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Introduction

Introduction

Goal: Push objects on a surface to a goal position, while avoiding
collisions and local optima.

Approach: Learn a forward dynamic model and generate paths
with a sampling-based motion planner.
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Introduction

Introduction C Related Work Conclusion

Considered pushes are. ..

quasi-static (inertia is neglected due to low velocity).
executed with a single contact point.

applied to rigid objects.

A

planar (objects don't roll over).
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Push Mechanics

Introduction Related Work Conclusion

A theoretical model is given by Mason et al [4].

Essential factors are:

» Support force distribution of the object
» Support friction during the push

» Contact force and friction between pusher and object

Friction forces are determined by friction coefficients.
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Friction Cone

Introduction Related Work Conclusion

Friction coefficient p determines friction force f which is composed
of normal force f, and tangential force f;.



Friction Coefficients

Introduction Related Work Conclusion

They depend on materials, but also on surface structure, heat,
humidity. . .

Static Coefficient:

» Factor for motionless friction

» Limits the possible lateral force before sliding occurs
Dynamic Coefficient:

» Factor for friction during sliding
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Push Force

Introduction Related Work Approach Conclusion
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> If f is within the cone, the motions of contact point m and
pusher g align

» Otherwise, the pusher slides



Object Translation

Introduction Related Work Conclusion

Linear translations occur, if the push force points directly
through the Center of Friction.

Non-Linear translations can only be solved numerically as part of
rotations.
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Object Rotation

Introduction Relat ork Conclusion

A plot of rotation centers can be constructed numerically.
The solution lies on the perpendicular to the push force.
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Method Limitations

Introduction Related Work Conclusion

» Exact friction coefficients are unmeasurable in practice
» Methods only apply to pushes at surface level

» Inaccuracies in execution or setup calibration

— Many approaches learn friction models implicitly.
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Space Restriction

Introduction hec Related Work

slider

Image Space

1993 - Salganicoff et al [6] 1996 - Lynch et al [3]
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Shape Functions

Introduction e Related Work Conclusior

» Learning of effects and stability based on contact point

» Dynamics of unknown objects can be predicted by their shape
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End-to-End Learning

Related Work

2016 - Agrawal et al [1]

Predict Poke

» Deep learning of forward and inverse dynamic models
» 100k pokes executed with Baxter

» Greedy approach to reach goal state
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Approach

Introduction

Approach Conclusion

Learn a forward push model and use it for predictive planning.

Challenges

1. Autonomously explore pushes to collect samples
2. Generate forward push models

3. Implement a suitable planning strategy

4

. Execute push plans
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Setup

Introduction or Rela ork Approach Col siol References

» UR5 with Robotiq 3-finger adaptive gripper
» 3d-printed pusher tool
» Kinect2 and AprilTags2 for object localization
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Setup Accuracy

A critical factor is the camera localization.

The endeffector accuracy was increased to about 5mm by:
» upgrading to AprilTags 2

» using the mount plate for bundle detection
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Push Execution

Introduction K Approach Conclusion

Retreat

Start

Assumptions

» The push movement is linear with continuous velocity
» Pusher and object stay in contact during a push

» The push movement directs the contact force

» The contact force is continuous
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Exploration

Introduction

Approach Conclusion

Variable

Protocol

Ao, fip

Vo (Bo)
do

U(0,1) * shape
U(-0.5,0.5) rad

U(0.5,3) c

m

(3000 samples)

Y Position

—0.100

—0.10

D0 —1.075 —0.050—0.025 0.000 0.025 0.050 0.075 0.100
X Paosition

Restricted sampling keeps the object on the table.
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Sample Data

Introduction el . Approach Conclusior

(a) Box transforms from different approach points
—0.15 —0.10 —0.05 0.00 0.05 0.10 015 —-0.15 —0.10 —-0.05 0.00 0.05 0.10 015 -0.15 —0.10 —0.05 0.00 0.05 0.10 0.15

(b) Box transforms with weight attached to the object
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Push Specification

Introduction

Approach Conclusion

Pushes are defined in the object frame:

approach point Ae
approach normal e (ae)
push direction Vo (Bo+ o)
push distance do
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Forward Push Model

Introduction he rk Approach Conclusion

Learning Function

Function p predicts the transformation T given a push :

p:¢i>T

<X¢7Y¢7 a¢7/8¢7 d¢> i> <XT’yT7’7T>

SE(2) Loss

LSE(2) = Q/L)% =+ L}2, +05- L7
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Prediction Archltectures

Introduction Approach
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No: Hyperopt:
2.
Parameter Domain
optimizer Adam, Nadam, RMSProp
learning rate 0.001 * logU(—0.5, 0.5)
- - L2 weight 0.0007 * logU(—1.3,1.3)
! ! ! ! input activation linear, tanh, relu
(a)— 128 |+ 03 |»| 64 |+103 |5 32 |S(y)  hidden layers lto4
L””i L””i \CD per layer
a - units 2 qU(4,10)
0 - dropout U(0.0,0.5)
- activation Linear, Tanh, ReLu
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Introduction Thec

Hyperopt Result
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- 0.14,

Optimizer:

128

Approach Conclusion

1024| »

Learning Rate:

[2 regularization:

Adam
0.00061
0.00021



Prediction Accuracy

Prediction Error after 20 Epochs of 500 iterations (100 validation).
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The Hyperopt-model overfits on the validation set!

Lars Henning Kayser — Predictive Planning with Self-Explored Push Dynamics



Push Prediction
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Planning Problem

Introduction heory Related Work Approach Conclusion

Find a sequence of pushes that produce a path of object poses
from start to goal.

This is a motion-planning problem with the following domain:

State Space: SE(2)
Control Space: Pushes

All planners are implemented using the Open Motion Planning
Library (OMPL)[5].
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Sampling-based Plannmg (RRT)

Introduction hec rk Approach Conclusion

RRT Growth

1. Sample random (goal biased) pivot state
Find closest existing state

Generate control and duration

Add visited states to planning tree

oA W

Terminate if goal state is reached
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Random Controls

Introduction

Related Work

Approach

Conclusion
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» Push controls are random and not directed towards pivot state

» Goal-biased state sampling pulls the tree towards the goal
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Random Controls

Approach

Lars Henning Kayser — Predictive Planning with Self-Explored Push Dynamics



Directed Controls

Introduction c Relate rk Approach Conclusion

n goal goal o goal
o ° ° °
/// S r
f S1 @ -~~~ ©°
start start start

» Push controls are directed towards the pivot state

» Controls require sampling with distance minimization
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Directed Controls




Steered Controls

Introduction

Approach

Conclusion

rn/s goal

start

start

r2/52

goal

start

goal

r3/53

» Pushes are sampled that reach the pivot state

» This requires additional computation of the control duration

» Controls require distance minimization + repeated propagation
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Approach
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Chained Controls

Introduction ork Approach Conclusion

n goal goal goal
o ° 5 ° °
// r2
/ SR A )
start start start 30

» Contact points are sampled within vicinity
» Adjacent pushes are similar which leads to smoother paths

» Reduced search space allows efficient distance minization
sampling
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Chained Sampling




Execution Method

Approach

Open-loop execution causes error accumulation and object
deviation.

(20 pushes with an average rotation error of 4°per push)

Model-predictive control
Execute plan as long as the object is on path,
otherwise replan.
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Conclusion

Introduction . Related Work Conclusion

MPC Execution:
+ Feasible approach to avoid local minima

-+ Can correct inaccurate predictions

- Long planning times (about 0.5s-1s)
- Collision avoidance requires safety padding

- Only step-wise pushes possible
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