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Motivations
1 Programming in-hand manipulation with multi-fingered
robotic hands is a challenging problem.

2 Deep reinforcement learning has used successfully to learn
complex manipulation skills.

3 Incorporating domain-specific knowledge into DRL in order to
reduce its sample complexity

4 Improving the exploration efficiency of DRL

The motivation of this work includes four points:Z.Deng – UHH-Presentations 3 / 25
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Related works
1 Different control patterns of in-hand manipulation [3]:
Rolling, Sliding, Finger gaiting, Finger-privoting/tracking, ...

2 Previous methods: trajectory optimization methods [4] and
imitation learning methods [1].

3 Recent works focus on DRL [6, 5], eg., OpenAI’s work.

In-hand manipulation has different control patterns. For example
..., Previous methods include ..., trajectory optimization rely on a
dynamic model and imitation leaning method need a perfect
human demonstration. recent work .. the agent learns skill directly
from interaction with its environment.
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Related works: Two important papers:
1. Learning Complex In-hand Manipulation with Deep

Reinforcement Learning and Demonstrations (Rajeswaran et
al. [7], 2017)

2. Learning Dexterous In-Hand Manipulation (OpenAI [8], 2018)

the first one is ..., demonstration data is used to fast the skill
learning. The second one is given by the OpenAI.Z.Deng – UHH-Presentations 5 / 25
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I Palli et al[6]. In-hand manipulation can be represented as
deviations from a reference grasp.

I Odhner et al[5]. utilized precision grasp configuration for the
planning of dexterous manipulation using under-actuated
hand.

I Saut et al[8]. built a probabilistic roadmap in grasp subspaces
and searched a trajectory in this roadmap for dexterous
manipulation.

Assumptions 1
Precision grasp configuration can be taken as a reference for
in-hand manipulation skill learning.

understand the in-hand manipulation behavior is important for
programming. ... So, in this work. we make an assumption.
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The learning agent is preferred to fully explore a state
subspace with high probability success for skill learning.

The proposed method:
1 Using a PPO algorithm provided by OpenAI to learn in-hand
manipulation skill, like the object rotation.

2 Using reward shaping method to improve the learning
efficiency.

I Guide the exploration of DRL by using the precision grasp
configuration as a reference.

I Measuring the uncertainty of explored states for full
exploration.

3 Using multi-agent reinforcement learning (MARL) to
incorporate multiple reward functions.

So we want the agent to fully explore...., In the proposed method,
we use .....,
Z.Deng – UHH-Presentations 7 / 25
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DRL algorithms:
1 Trust region policy optimization (TRPO):

2 Proximal Policy Optimization(PPO) Algorithms:

PPO algorithm is developed from TRPO algorithm. The different
is their loss function.Z.Deng – UHH-Presentations 8 / 25



Learning in-hand manipulation using DRL
Learning in-hand manipulation using DRL Prof.Sun’s lab from Tsinghua University Tactile sensor from Prof Pan’s lab References

Three reward functions:
1 An extrinsic reward r ext that specifies the task goal.
2 A hand-based reward rhand that encourage the agent to

explore the precision hand posture subspace.
3 An uncertainty-based reward runc that used to balance the

trade-off between exploration and exploitation of the MARL
algorithm.

r := {r ext , rhand , runc}

r ext is computed based on the different of two quaternions.

r ext =

{
+2 if the goal is reached
||qcurr 	qtarget ||2 otherwise (1)
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rhand is measured based on the similarity between the current
explored hand configuration and the reference configuration.

rhand = ||A−Aprecision
center ||22, A = {a1,a2} (2)

a2

a1
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runc is measured the uncertainty of explored states.
The uncertainty of explored states is approximated by the
prediction error of a transitional dynamic model.

I Transition dynamic model: fθf : st ×at → ŝt+1 ≈ st+1.

L (θf ) =
1
|D| ∑

{st ,at ,st+1}∈D
H(st+1, ŝt+1)

=− 1
|D| ∑

{st ,at ,st+1}∈D
logfθf (st ,at)

(3)

I Use the cross entropy between the distribution of the explored
state st+1 and the predicted state ŝt+1 to compute the
prediction error.

runc =−logfθf (s,a) (4)
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MARL: multiple agents represented by value functions respectively
are trained separately with respect to each own reward and then
cooperate to optimize the skill policy.

Vcomp(s) = β1V ext(s)+β2V hand(s)+β2V unc(s) (5)

Full-

connected

Full-

connected

Full-

connected

Full-

connected

s

extV

handV

uncV

extr

handr

uncr

61

256 256 256

Z.Deng – UHH-Presentations 12 / 25



Experiments
Learning in-hand manipulation using DRL Prof.Sun’s lab from Tsinghua University Tactile sensor from Prof Pan’s lab References

Object rotation tasks in the Openai gym robotic environments:
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the average episode return with respect to the extrinsic reward r ext :
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The average episode return with respect to the hand-based reward
rhand :
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The MARL is compared with the single-agent RL which train a
value function on a composition reward function.
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Conclusion:
I Using DRL to learn in-hand manipulation skills.
I Incorporating domain-specific knowledge into DRL algorithm

by designing additional reward.
Extension:

1 Can we explicitly represent the feasible state subspace with
high probability success.
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Extension:
2 The safety constraint should be considered in DRL which
restricts the agent to explore the reasonable states

3 Combine model-based optimal control and model-free RL for
stable skill learning.

Safe Model-based Reinforcement Learning with Stability
Guarantees [2]
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Two main research directions of the lab: Active perception and
Dexterous manipulation.
PhD student’s work:

I Yikai Wang: "Visual-tactile fusion" for CML B5 sub-project.
I Chao Yang: "Imitation learning considering structure

inconsistent"
I Mingxuan Jing: "preference-based reinforcement learning" and

"pose estimation"
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Five-fingered robotic hand:
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Five-fingered soft hand:
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https://bme.ucdavis.edu/people/departmental-faculty/
tingrui-pan/

I B. Nie, R. Li, J. D.
Brandt, and T. Pan,
“Iontronic Microdroplet
Array for Flexible
Ultrasensitive Tactile
Sensing”, Lab Chip, vol.
14, pp. 1107-1116.

I R. Li, Y. Si, Z. Zhu, Y. Guo, Y. Zhang, N. Pan, G. Sun, and
T. Pan, “Supercapacitive Iontronic Nanofabric Sensing,” Adv
Mater, vol. 29, 1700253, pp. 1-8.

I Z. Zhu, R. Li, and T. Pan, “Imperceptible Epidermal-Iontronic
Interface for Wearable Sensing,” Adv Mater, vol. 30, 1705122,
pp. 1-9, Jan 2018.
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Tactile sensor:
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This slide is provided by Prof Pan’s lab.
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Thanks for your attention! Any questions?
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