-424 Intelligent Robotics

Evolutionary Approach - What is Learned

- Muscle structure of the robot
- Parameters of FSM for leg state
- Target poses
- Force applied in relation to feedback
- Initial pose

Subject	Parameters
Muscle physiology	3-30 *
Muscle geometry	12–39 *
State transition	3
Target features	14
Feedback control	14-63 *
Initial character state	6

Geijtenbeek, Thomas, Michiel Van De Panne, and A. Frank Van Der Stappen. "Flexible muscle-based locomotion for bipedal creatures." ACM Transactions on Graphics (TOG) 32.6 (2013): 206.

Marc Bestmann / Michael Görner / Jianwei Zhang 🕢 🗆 🗧 🗸 🖉 🖒 🗧 🖒 🗧 👘 🖓 🔍 📯

1.5 Machine Learning 2 - Motion - Evolutionary Approach

64-424 Intelligent Robotics

Evolutionary Approach - How is it Trained

- Evolution approaches in general
 - Generate initial random population of parameter sets
 - Loop
 - Evaluate individuals based on fitness function
 - Pick best
 - Recombination / mutation
- Covariance matrix adaptation evolution strategy (CMA-ES)
 - Pairwise dependency between parameters is represented by covariance matrix
 - This matrix is updated to increase fitness
 - Good for ill-conditioned functions

64-424 Intelligent Robotics

Simulation Downsides - The Reality Gap

- Difference between simulation and reality
- Wrong models
 - Mass, inertia, size
 - Sensor noise non Gaussian
 - Actuator properties not correct
 - Change over time
 - No static values
- Friction / contact
- Soft bodies
- Environment model not correct
 - Changing lighting conditions
 - Cluttered background
 - Non static background

MIN Faculty Department of Informatics

64-424 Intelligent Robotics

Simulation vs. Reality (cont.)

- Simulation physics not correct
 - Discrete approximation of continuous system
 - Simplifications due to performance bounds
 - Glitches

64-424 Intelligent Robotics

Bridging the Reality Gap

- What can we do?
- Improving simulation accuracy (smaller step size)
 - Not enough to bridge reality gap
- Adding sensor noise
 - Noise is not perfectly Gaussian
 - Needs noise model, which can have errors
- Domain randomization
 - Currently the most used approach
 - Simulated variability in training time to make model generalize
 - Implementation depends on the scenario

J. Tobin et al., Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World, 2017

MIN Faculty Department of Informatics

64-424 Intelligent Robotics

Learning Dexterity

Video https://www.youtube.com/watch?v=jwSbzNHGfIM&t=1s

MIN Faculty Department of Informatics

64-424 Intelligent Robotics

Learning Dexterity - What is Learned

- CNN for object pose detection
 - Based on three camera inputs
- LSTM for finger actions given finger and object pose
- Both networks are concatinated

M. Andrychowicz et al., Learning Dexterous In-Hand Manipulation, 2018

MIN Faculty Department of Informatics

64-424 Intelligent Robotics

Learning Dexterity - How is it Trained

- PPO
- Domain randomization
 - Object dimensions
 - Object and finger masses
 - Surface friction coefficients
 - Robot joint damping coefficients
 - Actuator controller P term (proportional gain)
 - Joint limits
 - Gravity vector
 - Colors in simulation

MIN Faculty Department of Informatics

64-424 Intelligent Robotics

Learning Dexterity - Domain Randomization

64-424 Intelligent Robotics

Learning Dexterity - Impact of Domain Randomization

- Median number of successes
 - Without: 0
 - With: 11.5
- Training simulated time
 - Without: 3 years
 - With: 100 years



MIN Faculty Department of Informatics

64-424 Intelligent Robotics

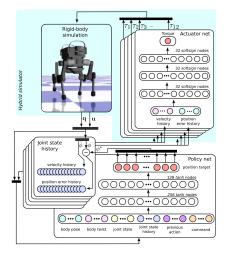
Learning Dynamic Skills

Video https://www.youtube.com/watch?v=aTDkYFZFWug

MIN Faculty Department of Informatics

64-424 Intelligent Robotics

Learning Dynamic Skills - Overview



64-424 Intelligent Robotics

Learning Dynamic Skills - What is Learned

- Policy Network
 - MLP 2 hidden layers 256, 128 nodes
 - Joint angles, velocities
 - Joint state history
 - Body height estimation (filtered forward kinematics)
 - Body pose, twist (IMU)
 - Previous action
 - Command
- Actuator Network
 - MLP 3 hidden layers with 32 nodes
 - Velocity history
 - Position error history

J. Hwangbo et al., Learning agile and dynamic motor skills for legged robots, Science Robotics 2018

64-424 Intelligent Robotics

Learning Dynamic Skills - How is it Trained

- Randomized simulator model
 - Links masses
 - CoM positions
 - Joint positions
- Policy Network
 - RL with TRPO
- Actuator Network
 - Supervised learning
 - Data collection on robot with simple walk algorithm
 - Joint Position error, Velocity, and Torque

MIN Faculty Department of Informatics

64-424 Intelligent Robotics

More Information

https://me.me/i/would-you-like-to-know-more-none-905fe16f7eaf4a3b96e292ff789f1e04

More Information

- We only had a quick overview, here are some further information
- ML Foundations
 - Machine learning lecture next semester
 - Arxiv Insights Youtube channel
 - R. Sutton Reinforcement Learning, an Introduction (free)
 - Berkeley Deep RL http://rail.eecs.berkeley.edu/deeprlcourse/
- Current advances
 - Open AI blog https://blog.openai.com/
 - reddit.com/r/MachineLearning
 - CORL conference (open access)
- If you have some good sources, tell me!

MIN Faculty Department of Informatics

64-424 Intelligent Robotics

Discussion

What would you teach a robot?

Masterproject Thesis