
MIN Faculty
Department of Informatics

Predictive Planning with Self-Explored Push
Dynamics

Lars Henning Kayser

University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences
Department of Informatics
Technical Aspects of Multimodal Systems

October 30, 2018

Lars Henning Kayser – Predictive Planning with Self-Explored Push Dynamics 1 / 39



Outline
Introduction Theory Related Work Approach Conclusion References

1. Introduction
2. Theory

Push Mechanics
Friction Coefficients
Prediction Methods

3. Related Work
Problem Restriction
Shape-based Methods
Deep Learning

4. Approach
Setup
Exploration
Forward Push Models
Sampling-based Planning
Execution Approaches

5. Conclusion

Lars Henning Kayser – Predictive Planning with Self-Explored Push Dynamics 2 / 39



Introduction
Introduction Theory Related Work Approach Conclusion References

Goal: Push objects on a surface to a goal position, while avoiding
collisions and local optima.

Approach: Learn a forward dynamic model and generate paths
with a sampling-based motion planner.
Lars Henning Kayser – Predictive Planning with Self-Explored Push Dynamics 3 / 39



Introduction
Introduction Theory Related Work Approach Conclusion References

Considered pushes are. . .

1. quasi-static (inertia is neglected due to low velocity).
2. executed with a single contact point.
3. applied to rigid objects.
4. planar (objects don’t roll over).

Lars Henning Kayser – Predictive Planning with Self-Explored Push Dynamics 4 / 39



Push Mechanics
Introduction Theory Related Work Approach Conclusion References

A theoretical model is given by Mason et al [4].

Essential factors are:
I Support force distribution of the object
I Support friction during the push
I Contact force and friction between pusher and object

Friction forces are determined by friction coefficients.

Lars Henning Kayser – Predictive Planning with Self-Explored Push Dynamics 5 / 39



Friction Cone
Introduction Theory Related Work Approach Conclusion References

Model for the friction of a single point on a surface:

1

µ

~ft

~fn

~f

Friction coefficient µ determines friction force ~f which is composed
of normal force ~fn and tangential force ~ft .



Friction Coefficients
Introduction Theory Related Work Approach Conclusion References

They depend on materials, but also on surface structure, heat,
humidity. . .

Static Coefficient:
I Factor for motionless friction
I Limits the possible lateral force before sliding occurs

Dynamic Coefficient:
I Factor for friction during sliding

Lars Henning Kayser – Predictive Planning with Self-Explored Push Dynamics 7 / 39



Push Force
Introduction Theory Related Work Approach Conclusion References

The friction cone also applies for the friction of the push contact.

~f
~m = ~p

~f
~m

~p

I If ~f is within the cone, the motions of contact point ~m and
pusher ~p align

I Otherwise, the pusher slides



Object Translation
Introduction Theory Related Work Approach Conclusion References

Linear translations occur, if the push force points directly
through the Center of Friction.

Non-Linear translations can only be solved numerically as part of
rotations.

Lars Henning Kayser – Predictive Planning with Self-Explored Push Dynamics 9 / 39



Object Rotation
Introduction Theory Related Work Approach Conclusion References

Rotations are described by their instantaneous Center of Rotation.

L

CL

R

CR

~p

C~p

A plot of rotation centers can be constructed numerically.
The solution lies on the perpendicular to the push force.

Lars Henning Kayser – Predictive Planning with Self-Explored Push Dynamics 10 / 39



Method Limitations
Introduction Theory Related Work Approach Conclusion References

I Exact friction coefficients are unmeasurable in practice
I Methods only apply to pushes at surface level
I Inaccuracies in execution or setup calibration

→ Many approaches learn friction models implicitly.

Lars Henning Kayser – Predictive Planning with Self-Explored Push Dynamics 11 / 39



Space Restriction
Introduction Theory Related Work Approach Conclusion References

Target (T)

Y

X

RT

Object (O)

Image Space

RO

Robot (R)

X

Y

Robot Space

Fig� � The pushing task� The pusher and object are
connected only with a point contact so that the object
can rotate relative to the pusher� The objective is to
push the object to the desired point in the image space�

quantities can be estimated� friction is di�cult to model
analytically in general because of its non�linear behavior�
Rather than estimate parameters and utilize an ana�

lytic model of friction� we develop a simple and direct
solution by measuring the e�ects of pushing actions on
the image�space orientation of the object relative to the
pusher� and then use a learned forward model to select
actions�
The pushing and sliding manipulation problem has

been studied extensively by Mason �Mason� ����� from
an analytical viewpoint� as well as from a learning per�
spective �Mason et al�� ������ Lynch �Lynch� ����� has
explored using visual measurements of object reaction to
pushing actions in order to explicitly estimate the center
of friction of the object� Zrimec �Zrimec� ����� imple�
mented a system which generated qualitative models of
the e�ects of pushing actions through experience which
were then used for planning�

A� Steering by Controlled Instability

Since point�contact pushing is an intrinsically unstable
process� one immediate objective might be to null the
rotation of the object in order to stabilize it relative to
the pusher� However� if the only objective is to zero the
object�s rotation� then control of steering is impossible�
since when this condition is achieved no directional cor�
rection is possible and pusher trajectory is 
xed� When
pushing an object� we desire to null its rotation only when
it is aligned with the idealized linear trajectory which
takes it to the goal point in image�space� When the ob�
ject is misaligned� the objective is the controlled rotation
of the object relative to the pusher in order to bring it
in line with the ideal trajectory� This rotation is a con�
trolled instability� since object rotation is a manifestation
of the instability of the task�
The above notions can be captured by devising the

following trajectory generation procedure� In the image
space� let �RT be the vector between the current center of
mass of the locations of �ow vectors associated with the
robot end�e�ector and the desired target location in the

image space� and �RO be the vector between the robot
and the center of mass of the locations of �ow vectors
assigned to the object �see Figure �� segmentation of
pusher and robot is discussed in the section describing
the experimental implementation�� For trajectory gener�
ation� the direction and magnitude of desired rotational
velocity �d �

��RO
�t

of the object is a function of the an�

gle �RO�RT between the ideal pushing trajectory �RT and
the current estimate of orientation of the object direction
�RO multiplied by a turn rate gain coe�cient ks

�d � ks�RO�RT ���

Since it is di�cult to control large rotation rates in prac�
tice� the magnitude of � is bounded by putting it through
a saturation function

�
�

d �

�
�max if �d � �max

�min if �d � �min

�d otherwise
���

This desired rotational rate �
�

d then provides a reference
rotation rate which must be achieved by selecting an ap�
propriate robot action vy in the robot frame using the

learned forward state�transition model �f � The x velocity
of the robot is constant in the robot�space� thus ensur�
ing that the robot always moves forward and that the
pushing trial terminates� The combination of �vx� vy�
determines the e�ective pushing direction of the robot�
�P �

B� Learning the Forward Model

The learning process consists of approximating the for�
ward function �f from a set of observed input�output
pairs� The input consists of pairs �RO and vy� where

�RO is the angle of �RO relative the the x�axis of the
image space� and vy is the y velocity of the robot ac�
tion in the robot space� both sampled at time t� The
resulting output consists of the observed change in ori�
entation ��RO observed at time t � �� At sample time
t� the learning set consists of a set of tuples of the form
����RO � vy��� ���RO���� � � � � ���RO� vy�t��� ���RO�t���
The state�transition function to be learned is

��RO � �f ��RO � vy� ���

We use a simple one nearest�neighbor ���NN� technique
�Duda and Hart� ����� to approximate the function� in

which the output of �f is taken to be the value of the
exemplar which is nearest to the query point in the input
space using a standard Euclidean distance metric� The
data is indexed in an k�D tree �Friedman et al�� ����� in
order to make queries more e�cient �O�log�N ��� where
N is the number of exemplars in the database�� The
insertions are handled by inserting new exemplars into
the leaves that they index to� according to the current
tree� The data can be copied and a new tree built while
the old tree continues to be used� In practice� the tree
rebuilding time is small in comparison to the real�time
necessary to gather data� and does not present a problem�

C� Planning� Exploration and Exploitation

Given the current estimate of the forward pushing
function �f and the current observed input state� a de�
cision must be made as to the next control action to be

1993 - Salganicoff et al [6]

536

Fig. 2. The world frame 0w and the slider frame Fs.

sphere of force directions is called the force sphere. Simi-
larly, a nonzero velocity v = (ur, vy, c.~)T is given by the
product of its magnitude v and direction v, and the sphere
of velocity directions is called the velocity sphere. We
will sometimes represent a velocity direction by its center
of rotation in .~’s. The mapping COR(-) maps velocity
directions to rotation centers in the .slider frame sis, such
that COR(v) returns the point about which the velocity
direction v is a pure rotation, along with the sense of
rotation. The domain of the function COR(-) is the ve-
locity sphere, and the range consists of two copies of the
plane, one for each rotation sense, and a line at infinity
for translations. Figure 3 illustrates the mapping from
velocity directions to rotation centers.

For the quasistatic pushing problem, we are concerned
only with force and velocity directions, not with their
magnitudes. We assume only that the manipulator is
strong enough to move the slider, and that it moves
slowly enough to satisfy the quasistatic assumption. A
pushing plan generated by the planner in Section 4 may
be properly thought of as a pushing path, not a trajectory.
To generate a manipulator trajectory from this path, times
must be assigned to each point along the path such that
the quasistatic assumption is satisfied.

~.4. Overview

In the next section we define the pushing control system,
some basic definitions of controllability, and their appli-
cation to the pushing control system. Armed with these
tools, in Section 3 we study the mechanics of pushing

Fig. 3. The mapping COR(.) from velocity directions on
the unit sphere to rotation centers in the slider frame 0s.

and the controllability of objects pushed with either point
contact or stable line contact. Finally, Section 4 demon-
strates a planning algorithm for repositioning objects
among obstacles using stable pushes.

2. Controllability with Velocity Constraints
The set of velocity directions that the slider can follow
during pushing is limited due to the limited set of force
directions that can be applied by the pusher. These lim-
itations constitute a set of nonholonomic constraints:

constraints on the velocity of the slider that cannot be
integrated to give configuration constraints. For exam-
ple, a slider that can be pushed in one direction cannot
be pulled in the opposite direction by simply reversing
the motion of the pusher. Despite these constraints on the
motion, we know by experience that it is often possible to
move objects to desired configurations by pushing. In this
section we formalize these ideas using tools from nonlin-
ear control theory. We defer the problem of determining
the motion of a pushed object to Section 3.

.~.1. The Pushing Control System

The pushing control system can be described abstractly
by the autonomous nonlinear control system q = F(q, c),
where c is the control input describing the pushing con-
tact configuration and the velocity of the pusher in the
slider frame 0s . The motion of the slider in the world
frame Fw is a function F of the control input and the
configuration of the slider. For the rest of this article, we
will use the following more concrete description of the
control system E:

1996 - Lynch et al [3]

Lars Henning Kayser – Predictive Planning with Self-Explored Push Dynamics 12 / 39



Shape Functions
Introduction Theory Related Work Approach Conclusion References

2013 - Hermans et al [2]

(a) (b) (c) (d)

Fig. 1: Example pushing instances. The first two images are two consecutive frames captured while the robot pushes the
large hair brush from an unstable pushing location. The second two frames show the robot pushing a soap box from a
stable pushing location. In both examples the red line shows the vector from the estimated object center to the goal location
denoted as the red circle.

an object, whether new or previously encountered, the robot
can then extract these shape features from locations around
the object boundary, predict push-stability scores for each
location, and push at a location that scores well.

III. LEARNING TASK

Our learning task is to estimate a function f : Rm →
R, given n training example pairs (xi, yi), i = 1, . . . , n,
xi = [xi1, . . . , xim] ∈ Rm, yi ∈ R. We can estimate
this function using kernel support vector regression. The
regression function has a form of:

f(x) =
n∑

i=1

αiK(x, xi) + b (1)

with K(x, xi) a positive semidefinite kernel comparing the
similarity between the test example x and training examples
xi, and b is a constant offset.

One can see that the prediction is largely based on
similarity. In the extreme case that a testing example is only
similar to one training example, such a function would be
similar to nearest neighbor: predicting the test example by
the value of the training example most similar with it. In
general cases, the prediction is smoothed by the weighted
average of similarities with multiple training examples, thus
reducing the chance of overfitting to a particular example and
achieving provably better performance than nearest neighbor
approaches.

The parameters α are found through a quadratic program-
ming formulation. This quadratic programming formulation
is proven to be equivalent to the functional minimization
problem in the reproducing kernel Hilbert space [4]:

min
f∈HK

∑

i

Lε(f(xi), yi) + λ‖f‖2HK
(2)

where HK is the reproducing kernel Hilbert space spanned
by the kernel K, ‖f‖2HK

is the Hilbert space norm of f
which encodes the smoothness of f , λ is a regularization
parameter on this smoothness norm (denoted C in the dual
quadratic programming formulation and in Section IV), and

Lε(f(xi), yi) =

{
0, |f(xi)− yi| ≤ ε

|f(xi)− yi| − ε |f(xi)− yi| > ε
(3)

is called the ε-insensitive loss function.
Support vector regression essentially finds a function that

both fits the training data well, and is sufficiently smooth, as
constrained by the Hilbert space norm term ‖f‖HK

. Since
such kernel methods are very flexible estimators that can fit
almost all smooth functions, the Lε loss function is designed,
so that the function does not have to fit exactly to the training
data. This reduces the chances of overfitting and improves
generalization performance. In our experiments we observed
that the ε-insensitive loss outperformed traditional L1 and
L2 loss functions.

The kernel we used in this paper is the exponential χ2

kernel [4]:

K(xi, xj) = exp

(
−γ

d∑

k=1

(xik − xjk)2
xik + xjk

)
(4)

a proven excellent kernel for comparing histogram features
that has been widely used in computer vision [5]. The
parameter γ controls the width of the kernel, necessary
when combining multiple kernels. This kernel corresponds
to a symmetric version of the Pearson χ2 test to determine
whether a histogram comes from a certain probability dis-
tribution and has nice properties such as striking a good
balance between large and small bins in the histogram, as
well as being well-defined everywhere (as opposed to the
commonly used KL-divergence).

A. Pushing Scoring Function

We wish to penalize pushes which deviate from the desired
straight-line trajectory. As such our push-stability score is
computed as the average distance of the observed object
trajectory from the desired pushing trajectory. Equation 5
precisely defines this score:

y =
1

K

K∑

k=1

dist(X[k], `p) (5)

where X[k] is the estimated (x, y) location of the object in
the table frame, `p is the line passing through the objects
initial location X[0] and the desired goal location X∗, and
dist is the Euclidean distance.

is fixed to 2 in all experiments. The kernel widths γ for the
local kernel is fixed to 2.5, while the global kernel has a
γ value of 2.0. We determined these values through cross-
validation.

In order to improve the regression performance, we take
the logarithm of Equation 5 as the regression target. Trans-
forms like this are common in statistics in order to make
the target distribution more balanced and better correspond
to model assumptions. In this work, good pushing locations
often have scores less than one-tenth of bad ones; taking the
logarithm has the effect of both accentuating the differences
between relatively good pushing locations as well as com-
pressing the mapping of the poor choices to approximately
equally bad scores. This remapping allows the regression to
focus more on predicting good locations accurately, rather
than aggressively fitting bad locations well.

Finally, to learn the prediction function, we compared
three different learning methods. The first — Kernel SVR
— is the regression method discussed above. In addition, we
implemented 2 other popular regression algorithms: linear
ridge regression and boosting stumps. For boosting stumps,
we used the L2 boosting framework [9] on regression stumps
computed by the CART algorithm. The competing algo-
rithms have been tuned to their respective best parameters.
For completeness we present as baseline just using the
training mean, also known as the 0th-Order regressor, to
show the ability of the learning functions to improve upon
average output.

V. RESULTS

To measure the effectiveness of the learning, we perform
leave-one-out cross-validation on the objects: for each object
included in the experiment, we train on examples from all
the other objects and validate on all the examples of the
current object. This corresponds exactly to prediction of
pushing behaviors on a novel object. Table I presents these
cross validation results both in terms of prediction error
and effectiveness at predicting good push locations. To give
some intuition for the distribution of push-stability scores,
we visualize ground truth pushing scores for two objects
in Figure 6. The high curvature of the brush head, made
pushing on the long side difficult for the robot. The brush
would rotate quite a bit and the robot would not be able to
push it directly towards the goal. However, pushing at the tip
of the handle or the small end of the brush head allowed the
robot to limit the degree to which the object rotated. For the
soap box, many points worked well. We attribute the high
scores near corners to the fact that when pushed at a corner
the object initially rotates, but when the robot compensate to
push through the centroid, it now pushes near the center of
the side and the object’s center moves in a mostly straight
line.

The first set of results presents the L1 prediction error
of the regression on the log of push score. Each column
corresponds to the sequestered object of the leave one out
methodology, while the rows correspond to the different

(a) (b)

Fig. 6: Visualization of ground truth pushing scores for the
large brush and soap box. Green points represent better
scores, while redder represent worse.

learning functions. The support vector regression outper-
forms competing algorithms producing the best result on the
mean and the 3 different objects: Food Box, Small Brush
and Toothpaste. Linear ridge regression bests on only one
object, the Soap Box, by a fairly small margin. Boosting
stumps is better on Camcorder and Large Brush, but fails to
capture the details in Food Box and Small Brush, apparently
the more predictable objects as seen from the results. Overall
all regressors outperform the training mean baseline, except
in the difficult case of the camcorder class.

More important than the actual regression error, however,
is consideration of whether the prediction function actually
allows the robot to more rapidly determine how to push a
novel object than random experimentation. To measure this
effect, for every object we trained the predictor on the other
objects and then predicted good places to push. For each
such novel object, the robot predicts the push score on all
sampled points from the object boundary and then selects the
3 points with best predicted push-stability score. We define
the planning error to be the actual error that was observed
when the test object was pushed at the selected points. This
corresponds to the error that would have resulted had the
robot chosen that point for pushing.

As shown in the bottom half of Table I, under such a
planning error metric our approach performed well on all the
objects, being able to predict a pushing location with an error
of 0.14 − 0.61 centimeters. Significantly, if one compares
against pushing at a random location on the shape, the mean
pushing error is reduced by 74.7% (from 1.37cm to 0.347cm)
by using the system. The second and third locations have
slightly larger planning errors, but are still significantly better
pushing locations. Even more significant: using the best of
the top 3 predictions for each object, the average reduction
in push error was 83%.

We additionally compare to the pre-programmed heuristic
of selecting a point on the object’s boundary lying on the
major or minor axis of the object’s footprint. This selec-
tion criteria is a simple geometric feature that requires no
learning, but is more informed than simple random selection.
Our method outperforms these baselines in all cases but one,
the small brush category. However, this is not a damming
results as our method produces its worst performance on
this category and while the minor axis location is better than
any of the top three determined by our learned method, we
still outperform the major axis location selection. On average

I Learning of effects and stability based on contact point
I Dynamics of unknown objects can be predicted by their shape

Lars Henning Kayser – Predictive Planning with Self-Explored Push Dynamics 13 / 39



End-to-End Learning
Introduction Theory Related Work Approach Conclusion References

2016 - Agrawal et al [1]

CNN CNN

Predict Poke

Figure 1: Infants spend years worth of time playing with objects in a seemingly random manner.
They might use this experience to learn a model of physics relating their actions with the resulting
motion of objects. Inspired by this hypothesis, we let a robot interact with objects by randomly
poking them. The robot pokes objects and records the visual state before (left) and after (right) the
poke. The triplet of before image, after image and the applied poke is used to train a neural network
(center) for learning the mapping between actions and the accompanying change in visual state. We
show that this learn model can be used to push objects into a desired configuration.

What kind of a model should the robot learn from it’s experience? One possibility is to build a model
that predicts the next visual state from the current visual state and the applied force (i.e forward
dynamics model). This is challenging because predicting the value of every pixel in the next image is
non-trivial in real world scenarios. Moreover, in most cases it is not the precise pixel values that are of
interest, but the occurrence of a more abstract event. For example, predicting that a glass jar will break
when pushed from the table onto the ground is of greater interest (and easier) than predicting exactly
how every piece of shattered glass will look. The difficulty, however, is that supervision for such
abstract concepts or events is not readily available in unsupervised settings such as ours. In this work,
we propose one solution to this problem by jointly training forward and inverse dynamics models. A
forward model predicts the next state from the current state and action, and an inverse model predicts
the action given the initial and target state. In joint training, the inverse model objective provides
supervision for transforming image pixels into an abstract feature space, which the forward model
can then predict. The inverse model alleviates the need for the forward model to make predictions in
the pixel space and the forward model in turn regularizes the feature space for the inverse model.

We empirically show that the joint model allows the robot to generalize and plan actions for achieving
tasks with significantly different visual statistics as compared to the data used in the learning phase.
Our model can be used for multi step decision making and displace objects with novel geometry
and texture into desired goal locations that are much farther apart as compared to position of objects
before and after a single poke. We probe the joint modeling approach further using simulation studies
and show that the forward model regularizes the inverse model.

2 Data

Figure 1 shows our experimental setup. The robot is equipped with a Kinect camera and a gripper for
poking objects kept on a table in front of it. At any given time there were 1-3 objects chosen from a
set of 16 distinct objects present on the table. The robot’s coordinate system was as following: X and
Y axis represented the horizontal and vertical axes, while the Z axis pointed away from the robot.
The robot poked objects by moving its finger along the XZ plane at a fixed height from the table.

2

I Deep learning of forward and inverse dynamic models
I 100k pokes executed with Baxter
I Greedy approach to reach goal state

Lars Henning Kayser – Predictive Planning with Self-Explored Push Dynamics 14 / 39



Approach
Introduction Theory Related Work Approach Conclusion References

Learn a forward push model and use it for predictive planning.

Challenges
1. Autonomously explore pushes to collect samples
2. Generate forward push models
3. Implement a suitable planning strategy
4. Execute push plans

Lars Henning Kayser – Predictive Planning with Self-Explored Push Dynamics 15 / 39



Setup
Introduction Theory Related Work Approach Conclusion References

I UR5 with Robotiq 3-finger adaptive gripper
I 3d-printed pusher tool
I Kinect2 and AprilTags2 for object localization

Lars Henning Kayser – Predictive Planning with Self-Explored Push Dynamics 16 / 39



Setup Accuracy
Introduction Theory Related Work Approach Conclusion References

A critical factor is the camera localization.

The endeffector accuracy was increased to about 5mm by:
I upgrading to AprilTags 2
I using the mount plate for bundle detection

Lars Henning Kayser – Predictive Planning with Self-Explored Push Dynamics 17 / 39



Push Execution
Introduction Theory Related Work Approach Conclusion References

Start
AΦ

Target

Retreat

Assumptions
I The push movement is linear with continuous velocity
I Pusher and object stay in contact during a push
I The push movement directs the contact force
I The contact force is continuous

Lars Henning Kayser – Predictive Planning with Self-Explored Push Dynamics 18 / 39



Exploration
Introduction Theory Related Work Approach Conclusion References

Variable Protocol
AΦ, ~nΦ U(0, 1) * shape
~vΦ(βΦ) U(−0.5, 0.5) rad
dΦ U(0.5, 3) cm

(3000 samples)

Restricted sampling keeps the object on the table.
Lars Henning Kayser – Predictive Planning with Self-Explored Push Dynamics 19 / 39



Sample Data
Introduction Theory Related Work Approach Conclusion References

(a) Box transforms from different approach points

(b) Box transforms with weight attached to the object
Lars Henning Kayser – Predictive Planning with Self-Explored Push Dynamics 20 / 39



Push Specification
Introduction Theory Related Work Approach Conclusion References

Pushes are defined in the object frame:

P

y

x

AΦ

~nΦ

~vΦ ∗ dΦ

βΦ approach point AΦ

approach normal ~nΦ(αΦ)
push direction ~vΦ(βΦ+ αΦ)
push distance dΦ

Lars Henning Kayser – Predictive Planning with Self-Explored Push Dynamics 21 / 39



Forward Push Model
Introduction Theory Related Work Approach Conclusion References

Learning Function
Function p predicts the transformation T given a push Φ:

p : Φ
≈−→ T
≡

〈xΦ, yΦ, αΦ, βΦ, dΦ〉 ≈−→ 〈xT , yT , γT 〉

SE(2) Loss

LSE(2) =
√
L2x + L2y + 0.5 · Lγ

Lars Henning Kayser – Predictive Planning with Self-Explored Push Dynamics 22 / 39



Prediction Architectures
Introduction Theory Related Work Approach Conclusion References

B0:
x

y

α

β

d

Linear Regression

Linear Regression

MLP (1 Hidden Layer, 100 ReLU)

x

y

γ

N1:
x

y

α

β

d

100

x

y

γ

N2:

x

y

α

β

d

128 0.3 64 0.3 32

x

y

γ

Hyperopt:

Parameter Domain

optimizer Adam, Nadam, RMSProp
learning rate 0.001 * logU(−0.5, 0.5)
L2 weight 0.0007 * logU(−1.3, 1.3)
input activation linear, tanh, relu
hidden layers 1 to 4

per layer
- units 2 qU(4,10)

- dropout U(0.0, 0.5)
- activation Linear, Tanh, ReLu

Lars Henning Kayser – Predictive Planning with Self-Explored Push Dynamics 23 / 39



Hyperopt Result
Introduction Theory Related Work Approach Conclusion References

x

y

α

β

d

64 0.14 128 1024 0.06

x

y

γ

Optimizer: Adam
Learning Rate: 0.00061
l2 regularization: 0.00021

Lars Henning Kayser – Predictive Planning with Self-Explored Push Dynamics 24 / 39



Prediction Accuracy
Introduction Theory Related Work Approach Conclusion References

Prediction Error after 20 Epochs of 500 iterations (100 validation).

The Hyperopt-model overfits on the validation set!

Lars Henning Kayser – Predictive Planning with Self-Explored Push Dynamics 25 / 39



Push Prediction
Introduction Theory Related Work Approach Conclusion References

Example predictions of predictor N2.

Lars Henning Kayser – Predictive Planning with Self-Explored Push Dynamics 26 / 39



Planning Problem
Introduction Theory Related Work Approach Conclusion References

Find a sequence of pushes that produce a path of object poses
from start to goal.

This is a motion-planning problem with the following domain:

State Space: SE(2)
Control Space: Pushes

All planners are implemented using the Open Motion Planning
Library (OMPL)[5].

Lars Henning Kayser – Predictive Planning with Self-Explored Push Dynamics 27 / 39



Sampling-based Planning (RRT)
Introduction Theory Related Work Approach Conclusion References

RRT Growth
1. Sample random (goal biased) pivot state
2. Find closest existing state
3. Generate control and duration
4. Add visited states to planning tree
5. Terminate if goal state is reached

Lars Henning Kayser – Predictive Planning with Self-Explored Push Dynamics 28 / 39



Random Controls
Introduction Theory Related Work Approach Conclusion References

start

goalr1

s1 start

goal

r2
s2

start

goal

r3s3

I Push controls are random and not directed towards pivot state
I Goal-biased state sampling pulls the tree towards the goal

Lars Henning Kayser – Predictive Planning with Self-Explored Push Dynamics 29 / 39



Random Controls
Introduction Theory Related Work Approach Conclusion References

Lars Henning Kayser – Predictive Planning with Self-Explored Push Dynamics 30 / 39



Directed Controls
Introduction Theory Related Work Approach Conclusion References

start

goalr1

s1

start

goal

r2s2

start

goalr3

I Push controls are directed towards the pivot state
I Controls require sampling with distance minimization

Lars Henning Kayser – Predictive Planning with Self-Explored Push Dynamics 31 / 39



Directed Controls
Introduction Theory Related Work Approach Conclusion References

Lars Henning Kayser – Predictive Planning with Self-Explored Push Dynamics 32 / 39



Steered Controls
Introduction Theory Related Work Approach Conclusion References

start

goalr1/s1

start

goal

r2/s2
start

goal

r3/s3

I Pushes are sampled that reach the pivot state
I This requires additional computation of the control duration
I Controls require distance minimization + repeated propagation

Lars Henning Kayser – Predictive Planning with Self-Explored Push Dynamics 33 / 39



Steered Controls
Introduction Theory Related Work Approach Conclusion References

Lars Henning Kayser – Predictive Planning with Self-Explored Push Dynamics 34 / 39



Chained Controls
Introduction Theory Related Work Approach Conclusion References

start

goalr1

s1

start

goal

r2
s2

start

goal

r3

s3

I Contact points are sampled within vicinity
I Adjacent pushes are similar which leads to smoother paths
I Reduced search space allows efficient distance minization

sampling

Lars Henning Kayser – Predictive Planning with Self-Explored Push Dynamics 35 / 39



Chained Sampling
Introduction Theory Related Work Approach Conclusion References

Lars Henning Kayser – Predictive Planning with Self-Explored Push Dynamics 36 / 39



Execution Method
Introduction Theory Related Work Approach Conclusion References

Open-loop execution causes error accumulation and object
deviation.

(20 pushes with an average rotation error of 4◦per push)

Model-predictive control
Execute plan as long as the object is on path,
otherwise replan.

Lars Henning Kayser – Predictive Planning with Self-Explored Push Dynamics 37 / 39



Conclusion
Introduction Theory Related Work Approach Conclusion References

MPC Execution:
+ Feasible approach to avoid local minima
+ Can correct inaccurate predictions

- Long planning times (about 0.5s-1s)
- Collision avoidance requires safety padding
- Only step-wise pushes possible

Lars Henning Kayser – Predictive Planning with Self-Explored Push Dynamics 38 / 39



References
Introduction Theory Related Work Approach Conclusion References

[1] Pulkit Agrawal et al. “Learning to Poke by Poking: Experiential Learning
of Intuitive Physics”. In: CoRR abs/1606.07419 (2016). arXiv:
1606.07419. URL: http://arxiv.org/abs/1606.07419.

[2] T. Hermans et al. “Learning Stable Pushing Locations”. In: IEEE
International Conference on Development and Learning and Epigenetic
Robotics (ICDL-EPIROB. 2013. URL: http://www.ias.tu-
darmstadt.de/uploads/Team/TuckerHermans/hermans-
icdl2013.pdf.

[3] Kevin M. Lynch and Matthew T. Mason. “Stable Pushing: Mechanics,
Controllability, and Planning”. In: The International Journal of Robotics
Research 15.6 (Dec. 1996), pp. 533–556. DOI:
10.1177/027836499601500602.

[4] Matthew T. Mason. “Mechanics and Planning of Manipulator Pushing
Operations”. In: The International Journal of Robotics Research 5.3
(Sept. 1986), pp. 53–71. DOI: 10.1177/027836498600500303.

[5] Physical and Biological Computing Group - Department of Computer
Science - Rice University. OMPL - The Open Motion Planning Library.
2018. URL: https://ompl.kavrakilab.org/ (visited on 07/17/2018).

[6] Marcos Salganicoff et al. “A Vision-Based Learning Method for Pushing
Manipulation”. In: IRCS TECHNICAL REPORTS SERIES. 1993.

http://arxiv.org/abs/1606.07419
http://arxiv.org/abs/1606.07419
http://www.ias.tu-darmstadt.de/uploads/Team/TuckerHermans/hermans-icdl2013.pdf
http://www.ias.tu-darmstadt.de/uploads/Team/TuckerHermans/hermans-icdl2013.pdf
http://www.ias.tu-darmstadt.de/uploads/Team/TuckerHermans/hermans-icdl2013.pdf
http://dx.doi.org/10.1177/027836499601500602
http://dx.doi.org/10.1177/027836498600500303
https://ompl.kavrakilab.org/

	Introduction
	Theory
	Push Mechanics
	Friction Coefficients
	Prediction Methods

	Related Work
	Problem Restriction
	Shape-based Methods
	Deep Learning

	Approach
	Setup
	Exploration
	Forward Push Models
	Sampling-based Planning
	Execution Approaches

	Conclusion

