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What is Lifelong Learning?

* Continual acquisition of knowledge
* Fine-tuning of knowledge
* Learning from experiences

* Retaining of previously learnt
experiences

Figure 1.1: NICO — Neuro-Inspired COmpanion (Source: Kerzel et al. [2]).
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Catastrophic Forgetting

* Interference of learnt representations with new information

Representation 1 Representation 2

¥
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Inspiration from Biological Systems

* Neurosynaptic plasticity

* Hippocampus and cerebral cortex
* Transfer learning

* Intrinsic motivation

* Crossmodal learning

* Incremental learning
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Background
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Figure 2.1: Neural network
representation (Source:
McDonald [3]).
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Convolutional Neural Networks (CNNs)
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Figure 2.2: Convolutional neural network (Source: Cavaioni [1])
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Self-Organizing Networks

e Self-Organizing Map (SOM)
* Grow When Required Network (GWR Network)
* Recurrent GWR
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Approaches
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Object Recognition: CNN + Classifier

* Learning from video sequences
* Visual transformations of objects
* Changing environment

Figure 3.1: iCub (Source: Pasquale et al. [6]).
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Object Recognition: CNN + Classifier
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iCub: Object Learning

Source: https://www.youtube.com/watch? V=g
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iCub: Object Learning
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iCub: Object Learning

Source: https://www.youtube.com/watch?v=ghUFwegm7W8
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iCub: Object Learning

Source: https://www.youtube.com/watch?v=ghUFwegqm7W8
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iCub: Object Learning

Source: https://www.youtube.com/watch?v=ghUFwegm7W8
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iCub: Object Learning
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Source: https://www.youtube.com/watch?v=ghUFwegm7W8
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Sensorimotor Learning: Self-Organization

* Latency in sensorimotor systems

* Predictive mechanisms for future
motor states

* Online learning

Source:
https://upload.wikimedia.org/wikipedia/commons/
4/47/Nao_Robot_%28Robocup_2016%29.jpg
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Sensorimotor Learning: Self-Organization
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Sensorimotor Learning: Self-Organization

Figure 3.3: Visuomotor learning (Source: Mici et al. [4]).
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Object Recognition: CNN + Self-Organization
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Figure 3.4: Recognition pipeline (Adapted from Part et al. [5]).
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Results
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Object Recognition: CNN + Classifier
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Figure 4.1: Classification
accuracy of the model, which
was trained on an incremental
number of objects (Source:
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Object Recognition: CNN + Classifier
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Sensorimotor Learning: Self-Organizing Architecture
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Figure 4.3: Behaviour of the architecture (Source: Mici et al. [4]).
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Object Recognition: CNN + Self-Organization
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Discussion

* CNN + Classifier architecture for object recognition:

* Features extracted from a CNN are dependent on a dataset the model was
trained on

* Old representations are overwritten by the new information

* Self-organizing architecture for sensorimotor learning:
* Incremental online learning and prediction
* Unreliability of visual body tracking framework in complex body positions

* CNN + self-organization for object recognition:
* Self-organizing network grows when required
* Temporal context is not considered
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Conclusion

e Lifelong learning is crucial for intelligent robots

* Biological systems provide a basis for the incremental learning
* Self-organizing networks preserve the topology

* CNNs learn efficient feature descriptors

 Catastrophic forgetting increases during incremental tasks



Thank You!
Questions?
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