

MIN Faculty Department of Informatics

Evaluation of Feature Finders for Robot Calibration

Jasper Güldenstein

University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems

29. January 2019

- 1. Motivation
- 2. Related Work
- 3. Robot Platform
- 4. Robot Calibration Kinematics Calibration Dynamics Calibration
- 5. Experiment Setup

AprilTags PhaseSpace

- 6. Calibration Results
- 7. Future Work

Motivation

Motivation |

- internal sensors (i. e. motor encoders) need calibration to measure the position of the robot precisely
 - repeatability across multiple robots
 - more similar behavior of across multiple kinematic chains (e.g. legs of a humanoid)
 - accurate positioning critical for balance
- external sensors (e.g. cameras) need calibration to measure the environment precisely
 - camera position and pose are not accurately known
 - angle between camera and environment is used for distance calculation

Motivation cont.

Motivation

Vork Robot Pl

Robot Calibratio

ion Experiment

nt Setup Calibra

Future Wo

- some finders and markers are easier to set up than others
- AprilTags [1] require only a printer, some 3D printed parts and a camera
- PhaseSpace [2] requires extensive setup but provides more accuracy
- goal of my Thesis: Evaluate if AprilTags are viable for robot calibration

Related Work

Motivation

Related Work Robot Pla

Robot Calibratio

- robot calibration is a standard problem in industrial robots
 - single kinematic chain
- ROS package robot_calibration [3]
 - not used for humanoids to my knowledge
- whole body calibration for NAO robot using checkerboards [4]
- calibration from team RHoban [5]
 - extrinsic and intrinsic camera calibration only
- calibration from team MRL-HSL [6]
 - extrinsic and intrinsic camera calibration only

Robot Platform

Motivation

Nork Robot Platform

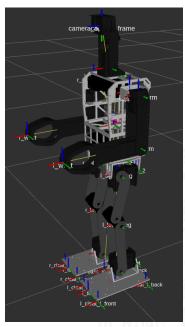
Robot Calibration

on Experiment Se

Calibration Result

Future Work

- humanoid robot with 20 DoF
 - ▶ 6 per leg, 3 per arm, 2 in the Head
 - Dynamixel MX106 and MX64 servo motors
- computation units:
 - Intel NUC
 - Nvidia Jetson TX2
 - Odroid XU4
- RHoban DXL board for Motor communication (STM32F103 + RS485 transceivers + GY85 IMU)
- Logitec C910 camera
- ROS based software
- height: 825 mm, weight: 7.1 kg


The Wolfgang robot platform

Robot Description

Motivation

- robot description specifying kinematic structure of the robot was required
- Unified Robot Description Format (URDF) was chosen for compatibility with ROS
 - xml format
 - specifies links and joints (with their pose)
- only CAD models of the CNC milled parts were provided by the manufacturer
- robot assembly in Autodesk Inventor
- required measurements for robot description were taken in software
- 3D model for visualization

3D model of the Wolfgang robot platform

Motivation

Dynamixel MX106 from Robotis [7]

Motivation Related Work Robot Platform Robot Calibration Experiment Set	
---	--

Magnetic rotary encoder using the hall effect [8]

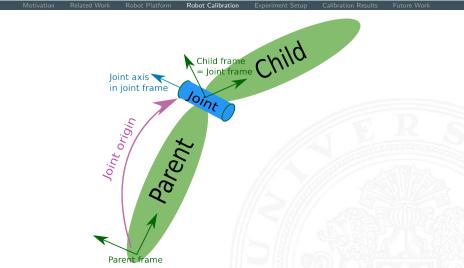
- absolute position encoder
- calibration procedure required
- closed source, questionable accuracy and repeatability
- has to be performed on individual, partially disassembled motors

Robot Calibration

Motivation

/ork Robot Plat

Robot Calibration


n Experiment S

Calibration Results

Future Work

- kinematics calibration estimates geometric parameters of kinematic equations
 - position and rotation of joints relative to links
- dynamics calibration (calibration of the dynamics parameters)
 - mass, center of mass, inertia

Kinematics Calibration

kinematic structure described by a set of links and a set of joints [9]

<joint name="LKnee" type="revolute"> <origin xyz=" -0.004 0 -0.1692 " rpy=" 0 0 0 " /> <parent link="l_upper_leg" /> <child link="l_lower_leg" /> <axis xyz="0 -1 0" /> <calibration rising=" 0 " /> </joint>

<joint name="head_to_camera" type="fixed"> <origin xyz=" 0.02 0 0.1115 " rpy=" 0 0 0 " /> <parent link="head" /> <child link="camera" /> </joint>

Kinematic Parameters

Motivation Related Work Robot Platform Robot Calibration Experiment Setup Calibration Results Future W

joint offsets

$$q = \hat{q} + off_q$$

- q: real joint angle
- \hat{q} : joint angle measured by encoder
- off_q : offset of the measured value to the real joint angle

frame transformation (i. e. translation and rotation) offsets

 $t = \hat{t} + off_t$

- t: real transformation between two frames (e.g. neck and camera)
- \hat{t} : estimated transform between frames
- off_q: offset from estimation to reality

Offset Measurement

Robot Calibration

- attach measurable marker to end effector at known pose
 - AprilTag [1], checkerboard, PhaseSpace LED [2]
- measure pose of marker with sensor
 - camera, depth camera

Offset Measurement

Robot Calibration

- attach measurable marker to end effector at known pose
 - AprilTag [1], checkerboard, PhaseSpace LED [2]
- measure pose of marker with sensor
 - camera, depth camera

Error function:

$$e(heta, m_i, \hat{q}_i) = m_i - predict(heta, \hat{q}_i)$$

 m_i : measurement of marker

predict (θ, \hat{q}_i) : predicted pose of marker given the joint angles, calibration parameters and kinematic structure of the robot (forward kinematics)

$$e(\theta, m_i, \hat{q}_i) = m_i - predict(\theta, \hat{q}_i)$$

Given a set of poses, find the set of parameters $\boldsymbol{\theta}$ that minimizes the error.

$$e(\theta, m_i, \hat{q}_i) = m_i - predict(\theta, \hat{q}_i)$$

Given a set of poses, find the set of parameters θ that minimizes the error.

measurement errors cause this to be a non-linear problem

$$e(\theta, m_i, \hat{q}_i) = m_i - predict(\theta, \hat{q}_i)$$

Given a set of poses, find the set of parameters θ that minimizes the error.

measurement errors cause this to be a non-linear problem

non-linear least squares optimization using a fitting solver (e.g. ceres)

Dynamics Calibration

Robot Calibration

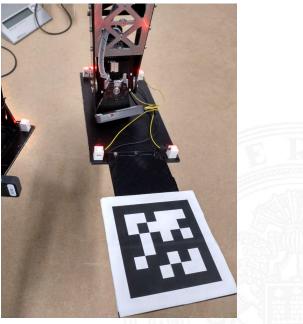
- dynamic parameters of the system are largely unknown
- CAD model omits multiple components of the robot
 - cables
 - computers / electronics
- highly interesting for accurate simulation
- closing the reality gap

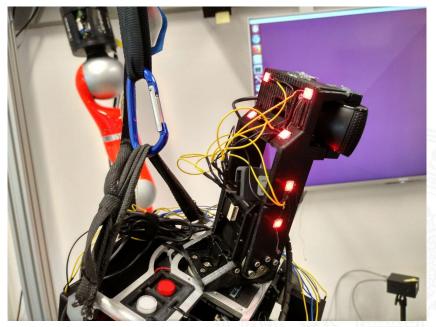
ROSdyn ROSdyn: Project funded by ROS Industrial [10]

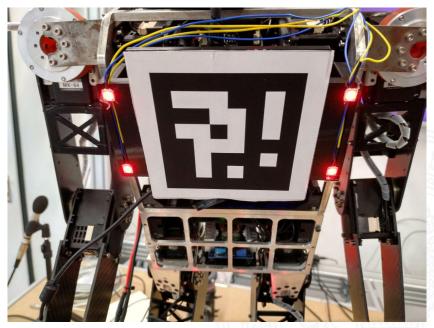
Experiment Setup

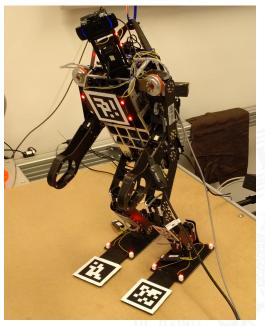
lotivation F

ork Robot Platfo

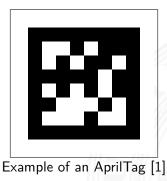

Robot Calibration


Experiment Setup


Setup Calibratio


Future Worl

- 3D printed parts for mounting PhaseSpace LEDs [2] and AprilTags [1]
- use PhaseSpace and Apriltags for calibration and compare results
- cross validation of results to identify measurement error

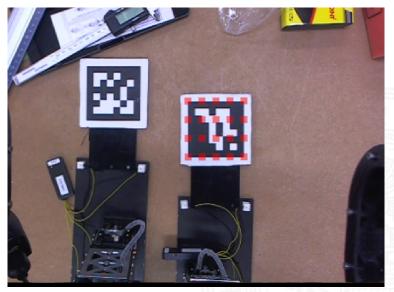


Motivation

- visual markers
- size must be specified
- ▶ robust detection and pose estimation algorithm [11]

Calibration using AprilTags

tion Related


d Work 🛛 Robot P

orm Robot Cal

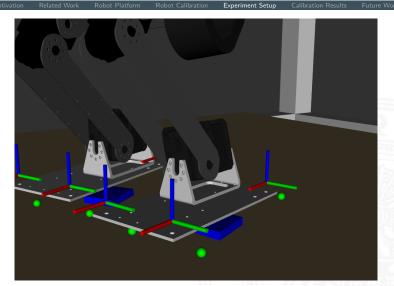

Experiment Setup

Calibration Resu

Future Work

observation points captured by the AprilTags feature finder [12]

Motivation


- motion capture / tracking system using uniquely identifiable LEDs by blinking frequency
- pose reconstruction using multiple LEDs
- relatively high accuracy (evaluation needed)

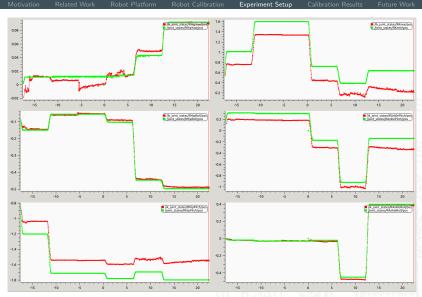
Calibration using PhaseSpace

Motivation Related Work Robot Platform Robot Calibration Experiment Setup Calibration Results Future Wor

- work in progress
- each LED observed by the tracking system is a measurement
- prediction is trivial using the ROS ecosystem
- base_link is reconstructed using markers on torso
 - accuracy improvement in pitch direction is required
 - LEDs are too close together in z-direction

Calibration using PhaseSpace

observation points captured by the PhaseSpace Predicted points are at the origin of each coordinate system


Joint Error Measurement

Experiment Setup

- pose of end effector (i.e. foot) is measured using PhaseSpace
- pose of base_link is known from torso markers
- joint angles can be calculated using inverse kinematics
- only a single solution is possible given the joint constraints

Joint Error Measurement

green: joint angles read by hall encoder, red: positions calculated by IK

Joint Error Measurement

Motivation

ed Work Re

rm Robot (

libration Expe

Experiment Setup

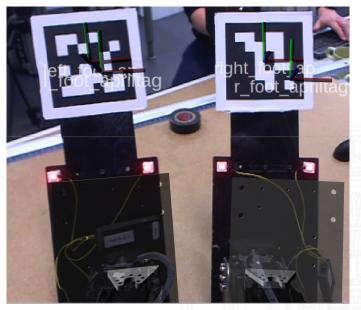
esults Future

- during testing unexplained high joint errors occurred
- physical and digital measurements confirmed, that the robot was assembled wrongly

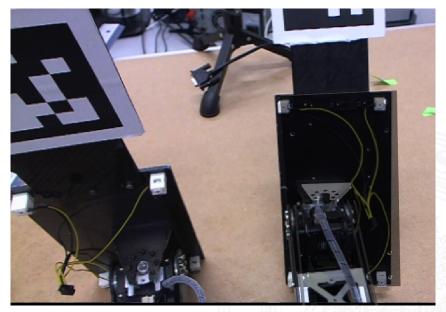
Calibration Results using AprilTags

Motivation

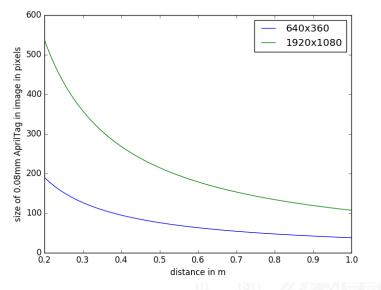
ted Work Re


Robot Calibration

tion Experiment


Calibration Results

Future Work


- for now: manually chosen poses
- results practically unusable since error of wrong assembly outweighs joint angles
- too low camera resolution
- camera calibration for higher resolution difficult because of motion blur

Reprojection error before calibration

Reprojection error after calibration (right foot only)

Importance of image resolution for accurate measurement

tivation Related

Vork Robot Plati

- add LEDs to bottom of torso for better accuracy in pitch direction
- add LEDs to knee to measure intermediate joint error
- use AprilTag bundles for improved accuracy
- calibrate using phase space
- algorithm for finding a good set of poses
- calibrate arms / use arms to calibrate head
- higher resolution camera image
- finally fix URDF

Thank you for your attention. Feel free to ask questions.

- E. Olson, "AprilTag: A robust and flexible visual fiducial system," in *Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)*. IEEE, May 2011, pp. 3400–3407.
- [2] PhaseSpace motion capture infinite possibilities. [Online]. Available: http://phasespace.com/
- [3] M. Ferguson, "Generic calibration for robots. contribute to mikeferguson/robot_calibration development by creating an account on GitHub," original-date: 2014-11-09T09:50:01Z.
 [Online]. Available:

https://github.com/mikeferguson/robot_calibration

References (cont.)

ivation Relate

- [4] D. Maier, S. Wrobel, and M. Bennewitz, "Whole-body self-calibration via graph-optimization and automatic configuration selection," in 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 5662–5668.
- J. Allali, R. Fabre, L. Gondry, L. Hofer, O. Ly, S. N'Guyen, G. Passault, A. Pirrone, and Q. Rouxel, *Rhoban Football Club: RoboCup Humanoid Kid-Size 2017 Champion Team Paper*, 01 2018, pp. 423–434.
- [6] M. Teimouri, A. Fatehi, H. Mahmoudi, P. S. Ha, M. H. Delavaran, F. Movafegh, G. Rahmani, and E. Fathi, "MRL team description paper for humanoid KidSize league of RoboCup 2018."

References (cont.)

- [7] MX-106t / MX-106r. [Online]. Available: http://support.robotis.com/en/product/actuator/dynamixel/ mx_series/mx-106.htm
- [8] AS5040 - 10-bit rotary position sensor with absolute and incremental outputs - ams | ams. [Online]. Available: https://ams.com/as5040#tab/documents
- [9] urdf/XML/joint - ROS wiki. [Online]. Available: http://wiki.ros.org/urdf/XML/joint
- [10] ROSdyn. [Online]. Available: http://rosin-project.eu/ftp/rosdyn

References (cont.)

tivation Rel

- [11] J. Wang and E. Olson, "AprilTag 2: Efficient and robust fiducial detection," in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 4193–4198.
- [12] Y. Jonetzko, "Generic calibration for robots. contribute to jntzko/robot_calibration development by creating an account on GitHub." [Online]. Available: https://github.com/Jntzko/robot_calibration