

MIN Faculty Department of Informatics

Secondment at Tsinghua University

Zhen Deng

University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems

13. 11. 2018

2. Prof.Sun's lab from Tsinghua University

3. Tactile sensor from Prof Pan's lab

Learning in-hand manipulation using DRL

ersity Tactile sensor from Prof P

References

Motivations

- 1 Programming in-hand manipulation with multi-fingered robotic hands is a challenging problem.
- 2 Deep reinforcement learning has used successfully to learn complex manipulation skills.
- 3 Incorporating domain-specific knowledge into DRL in order to reduce its sample complexity
- 4 Improving the exploration efficiency of DRL

Learning in-hand manipulation using DRL Prof.Sun's lab from Tsinghua University Tac

ity Tactile sensor from Prof Pan's

References

Related works

- 1 Different control patterns of in-hand manipulation [3]: Rolling, Sliding, Finger gaiting, Finger-privoting/tracking, ...
- 2 Previous methods: trajectory optimization methods [4] and imitation learning methods [1].
- 3 Recent works focus on DRL [6, 5], eg., OpenAl's work.

regrasping as a dexterous task, as it can be completed by a kinematically minimal parallel-jaw gripper system, but that may depend on the selected definition

In-hand manipulation has different control patterns. For example Previous methods include trajectory optimization rely on a ZDeng - UHH-Presentations

4 / 25

Learning in-hand manipulation using DRL

Sun's lab from Tsinghua Unive

niversity Tactile sensor from Prof Pa

References

Related works: Two important papers:

 Learning Complex In-hand Manipulation with Deep Reinforcement Learning and Demonstrations (Rajeswaran et al. [7], 2017)

2. Learning Dexterous In-Hand Manipulation (OpenAI [8], 2018)

Figure 1: A five-fingered humanoid hand trained with reinforcement learning manipulating a block from an initial configuration to a goal configuration using vision for sensing.

the first one is ..., demonstration data is used to fast the skill

Z.Deng – UHH-Presentations

Learning in-hand manipulation using DRL

of.Sun's lab from Tsinghua Universi

ersity Tactile sensor from Prof Par

References

 Palli et al[6]. In-hand manipulation can be represented as deviations from a reference grasp.

- Odhner et al[5]. utilized precision grasp configuration for the planning of dexterous manipulation using under-actuated hand.
- Saut et al[8]. built a probabilistic roadmap in grasp subspaces and searched a trajectory in this roadmap for dexterous manipulation.

Assumptions 1

Precision grasp configuration can be taken as a reference for in-hand manipulation skill learning.

Sun's lab from Tsinghua Univer

Tactile sensor from Prof P

References

The learning agent is preferred to fully explore a state subspace with high probability success for skill learning.

The proposed method:

- 1 Using a PPO algorithm provided by OpenAI to learn in-hand manipulation skill, like the object rotation.
- 2 Using reward shaping method to improve the learning efficiency.
 - Guide the exploration of DRL by using the *precision* grasp configuration as a reference.
 - Measuring the uncertainty of explored states for full exploration.
- 3 Using multi-agent reinforcement learning (MARL) to incorporate multiple reward functions.

So we want the agent to fully explore...., In the proposed method,

we use,

Learning in-hand manipulation using DRL

DRL algorithms:

1 Trust region policy optimization (TRPO):

$$\begin{array}{ll} \underset{\theta}{\operatorname{maximize}} & \hat{\mathbb{E}}_t \left[\frac{\pi_{\theta}(a_t \mid s_t)}{\pi_{\theta_{\mathrm{old}}}(a_t \mid s_t)} \hat{A}_t \right] \\ \text{subject to} & \hat{\mathbb{E}}_t [\mathrm{KL}[\pi_{\theta_{\mathrm{old}}}(\cdot \mid s_t), \pi_{\theta}(\cdot \mid s_t)]] \leq \delta. \end{array}$$

2 Proximal Policy Optimization (PPO) Algorithms:

 $L^{CLIP}(\theta) = \hat{E}_t \left[\min(r_t(\theta) \hat{A}_t, \operatorname{clip}(r_t(\theta), 1 - \varepsilon, 1 + \varepsilon) \hat{A}_t) \right]$

- θ is the policy parameter
- \hat{E}_t denotes the empirical expectation over timesteps
- r_t is the ratio of the probability under the new and old policies, respectively
- Â_t is the estimated advantage at time t
- ε is a hyperparameter, usually 0.1 or 0.2

PPO algorithm is developed from TRPO algorithm. The different

Z.Deng - UHH-Presentations

Learning in-hand manipulation using DRL Prof.Sun's lab from Tsinghua University Tactile sensor from Prof Pan's lab References

Three reward functions:

- 1 An extrinsic reward r^{ext} that specifies the task goal.
- 2 A hand-based reward *r*^{hand} that encourage the agent to explore the *precision* hand posture subspace.
- 3 An uncertainty-based reward *r^{unc}* that used to balance the trade-off between exploration and exploitation of the MARL algorithm.

$$r := \{r^{ext}, r^{hand}, r^{unc}\}$$

 r^{ext} is computed based on the different of two quaternions.

$$r^{ext} = \begin{cases} +2 & \text{if the goal is reached} \\ ||q_{curr} \ominus q_{target}||^2 & \text{otherwise} \end{cases}$$

(1)

Learning in-hand manipulation using DRL

Sun's lab from Tsinghua Universi

niversity Tactile sensor from Prof Pan's lab

 r^{hand} is measured based on the similarity between the current explored hand configuration and the reference configuration.

$$r^{hand} = ||A - A_{center}^{precision}||_2^2, \quad A = \{a_1, a_2\}$$
(2)

Learning in-hand manipulation using DRL Prof

Sun's lab from Tsinghua Universi

om Prof Pan's lab Refere

 r^{unc} is measured the uncertainty of explored states. The uncertainty of explored states is approximated by the prediction error of a transitional dynamic model.

► Transition dynamic model: $f_{\theta_f} : s_t \times a_t \rightarrow \hat{s}_{t+1} \approx s_{t+1}$.

$$\mathscr{L}(\theta_{f}) = \frac{1}{|D|} \sum_{\{s_{t}, a_{t}, s_{t+1}\} \in D} H(s_{t+1}, \hat{s}_{t+1})$$

= $-\frac{1}{|D|} \sum_{\{s_{t}, a_{t}, s_{t+1}\} \in D} logf_{\theta_{f}}(s_{t}, a_{t})$ (3)

► Use the cross entropy between the distribution of the explored state s_{t+1} and the predicted state ŝ_{t+1} to compute the prediction error.

$$r^{unc} = -\log f_{\theta_f}(s, a) \tag{4}$$

Learning in-hand manipulation using DRL

MARL: multiple agents represented by value functions respectively are trained separately with respect to each own reward and then cooperate to optimize the skill policy.

$$V_{comp}(s) = \beta_1 V^{ext}(s) + \beta_2 V^{hand}(s) + \beta_2 V^{unc}(s)$$
(5)

Object rotation tasks in the Openai gym robotic environments:

Orient an egg using a robot hand.

the average episode return with respect to the extrinsic reward r^{ext} :

The average episode return with respect to the hand-based reward r^{hand} .

The MARL is compared with the single-agent RL which train a value function on a composition reward function.

Conclusion:

- Using DRL to learn in-hand manipulation skills.
- Incorporating domain-specific knowledge into DRL algorithm by designing additional reward.

Extension:

1 Can we explicitly represent the feasible state subspace with high probability success.

Extension:

- 2 The safety constraint should be considered in DRL which restricts the agent to explore the reasonable states
- 3 Combine model-based optimal control and model-free RL for stable skill learning.

Prof.Sun's lab from Tsinghua University

Two main research directions of the lab: Active perception and Dexterous manipulation.

PhD student's work:

- Yikai Wang: "Visual-tactile fusion" for CML B5 sub-project.
- Chao Yang: "Imitation learning considering structure inconsistent"
- Mingxuan Jing: "preference-based reinforcement learning" and "pose estimation"

Prof.Sun's lab from Tsinghua University

Learning in-hand manipulation using DRL

Prof.Sun's lab from Tsinghua University

ty Tactile sensor from Prof Pa

References

Five-fingered robotic hand:

Prof.Sun's lab from Tsinghua University

Learning in-hand manipulation using DRL

Prof.Sun's lab from Tsinghua University

versity Tactile sensor from P

Pan's lab Referen

Five-fingered soft hand:

(a)手势1

(b)手势2

(c)手势3

(d)手势4

Tactile sensor from Prof Pan's lab

https://bme.ucdavis.edu/people/departmental-faculty/ tingrui-pan/

Tingrui Pan

Associate Professor and Director Micro-Nano Innovations (MiNI) Laboratory Department of Biomedical Engineering University of California Davis, CA 95616 Phone: (530) 754-9508 Email: tingrui@ucdavis.edu

B. Nie, R. Li, J. D. Brandt, and T. Pan, "Iontronic Microdroplet Array for Flexible Ultrasensitive Tactile Sensing", Lab Chip, vol. 14, pp. 1107-1116.

- R. Li, Y. Si, Z. Zhu, Y. Guo, Y. Zhang, N. Pan, G. Sun, and T. Pan, "Supercapacitive Iontronic Nanofabric Sensing," Adv Mater, vol. 29, 1700253, pp. 1-8.
- Z. Zhu, R. Li, and T. Pan, "Imperceptible Epidermal-Iontronic Interface for Wearable Sensing," Adv Mater, vol. 30, 1705122, pp. 1-9, Jan 2018.

Tactile sensor from Prof Pan's lab

Learning in-hand manipulation using DR

n's lab from Tsinghua Universi

Tactile sensor from Prof Pan's lab

References

Tactile sensor:

Tactile sensor from Prof Pan's lab

Tactile sensor from Prof Pan's lab

Artificial Tactile Sensing

Ultrathin Stick-on Pressure Sensing Array

- Ultrathin, Imperceptible and Invisible
- Conformable Attachment to Skin

This slide is provided by Prof Pan's lab.

- D. Antotsiou, G. Garcia-Hernando, and T.-K. Kim. Task-oriented hand motion retargeting for dexterous manipulation imitation. *arXiv preprint arXiv:1810.01845*, 2018.
- F. Berkenkamp, M. Turchetta, A. Schoellig, and A. Krause. Safe model-based reinforcement learning with stability guarantees. In Advances in Neural Information Processing Systems, pages 908–918, 2017.
- R. R. Ma and A. M. Dollar. On dexterity and dexterous manipulation. In *Advanced Robotics (ICAR), 2011 15th International Conference on*, pages 1–7. IEEE, 2011.
- I. Mordatch, Z. Popović, and E. Todorov. Contact-invariant optimization for hand manipulation. In *Proceedings of the ACM SIGGRAPH/Eurographics symposium on computer animation*, pages 137–144. Eurographics Association, 2012.
- L. U. Odhner and A. M. Dollar. Stable, open-loop precision manipulation with underactuated hands. *The International Journal of Robotics Research*, 34(11):1347–1360, 2015.
- G. Palli, F. Ficuciello, U. Scarcia, C. Melchiorri, and B. Siciliano. Experimental evaluation of synergy-based in-hand

manipulation. *IFAC Proceedings Volumes*, 47(3):299–304, 2014.

 A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman,
 E. Todorov, and S. Levine. Learning complex dexterous manipulation with deep reinforcement learning and demonstrations. arXiv preprint arXiv:1709.10087, 2017.

J.-P. Saut, A. Sahbani, S. El-Khoury, and V. Perdereau. Dexterous manipulation planning using probabilistic roadmaps in continuous grasp subspaces. In *Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on*, pages 2907–2912. IEEE, 2007.

Thanks for your attention! Any questions?

