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Learning in-hand manipulation using DRL

Motivations

1 Programming in-hand manipulation with multi-fingered
robotic hands is a challenging problem.

2 Deep reinforcement learning has used successfully to learn
complex manipulation skills.

3 Incorporating domain-specific knowledge into DRL in order to
reduce its sample complexity

4 Improving the exploration efficiency of DRL
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Related works
1 Different control patterns of in-hand manipulation [3]:
Rolling, Sliding, Finger gaiting, Finger-privoting/tracking, ...
2 Previous methods: trajectory optimization methods [4] and
imitation learning methods [1].
3 Recent works focus on DRL [6, 5], eg., OpenAl's work.




Learning in-hand manipulation using DRL

Learning in-hand manipulation using DRL  Prof.Sun’s lab from Tsinghua Universit Tactile sensor from Prof Pan's lab  References

Related works: Two important papers:
1. Learning Complex In-hand Manipulation with Deep
Reinforcement Learning and Demonstrations (Rajeswaran et
[7], 2017)

~EE

Figue 1: A fivefingered bumanoid hand tsined with reiforcement learing manipulaing a block
from an initial configuration to a goal configuration using vision for sensing.

the first one is ..., demonstration data is used to fast the skill
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» Palli et al[6]. In-hand manipulation can be represented as
deviations from a reference grasp.

» Odhner et al[5]. utilized precision grasp configuration for the
planning of dexterous manipulation using under-actuated
hand.

» Saut et al[8]. built a probabilistic roadmap in grasp subspaces
and searched a trajectory in this roadmap for dexterous
manipulation.

Assumptions 1

Precision grasp configuration can be taken as a reference for
in-hand manipulation skill learning.
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The learning agent is preferred to fully explore a state
subspace with high probability success for skill learning.

The proposed method:

1 Using a PPO algorithm provided by OpenAl to learn in-hand
manipulation skill, like the object rotation.
2 Using reward shaping method to improve the learning
efficiency.
» Guide the exploration of DRL by using the precision grasp
configuration as a reference.
» Measuring the uncertainty of explored states for full
exploration.
3 Using multi-agent reinforcement learning (MARL) to
incorporate multiple reward functions.

So we want the agent to fully explore...., In the proposed method,
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DRL algorithms:
1 Trust region policy optimization (TRPO):

maximize Et [Mﬁt]
6 TOo1a (at | St)

subject to ]Et[KL[Wgold(' | st), mo(- | s¢)]] <.

2 Proximal Policy Optimization(PPO) Algorithms:
LY (0) = E; [min(r;(0)A,,clip(r;(0),1 —&.1+€)A,)]
e 0 is the policy parameter
e [, denotes the empirical expectation over timesteps
® r; is the ratio of the probability under the new and old policies, respectively
e A, is the estimated advantage at time

e £ is a hyperparameter, usually 0.1 or 0.2

PPO algorithm is developed from TRPO algorithm. The different

Z.Deng — UHH-Presentations




Learning in-hand manipulation using DRL

Learning in-hand manipulation using DRL  Prof.Sun’s lab from Tsinghua Universit Tactile sensor from Prof Pan’s lab  References

Three reward functions:
1 An extrinsic reward r&* that specifies the task goal.

2 A hand-based reward r"@? that encourage the agent to
explore the precision hand posture subspace.

3 An uncertainty-based reward r“"¢ that used to balance the
trade-off between exploration and exploitation of the MARL
algorithm.

ro—= {rext“7 rhand’ runC}

ré<t is computed based on the different of two quaternions.

pext _ { +2 if the goal is reached
||qCurr S qtarget| |2 otherwise
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rhand is measured based on the similarity between the current

explored hand configuration and the reference configuration.

rhand = HA_ Aggfri::rionH%a A= {alv 32} (2)

. ¢ L . ’ e Large wrap
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References

r"¢ is measured the uncertainty of explored states.

The uncertainty of explored states is approximated by the
prediction error of a transitional dynamic model.

» Transition dynamic model: fg, : 5y X ar — 5¢41 = S¢41.

1 A
-iﬂ(ef) = W Z H(5t+175t+1)
{st,at,st+1}€D (3)
1
=71 Z logfe, (st,at)
‘ ’ {st,at,st+1 €D

> Use the cross entropy between the distribution of the explored
state s;;1 and the predicted state 5;1; to compute the
prediction error.

unc

r'"c = —logfy, (s, a) (4)
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MARL: multiple agents represented by value functions respectively
are trained separately with respect to each own reward and then
cooperate to optimize the skill policy.

Vcomp(s) = ﬁl VeXt(5)+ﬁ2 Vhand(5)+ﬁ2 VunC(s) (5)

vext

. -
VEnd

DQ )| [D)| =] |~-{™
61 ~ i
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Full- Full- Full- Full- —
connected connected connected connected
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Experiments

Learning in-hand manipulation using DRL

Object rotation tasks in the Openai gym robotic environments:

HandManipulateBlock- HandManipulateEgg-
vO vO
Orient a block using a Orient an egg using a
robot hand. robot hand.
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Experiments

Learning in-hand manipulation using DRL

the average episode
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The average episode return with respect to the hand-based reward
hand.
rhand.
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The MARL is compared with the single-agent RL which train a
value function on a composition reward function.

o Block rotation task
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Conclusion:
» Using DRL to learn in-hand manipulation skills.
> Incorporating domain-specific knowledge into DRL algorithm
by designing additional reward.
Extension:
1 Can we explicitly represent the feasible state subspace with
high probability success.

Feasible solution Search space S Infeastble scluti
space Q l nfeasible solution

space Z
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Extension:
2 The safety constraint should be considered in DRL which
restricts the agent to explore the reasonable states

3 Combine model-based optimal control and model-free RL for
stable skill learning.

= 0.30 o
g 54 % 0.25 safely optimized policy
= X X 5 initial polic
£ X% £ 020 policy
2 04 V(co) © 015
g MpX X 5 Th
X550k £ 0.10

5 , XY s
S, _s-  unsafe region x5 0.05
g T T T T T 0.00 T T T T

—-1.0 —-0.5 0.0 0.5 1.0 0.0 0.5 1.0 1.5

angle [rad] time [s]
(a) Estimated safe set. (b) State trajectory (lower is better).

Safe Model-based Reinforcement Learning with Stability
Guarantees [2]
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Two main research directions of the lab: Active perception and
Dexterous manipulation.
PhD student's work:
> Yikai Wang: "Visual-tactile fusion" for CML B5 sub-project.
» Chao Yang: "Imitation learning considering structure
inconsistent"
» Mingxuan Jing: "preference-based reinforcement learning" and
"pose estimation"
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Five-fingered robotic hand:
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Five-fingered soft hand:
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https://bme.ucdavis.edu/people/departmental-faculty/

tingrui-pan/

» B. Nie, R. Li, J. D.
Brandt, and T. Pan,
“lontronic Microdroplet
Array for Flexible

Tingrui Pan

Associate Professor and Director
Micro-Nano Innovations (MiNI) Laboratory

Department of Biomedical Engineering

University of California Davis, CA 95616 U |t rasen SI tIVe Ta Ct| | e
pron: 520 545505 Sensing”, Lab Chip, vol.
Email edu

14, pp. 1107-1116.

» R. Li, Y. Si, Z. Zhu, Y. Guo, Y. Zhang, N. Pan, G. Sun, and
T. Pan, “Supercapacitive lontronic Nanofabric Sensing,” Adv
Mater, vol. 29, 1700253, pp. 1-8.

» Z. Zhu, R. Li, and T. Pan, “Imperceptible Epidermal-lontronic
Interface for Wearable Sensing,” Adv Mater, vol. 30, 1705122,
pp. 1-9, Jan 2018.
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Tactile sensor from Prof Pan's lab

Tactile sensor:
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Artificial Tactile Sensing
Ultrathin Stick-on Pressure Sensing Array
* Ultrathin, Imperceptible and Invisible

* Conformable Attachment to Skin

normal compress

This slide is provided by Prof Pan’s lab.
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Ongoing Work
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Thanks for your attention! Any questions?
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